Skip to main content
Log in

Antibiotics and Probiotics for Irritable Bowel Syndrome

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Irritable bowel syndrome (IBS) is a disorder of a gut-brain interaction characterised by abdominal pain and a change in stool form or frequency. Current symptom-based definitions and the classification of IBS promote heterogeneity amongst patients, meaning that there may be several different pathophysiological abnormalities leading to similar symptoms. Although our understanding of IBS is incomplete, there are several indicators that the microbiome may be involved in a subset of patients. Techniques including a faecal sample analysis, colonic biopsies, duodenal aspirates or surrogate markers, such as breath testing, have been used to examine the gut microbiota in individuals with IBS. Because of a lack of a clear definition of what constitutes a healthy gut microbiota, and the fact that alterations in gut microbiota have only been shown to be associated with IBS, a causal relationship is yet to be established. We discuss several hypotheses as to how dysbiosis may be responsible for IBS symptoms, as well as potential treatment strategies. We review the current evidence for the use of antibiotics and probiotics to alter the microbiome in an attempt to improve IBS symptoms. Rifaximin, a non-absorbable antibiotic, is the most studied antibiotic and has now been licensed for use in IBS with diarrhoea in the USA, but the drug remains unavailable in many countries for this indication. Current evidence also suggests that certain probiotics, including Lactobacillus plantarum DSM 9843 and Bifidobacterium bifidum MIMBb75, may be efficacious in some patients with IBS. Finally, we describe the future challenges facing us in our attempt to modulate the microbiome to treat IBS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sperber AD, Bangdiwala SI, Drossman DA, Ghoshal UC, Simren M, Tack J, et al. Worldwide prevalence and burden of functional gastrointestinal disorders, results of Rome Foundation Global Study. Gastroenterology. 2021;160(1):99-114.e3.

    Article  PubMed  Google Scholar 

  2. Oka P, Parr H, Barberio B, Black CJ, Savarino EV, Ford AC. Global prevalence of irritable bowel syndrome according to Rome III or IV criteria: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2020;5(10):908–17.

    Article  PubMed  Google Scholar 

  3. Ford AC, Sperber AD, Corsetti M, Camilleri M. Irritable bowel syndrome. Lancet. 2020;396(10263):1675–88.

    Article  CAS  PubMed  Google Scholar 

  4. Holtmann GJ, Ford AC, Talley NJ. Pathophysiology of irritable bowel syndrome. Lancet Gastroenterol Hepatol. 2016;1(2):133–46.

    Article  PubMed  Google Scholar 

  5. Black CJ, Drossman DA, Talley NJ, Ruddy J, Ford AC. Functional gastrointestinal disorders: advances in understanding and management. Lancet. 2020;396(10263):1664–74.

    Article  CAS  PubMed  Google Scholar 

  6. Black CJ, Craig O, Gracie DJ, Ford AC. Comparison of the Rome IV criteria with the Rome III criteria for the diagnosis of irritable bowel syndrome in secondary care. Gut. 2021;70(6):1110–6.

    Article  CAS  PubMed  Google Scholar 

  7. Mearin F, Lacy BE, Chang L, Chey WD, Lembo AJ, Simren M, et al. Bowel disorders. Gastroenterology. 2016;150(6):1393–407.

    Article  Google Scholar 

  8. Ford AC, Forman D, Bailey AG, Axon AT, Moayyedi P. Irritable bowel syndrome: a 10-yr natural history of symptoms and factors that influence consultation behavior. Am J Gastroenterol. 2008;103(5):1229–39 (quiz 40).

    Article  PubMed  Google Scholar 

  9. Staller K, Olen O, Soderling J, Roelstraete B, Tornblom H, Khalili H, et al. Mortality risk in irritable bowel syndrome: results from a nationwide prospective cohort study. Am J Gastroenterol. 2020;115(5):746–55.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chang JY, Locke GR 3rd, McNally MA, Halder SL, Schleck CD, Zinsmeister AR, et al. Impact of functional gastrointestinal disorders on survival in the community. Am J Gastroenterol. 2010;105(4):822–32.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Pace F, Molteni P, Bollani S, Sarzi-Puttini P, Stockbrugger R, Bianchi Porro G, et al. Inflammatory bowel disease versus irritable bowel syndrome: a hospital-based, case-control study of disease impact on quality of life. Scand J Gastroenterol. 2003;38(10):1031–8.

    Article  CAS  PubMed  Google Scholar 

  12. Goodoory VC, Guthrie EA, Ng CE, Black CJ, Ford AC. Factors associated with lower disease-specific and generic health-related quality of life in Rome IV irritable bowel syndrome. Aliment Pharmacol Ther. 2023;57:323–34.

    Article  CAS  PubMed  Google Scholar 

  13. Goodoory VC, Ng CE, Black CJ, Ford AC. Impact of Rome IV irritable bowel syndrome on work and activities of daily living. Aliment Pharmacol Ther. 2022;56(5):844–56.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Buono JL, Carson RT, Flores NM. Health-related quality of life, work productivity, and indirect costs among patients with irritable bowel syndrome with diarrhea. Health Qual Life Outcomes. 2017;15(1):35.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Frandemark A, Tornblom H, Jakobsson S, Simren M. Work productivity and activity impairment in irritable bowel syndrome (IBS): a multifaceted problem. Am J Gastroenterol. 2018;113(10):1540–9.

    Article  PubMed  Google Scholar 

  16. Frandemark A, Tornblom H, Simren M, Jakobsson S. Maintaining work life under threat of symptoms: a grounded theory study of work life experiences in persons with irritable bowel syndrome. BMC Gastroenterol. 2022;22(1):73.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Corney RH, Stanton R. Physical symptom severity, psychological and social dysfunction in a series of outpatients with irritable bowel syndrome. J Psychosom Res. 1990;34(5):483–91.

    Article  CAS  PubMed  Google Scholar 

  18. Ballou S, McMahon C, Lee HN, Katon J, Shin A, Rangan V, et al. Effects of irritable bowel syndrome on daily activities vary among subtypes based on results from the IBS in America Survey. Clin Gastroenterol Hepatol. 2019;17(12):2471-8.e3.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Black CJ, Yiannakou Y, Houghton LA, Ford AC. Epidemiological, CLINICAL, and psychological characteristics of individuals with self-reported irritable bowel syndrome based on the Rome IV vs Rome III criteria. Clin Gastroenterol Hepatol. 2020;18(2):392-8.e2.

    Article  PubMed  Google Scholar 

  20. Patel P, Bercik P, Morgan DG, Bolino C, Pintos-Sanchez MI, Moayyedi P, et al. Irritable bowel syndrome is significantly associated with somatisation in 840 patients, which may drive bloating. Aliment Pharmacol Ther. 2015;41(5):449–58.

    Article  CAS  PubMed  Google Scholar 

  21. Goodoory VC, Mikocka-Walus A, Yiannakou Y, Houghton LA, Black CJ, Ford AC. Impact of psychological comorbidity on the prognosis of irritable bowel syndrome. Am J Gastroenterol. 2021;116(7):1485–94.

    Article  PubMed  Google Scholar 

  22. Goodoory VC, Ng CE, Black CJ, Ford AC. Direct healthcare costs of Rome IV or Rome III-defined irritable bowel syndrome in the United Kingdom. Aliment Pharmacol Ther. 2022;56(1):110–20.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Flacco ME, Manzoli L, De Giorgio R, Gasbarrini A, Cicchetti A, Bravi F, et al. Costs of irritable bowel syndrome in European countries with universal healthcare coverage: a meta-analysis. Eur Rev Med Pharmacol Sci. 2019;23(7):2986–3000.

    CAS  PubMed  Google Scholar 

  24. Zhang F, Xiang W, Li CY, Li SC. Economic burden of irritable bowel syndrome in China. World J Gastroenterol. 2016;22(47):10450–60.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Peery AF, Crockett SD, Murphy CC, Lund JL, Dellon ES, Williams JL, et al. Burden and cost of gastrointestinal, liver, and pancreatic diseases in the United States: update 2018. Gastroenterology. 2019;156(1):254-72.e11.

    Article  PubMed  Google Scholar 

  26. Shah ED, Salwen-Deremer JK, Gibson PR, Muir JG, Eswaran S, Chey WD. Comparing costs and outcomes of treatments for irritable bowel syndrome with diarrhea: cost-benefit analysis. Clin Gastroenterol Hepatol. 2022;20(1):136-44.e31.

    Article  CAS  PubMed  Google Scholar 

  27. Shah ED, Chang L, Salwen-Deremer JK, Gibson PR, Keefer L, Muir JG, et al. Contrasting clinician and insurer perspectives to managing irritable bowel syndrome: multilevel modeling analysis. Am J Gastroenterol. 2021;116(4):748–57.

    Article  PubMed  Google Scholar 

  28. Goodoory VC, Ng CE, Black CJ, Ford AC. Willingness to pay for medications among patients with Rome IV irritable bowel syndrome. Neurogastroenterol Motil. 2023;35(2): e14483.

    Article  PubMed  Google Scholar 

  29. Halpert A. Irritable bowel syndrome: patient-provider interaction and patient education. J Clin Med. 2018;7(1):3.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hearn M, Whorwell PJ, Vasant DH. Stigma and irritable bowel syndrome: a taboo subject? Lancet Gastroenterol Hepatol. 2020;5(6):607–15.

    Article  PubMed  Google Scholar 

  31. Vasant DH, Paine PA, Black CJ, Houghton LA, Everitt HA, Corsetti M, et al. British Society of Gastroenterology guidelines on the management of irritable bowel syndrome. Gut. 2021;70(7):1214–40.

    Article  PubMed  Google Scholar 

  32. Lacy BE, Pimentel M, Brenner DM, Chey WD, Keefer LA, Long MD, et al. ACG clinical guideline: management of irritable bowel syndrome. Am J Gastroenterol. 2021;116(1):17–44.

    Article  CAS  PubMed  Google Scholar 

  33. Black CJ, Burr NE, Camilleri M, Earnest DL, Quigley EM, Moayyedi P, et al. Efficacy of pharmacological therapies in patients with IBS with diarrhoea or mixed stool pattern: systematic review and network meta-analysis. Gut. 2020;69(1):74–82.

    Article  CAS  PubMed  Google Scholar 

  34. Black CJ, Burr NE, Quigley EMM, Moayyedi P, Houghton LA, Ford AC. Efficacy of secretagogues in patients with irritable bowel syndrome with constipation: systematic review and network meta-analysis. Gastroenterology. 2018;155(6):1753–63.

    Article  CAS  PubMed  Google Scholar 

  35. Black CJ, Staudacher HM, Ford AC. Efficacy of a low FODMAP diet in irritable bowel syndrome: systematic review and network meta-analysis. Gut. 2022;71:1117–26.

    Article  CAS  PubMed  Google Scholar 

  36. Black CJ, Thakur ER, Houghton LA, Quigley EMM, Moayyedi P, Ford AC. Efficacy of psychological therapies for irritable bowel syndrome: systematic review and network meta-analysis. Gut. 2020;69(8):1441–51.

    Article  PubMed  Google Scholar 

  37. Black CJ, Yuan Y, Selinger CP, Camilleri M, Quigley EMM, Moayyedi P, et al. Efficacy of soluble fibre, antispasmodic drugs, and gut-brain neuromodulators in irritable bowel syndrome: a systematic review and network meta-analysis. Lancet Gastroenterol Hepatol. 2020;5(2):117–31.

    Article  PubMed  Google Scholar 

  38. Barberio B, Savarino EV, Black CJ, Ford AC. Placebo response rates in trials of licensed drugs for irritable bowel syndrome with constipation or diarrhea: meta-analysis. Clin Gastroenterol Hepatol. 2021. https://doi.org/10.1016/j.cgh.2021.08.025.

    Article  PubMed  Google Scholar 

  39. Marshall JK, Thabane M, Garg AX, Clark WF, Moayyedi P, Collins SM, et al. Eight year prognosis of postinfectious irritable bowel syndrome following waterborne bacterial dysentery. Gut. 2010;59(5):605–11.

    Article  PubMed  Google Scholar 

  40. Klem F, Wadhwa A, Prokop LJ, Sundt WJ, Farrugia G, Camilleri M, et al. Prevalence, risk factors, and outcomes of irritable bowel syndrome after infectious enteritis: a systematic review and meta-analysis. Gastroenterology. 2017;152(5):1042-54.e1.

    Article  PubMed  Google Scholar 

  41. Jalanka-Tuovinen J, Salojarvi J, Salonen A, Immonen O, Garsed K, Kelly FM, et al. Faecal microbiota composition and host-microbe cross-talk following gastroenteritis and in postinfectious irritable bowel syndrome. Gut. 2014;63(11):1737–45.

    Article  PubMed  Google Scholar 

  42. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–63.

    Article  CAS  PubMed  Google Scholar 

  43. Villarreal AA, Aberger FJ, Benrud R, Gundrum JD. Use of broad-spectrum antibiotics and the development of irritable bowel syndrome. WMJ. 2012;111(1):17–20.

    PubMed  Google Scholar 

  44. Pimentel M, Lembo A, Chey WD, Zakko S, Ringel Y, Yu J, et al. Rifaximin therapy for patients with irritable bowel syndrome without constipation. N Engl J Med. 2011;364(1):22–32.

    Article  CAS  PubMed  Google Scholar 

  45. Lembo A, Pimentel M, Rao SS, Schoenfeld P, Cash B, Weinstock LB, et al. Repeat treatment with rifaximin is safe and effective in patients with diarrhea-predominant irritable bowel syndrome. Gastroenterology. 2016;151(6):1113–21.

    Article  CAS  PubMed  Google Scholar 

  46. Ford AC, Spiegel BM, Talley NJ, Moayyedi P. Small intestinal bacterial overgrowth in irritable bowel syndrome: systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2009;7(12):1279–86.

    Article  PubMed  Google Scholar 

  47. Shah ED, Basseri RJ, Chong K, Pimentel M. Abnormal breath testing in IBS: a meta-analysis. Dig Dis Sci. 2010;55(9):2441–9.

    Article  PubMed  Google Scholar 

  48. Shah A, Talley NJ, Jones M, Kendall BJ, Koloski N, Walker MM, et al. Small intestinal bacterial overgrowth in irritable bowel wyndrome: a systematic review and meta-analysis of case-control studies. Am J Gastroenterol. 2020;115(2):190–201.

    Article  PubMed  Google Scholar 

  49. Pimentel M, Chow EJ, Lin HC. Eradication of small intestinal bacterial overgrowth reduces symptoms of irritable bowel syndrome. Am J Gastroenterol. 2000;95(12):3503–6.

    Article  CAS  PubMed  Google Scholar 

  50. Ianiro G, Eusebi LH, Black CJ, Gasbarrini A, Cammarota G, Ford AC. Systematic review with meta-analysis: efficacy of faecal microbiota transplantation for the treatment of irritable bowel syndrome. Aliment Pharmacol Ther. 2019;50(3):240–8.

    Article  PubMed  Google Scholar 

  51. El-Salhy M, Winkel R, Casen C, Hausken T, Gilja OH, Hatlebakk JG. Efficacy of fecal microbiota transplantation for patients with irritable bowel syndrome at 3 years after transplantation. Gastroenterology. 2022;163(4):982-94.e14.

    Article  PubMed  Google Scholar 

  52. O’Toole PW, Flemer B. From culture to high-throughput sequencing and beyond: a layperson’s guide to the “omics” and diagnostic potential of the microbiome. Gastroenterol Clin North Am. 2017;46(1):9–17.

    Article  PubMed  Google Scholar 

  53. Hugerth LW, Andreasson A, Talley NJ, Forsberg AM, Kjellstrom L, Schmidt PT, et al. No distinct microbiome signature of irritable bowel syndrome found in a Swedish random population. Gut. 2020;69(6):1076–84.

    Article  PubMed  Google Scholar 

  54. Tap J, Derrien M, Tornblom H, Brazeilles R, Cools-Portier S, Dore J, et al. Identification of an intestinal microbiota signature associated with severity of irritable bowel syndrome. Gastroenterology. 2017;152(1):111-23.e8.

    Article  PubMed  Google Scholar 

  55. Berg G, Rybakova D, Fischer D, Cernava T, Verges MC, Charles T, et al. Microbiome definition re-visited: old concepts and new challenges. Microbiome. 2020;8(1):103.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sender R, Fuchs S, Milo R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell. 2016;164(3):337–40.

    Article  CAS  PubMed  Google Scholar 

  58. Valdes AM, Walter J, Segal E, Spector TD. Role of the gut microbiota in nutrition and health. BMJ. 2018;361: k2179.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Sekirov I, Russell SL, Antunes LC, Finlay BB. Gut microbiota in health and disease. Physiol Rev. 2010;90(3):859–904.

    Article  CAS  PubMed  Google Scholar 

  60. Pittayanon R, Lau JT, Yuan Y, Leontiadis GI, Tse F, Surette M, et al. Gut microbiota in patients with irritable bowel syndrome: a systematic review. Gastroenterology. 2019;157(1):97–108.

    Article  PubMed  Google Scholar 

  61. Willing BP, Dicksved J, Halfvarson J, Andersson AF, Lucio M, Zheng Z, et al. A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes. Gastroenterology. 2010;139(6):1844-54.e1.

    Article  PubMed  Google Scholar 

  62. Manichanh C, Rigottier-Gois L, Bonnaud E, Gloux K, Pelletier E, Frangeul L, et al. Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut. 2006;55(2):205–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Avuthu N, Guda C. Meta-analysis of altered gut microbiota reveals microbial and metabolic biomarkers for colorectal cancer. Microbiol Spectr. 2022;10(4): e0001322.

    Article  PubMed  Google Scholar 

  64. Lin Y, Lau HC, Liu Y, Kang X, Wang Y, Ting NL, et al. Altered mycobiota signatures and enriched pathogenic Aspergillus rambellii are associated with colorectal cancer based on multicohort fecal metagenomic analyses. Gastroenterology. 2022;163(4):908–21.

    Article  CAS  PubMed  Google Scholar 

  65. Islam MZ, Tran M, Xu T, Tierney BT, Patel C, Kostic AD. Reproducible and opposing gut microbiome signatures distinguish autoimmune diseases and cancers: a systematic review and meta-analysis. Microbiome. 2022;10(1):218.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Noce A, Marrone G, Di Daniele F, Ottaviani E, Wilson Jones G, Bernini R, et al. Impact of gut microbiota composition on onset and progression of chronic non-communicable diseases. Nutrients. 2019;11(5):1073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457(7228):480–4.

    Article  CAS  PubMed  Google Scholar 

  68. Lambeth SM, Carson T, Lowe J, Ramaraj T, Leff JW, Luo L, et al. Composition, diversity and abundance of gut microbiome in prediabetes and type 2 diabetes. J Diabetes Obes. 2015;2(3):1–7.

    PubMed  PubMed Central  Google Scholar 

  69. Romano S, Savva GM, Bedarf JR, Charles IG, Hildebrand F, Narbad A. Meta-analysis of the Parkinson’s disease gut microbiome suggests alterations linked to intestinal inflammation. NPJ Parkinsons Dis. 2021;7(1):27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hugon P, Dufour JC, Colson P, Fournier PE, Sallah K, Raoult D. A comprehensive repertoire of prokaryotic species identified in human beings. Lancet Infect Dis. 2015;15(10):1211–9.

    Article  PubMed  Google Scholar 

  71. Schroeder BO, Backhed F. Signals from the gut microbiota to distant organs in physiology and disease. Nat Med. 2016;22(10):1079–89.

    Article  CAS  PubMed  Google Scholar 

  72. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486(7402):222–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Deschasaux M, Bouter KE, Prodan A, Levin E, Groen AK, Herrema H, et al. Depicting the composition of gut microbiota in a population with varied ethnic origins but shared geography. Nat Med. 2018;24(10):1526–31.

    Article  CAS  PubMed  Google Scholar 

  74. He Y, Wu W, Zheng HM, Li P, McDonald D, Sheng HF, et al. Regional variation limits applications of healthy gut microbiome reference ranges and disease models. Nat Med. 2018;24(10):1532–5.

    Article  CAS  PubMed  Google Scholar 

  75. Shanahan F, van Sinderen D, O’Toole PW, Stanton C. Feeding the microbiota: transducer of nutrient signals for the host. Gut. 2017;66(9):1709–17.

    Article  CAS  PubMed  Google Scholar 

  76. Ghosh TS, Rampelli S, Jeffery IB, Santoro A, Neto M, Capri M, et al. Mediterranean diet intervention alters the gut microbiome in older people reducing frailty and improving health status: the NU-AGE 1-year dietary intervention across five European countries. Gut. 2020;69(7):1218–28.

    Article  CAS  PubMed  Google Scholar 

  77. Marques TM, Wall R, Ross RP, Fitzgerald GF, Ryan CA, Stanton C. Programming infant gut microbiota: influence of dietary and environmental factors. Curr Opin Biotechnol. 2010;21(2):149–56.

    Article  CAS  PubMed  Google Scholar 

  78. Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A. 2010;107(26):11971–5.

    Article  PubMed  PubMed Central  Google Scholar 

  79. McGuire MK, McGuire MA. Human milk: mother nature’s prototypical probiotic food? Adv Nutr. 2015;6(1):112–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Vangay P, Ward T, Gerber JS, Knights D. Antibiotics, pediatric dysbiosis, and disease. Cell Host Microbe. 2015;17(5):553–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D, et al. Environment dominates over host genetics in shaping human gut microbiota. Nature. 2018;555(7695):210–5.

    Article  CAS  PubMed  Google Scholar 

  82. Clarke SF, Murphy EF, O’Sullivan O, Lucey AJ, Humphreys M, Hogan A, et al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut. 2014;63(12):1913–20.

    Article  CAS  PubMed  Google Scholar 

  83. Engen PA, Green SJ, Voigt RM, Forsyth CB, Keshavarzian A. The gastrointestinal microbiome: alcohol effects on the composition of intestinal microbiota. Alcohol Res. 2015;37(2):223–36.

    PubMed  PubMed Central  Google Scholar 

  84. Antinozzi M, Giffi M, Sini N, Galle F, Valeriani F, De Vito C, et al. Cigarette smoking and human gut microbiota in healthy adults: a systematic review. Biomedicines. 2022;10(2):510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Banerjee S, Schlaeppi K, van der Heijden MGA. Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol. 2018;16(9):567–76.

    Article  CAS  PubMed  Google Scholar 

  86. Frost G, Sleeth ML, Sahuri-Arisoylu M, Lizarbe B, Cerdan S, Brody L, et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat Commun. 2014;5:3611.

    Article  CAS  PubMed  Google Scholar 

  87. De Vadder F, Kovatcheva-Datchary P, Goncalves D, Vinera J, Zitoun C, Duchampt A, et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell. 2014;156(1–2):84–96.

    Article  PubMed  Google Scholar 

  88. Lin HV, Frassetto A, Kowalik EJ Jr, Nawrocki AR, Lu MM, Kosinski JR, et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS ONE. 2012;7(4): e35240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhao L, Zhang F, Ding X, Wu G, Lam YY, Wang X, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science. 2018;359(6380):1151–6.

    Article  CAS  PubMed  Google Scholar 

  90. Long SL, Gahan CGM, Joyce SA. Interactions between gut bacteria and bile in health and disease. Mol Aspects Med. 2017;56:54–65.

    Article  CAS  PubMed  Google Scholar 

  91. Zhao L, Yang W, Chen Y, Huang F, Lu L, Lin C, et al. A Clostridia-rich microbiota enhances bile acid excretion in diarrhea-predominant irritable bowel syndrome. J Clin Invest. 2020;130(1):438–50.

    Article  CAS  PubMed  Google Scholar 

  92. Tang WH, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013;368(17):1575–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Shanahan F, Hill C. Language, numeracy and logic in microbiome science. Nat Rev Gastroenterol Hepatol. 2019;16(7):387–8.

    Article  PubMed  Google Scholar 

  94. Wei S, Bahl MI, Baunwall SMD, Hvas CL, Licht TR. Determining gut microbial dysbiosis: a review of applied indexes for assessment of intestinal microbiota imbalances. Appl Environ Microbiol. 2021;87(11):e00395-e421.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Wang L, Alammar N, Singh R, Nanavati J, Song Y, Chaudhary R, et al. Gut microbial dysbiosis in the irritable bowel syndrome: a systematic review and meta-analysis of case-control studies. J Acad Nutr Diet. 2020;120(4):565–86.

    Article  PubMed  Google Scholar 

  96. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, et al. Diversity of the human intestinal microbial flora. Science. 2005;308(5728):1635–8.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Zoetendal EG, von Wright A, Vilpponen-Salmela T, Ben-Amor K, Akkermans AD, de Vos WM. Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from feces. Appl Environ Microbiol. 2002;68(7):3401–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Carroll IM, Ringel-Kulka T, Keku TO, Chang YH, Packey CD, Sartor RB, et al. Molecular analysis of the luminal- and mucosal-associated intestinal microbiota in diarrhea-predominant irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol. 2011;301(5):G799-807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Rangel I, Sundin J, Fuentes S, Repsilber D, de Vos WM, Brummer RJ. The relationship between faecal-associated and mucosal-associated microbiota in irritable bowel syndrome patients and healthy subjects. Aliment Pharmacol Ther. 2015;42(10):1211–21.

    Article  CAS  PubMed  Google Scholar 

  100. Posserud I, Stotzer PO, Björnsson ES, Abrahamsson H, Simrén M. Small intestinal bacterial overgrowth in patients with irritable bowel syndrome. Gut. 2007;56(6):802–8.

    Article  PubMed  Google Scholar 

  101. Giamarellos-Bourboulis E, Tang J, Pyleris E, Pistiki A, Barbatzas C, Brown J, et al. Molecular assessment of differences in the duodenal microbiome in subjects with irritable bowel syndrome. Scand J Gastroenterol. 2015;50(9):1076–87.

    Article  PubMed  Google Scholar 

  102. Pyleris E, Giamarellos-Bourboulis EJ, Tzivras D, Koussoulas V, Barbatzas C, Pimentel M. The prevalence of overgrowth by aerobic bacteria in the small intestine by small bowel culture: relationship with irritable bowel syndrome. Dig Dis Sci. 2012;57(5):1321–9.

    Article  PubMed  Google Scholar 

  103. Villanueva-Millan MJ, Leite G, Wang J, Morales W, Parodi G, Pimentel ML, et al. Methanogens and hydrogen sulfide producing bacteria guide distinct gut microbe profiles and irritable bowel syndrome subtypes. Am J Gastroenterol. 2022;117(12):2055–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sahakian AB, Jee SR, Pimentel M. Methane and the gastrointestinal tract. Dig Dis Sci. 2010;55(8):2135–43.

    Article  PubMed  Google Scholar 

  105. Pimentel M, Chang C, Chua KS, Mirocha J, DiBaise J, Rao S, et al. Antibiotic treatment of constipation-predominant irritable bowel syndrome. Dig Dis Sci. 2014;59(6):1278–85.

    Article  CAS  PubMed  Google Scholar 

  106. Hegazi FZ, Abo-Elnaga IG. Degradation of organic acids by dairy lactic acid bacteria. Zentralbl Bakteriol Naturwiss. 1980;135(3):212–22.

    CAS  PubMed  Google Scholar 

  107. Tana C, Umesaki Y, Imaoka A, Handa T, Kanazawa M, Fukudo S. Altered profiles of intestinal microbiota and organic acids may be the origin of symptoms in irritable bowel syndrome. Neurogastroenterol Motil. 2010;22(5):512–9 (e114–5).

    CAS  PubMed  Google Scholar 

  108. Beatty JK, Bhargava A, Buret AG. Post-infectious irritable bowel syndrome: mechanistic insights into chronic disturbances following enteric infection. World J Gastroenterol. 2014;20(14):3976–85.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Quigley EMM, Murray JA, Pimentel M. AGA clinical practice update on small intestinal bacterial overgrowth: expert review. Gastroenterology. 2020;159(4):1526–32.

    Article  CAS  PubMed  Google Scholar 

  110. Vervier K, Moss S, Kumar N, Adoum A, Barne M, Browne H, et al. Two microbiota subtypes identified in irritable bowel syndrome with distinct responses to the low FODMAP diet. Gut. 2022;71(9):1821–30.

    Article  CAS  PubMed  Google Scholar 

  111. El-Salhy M, Hatlebakk JG, Gilja OH, Brathen Kristoffersen A, Hausken T. Efficacy of faecal microbiota transplantation for patients with irritable bowel syndrome in a randomised, double-blind, placebo-controlled study. Gut. 2020;69(5):859–67.

    Article  CAS  PubMed  Google Scholar 

  112. Halkjaer SI, Christensen AH, Lo BZS, Browne PD, Gunther S, Hansen LH, et al. Faecal microbiota transplantation alters gut microbiota in patients with irritable bowel syndrome: results from a randomised, double-blind placebo-controlled study. Gut. 2018;67(12):2107–15.

    Article  CAS  PubMed  Google Scholar 

  113. Zimmermann P, Curtis N. The effect of antibiotics on the composition of the intestinal microbiota: a systematic review. J Infect. 2019;79(6):471–89.

    Article  PubMed  Google Scholar 

  114. Krogsgaard LR, Engsbro AL, Bytzer P. Antibiotics: a risk factor for irritable bowel syndrome in a population-based cohort. Scand J Gastroenterol. 2018;53(9):1027–30.

    Article  PubMed  Google Scholar 

  115. Paula H, Grover M, Halder SL, Locke GR 3rd, Schleck CD, Zinsmeister AR, et al. Non-enteric infections, antibiotic use, and risk of development of functional gastrointestinal disorders. Neurogastroenterol Motil. 2015;27(11):1580–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Pimentel M, Chow EJ, Lin HC. Normalization of lactulose breath testing correlates with symptom improvement in irritable bowel syndrome. A double-blind, randomized, placebo-controlled study. Am J Gastroenterol. 2003;98(2):412–9.

    PubMed  Google Scholar 

  117. Ghoshal UC, Srivastava D, Misra A, Ghoshal U. A proof-of-concept study showing antibiotics to be more effective in irritable bowel syndrome with than without small-intestinal bacterial overgrowth: a randomized, double-blind, placebo-controlled trial. Eur J Gastroenterol Hepatol. 2016;28(3):281–9.

    Article  CAS  PubMed  Google Scholar 

  118. Lembo A, Zakko S, Ferreira N, Ringel Y, Bortey E, Courtney K, et al. Rifaximin for the treatment of diarrhea-associated irritable bowel syndrome: short term treatment leading to long term sustained response. Gastroenterology. 2008;134(Suppl. 1):A545.

    Google Scholar 

  119. Sharara AI, Aoun E, Abdul-Baki H, Mounzer R, Sidani S, Elhajj I. A randomized double-blind placebo-controlled trial of rifaximin in patients with abdominal bloating and flatulence. Am J Gastroenterol. 2006;101(2):326–33.

    Article  CAS  PubMed  Google Scholar 

  120. Pimentel M, Park S, Mirocha J, Kane SV, Kong Y. The effect of a nonabsorbed oral antibiotic (rifaximin) on the symptoms of the irritable bowel syndrome: a randomized trial. Ann Intern Med. 2006;145(8):557–63.

    Article  PubMed  Google Scholar 

  121. Ford AC, Harris LA, Lacy BE, Quigley EMM, Moayyedi P. Systematic review with meta-analysis: the efficacy of prebiotics, probiotics, synbiotics and antibiotics in irritable bowel syndrome. Aliment Pharmacol Ther. 2018;48(10):1044–60.

    Article  PubMed  Google Scholar 

  122. Shah E, Kim S, Chong K, Lembo A, Pimentel M. Evaluation of harm in the pharmacotherapy of irritable bowel syndrome. Am J Med. 2012;125(4):381–93.

    Article  CAS  PubMed  Google Scholar 

  123. Rezaie A, Heimanson Z, McCallum R, Pimentel M. Lactulose breath testing as a predictor of response to rifaximin in patients with irritable bowel syndrome with diarrhea. Am J Gastroenterol. 2019;114(12):1886–93.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Pimentel M. Review article: potential mechanisms of action of rifaximin in the management of irritable bowel syndrome with diarrhoea. Aliment Pharmacol Ther. 2016;43(Suppl 1):37–49.

    Article  CAS  PubMed  Google Scholar 

  125. Food and Agricultural Organisation of the United Nations (FAO) and World Health Organization (WHO). Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. 2001. https://www.fao.org/3/y6398e/y6398e.pdf. Accessed 23 Feb 2023.

  126. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014;11(8):506–14.

    Article  PubMed  Google Scholar 

  127. Quigley EM. Probiotics in irritable bowel syndrome: the science and the evidence. J Clin Gastroenterol. 2015;49(Suppl. 1):S60–4.

    Article  CAS  PubMed  Google Scholar 

  128. Ringel-Kulka T, Goldsmith JR, Carroll IM, Barros SP, Palsson O, Jobin C, et al. Lactobacillus acidophilus NCFM affects colonic mucosal opioid receptor expression in patients with functional abdominal pain: a randomised clinical study. Aliment Pharmacol Ther. 2014;40(2):200–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Rousseaux C, Thuru X, Gelot A, Barnich N, Neut C, Dubuquoy L, et al. Lactobacillus acidophilus modulates intestinal pain and induces opioid and cannabinoid receptors. Nat Med. 2007;13(1):35–7.

    Article  CAS  PubMed  Google Scholar 

  130. O’Mahony L, McCarthy J, Kelly P, Hurley G, Luo F, Chen K, et al. Lactobacillus and bifidobacterium in irritable bowel syndrome: symptom responses and relationship to cytokine profiles. Gastroenterology. 2005;128(3):541–51.

    Article  PubMed  Google Scholar 

  131. Pinto-Sanchez MI, Hall GB, Ghajar K, Nardelli A, Bolino C, Lau JT, et al. Probiotic Bifidobacterium longum NCC3001 reduces depression scores and alters brain activity: a pilot study in patients with irritable bowel syndrome. Gastroenterology. 2017;153(2):448-59.e8.

    Article  PubMed  Google Scholar 

  132. Andresen V, Gschossmann J, Layer P. Heat-inactivated Bifidobacterium bifidum MIMBb75 (SYN-HI-001) in the treatment of irritable bowel syndrome: a multicentre, randomised, double-blind, placebo-controlled clinical trial. Lancet Gastroenterol Hepatol. 2020;5(7):658–66.

    Article  PubMed  Google Scholar 

  133. Bai T, Xu Z, Xia P, Feng Y, Liu B, Liu H, et al. The short-term efficacy of Bifidobacterium quadruple viable tablet in patients with diarrhea-predominant irritable bowel syndrome: potentially mediated by metabolism rather than diversity regulation. Am J Gastroenterol. 2022.

  134. Quigley EMM, Markinson L, Stevenson A, Treasure FP, Lacy BE. Randomised clinical trial: efficacy and safety of the live biotherapeutic product MRx1234 in patients with irritable bowel syndrome. Aliment Pharmacol Ther. 2023;57(1):81–93.

    Article  CAS  PubMed  Google Scholar 

  135. Irvine EJ, Tack J, Crowell MD, Gwee KA, Ke M, Schmulson MJ, et al. Design of treatment trials for functional gastrointestinal disorders. Gastroenterology. 2016;150(6):1469-80.e1.

    Article  PubMed  Google Scholar 

  136. Quigley EMM. Clinical trials of probiotics in patients with irritable bowel syndrome: some points to consider. J Neurogastroenterol Motil. 2022;28(2):204–11.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Marshall BJ, Warren JR. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet. 1984;1(8390):1311–5.

    Article  CAS  PubMed  Google Scholar 

  138. Marshall BJ, Armstrong JA, McGechie DB, Glancy RJ. Attempt to fulfil Koch’s postulates for pyloric Campylobacter. Med J Aust. 1985;142(8):436–9.

    Article  CAS  PubMed  Google Scholar 

  139. Falony G, Joossens M, Vieira-Silva S, Wang J, Darzi Y, Faust K, et al. Population-level analysis of gut microbiome variation. Science. 2016;352(6285):560–4.

    Article  CAS  PubMed  Google Scholar 

  140. Zhernakova A, Kurilshikov A, Bonder MJ, Tigchelaar EF, Schirmer M, Vatanen T, et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science. 2016;352(6285):565–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, et al. Enterotypes of the human gut microbiome. Nature. 2011;473(7346):174–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander C. Ford.

Ethics declarations

Funding

No funding was received for the preparation of this article.

Conflicts of Interest/Competing Interests

Vivek C. Goodoory and Alexander C. Ford have no conflicts of interest that are directly relevant to the content of this article.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Availability of Data and Material

The article has no new associated data.

Code Availability

Not applicable.

Authors’ Contributions

ACF is the guarantor of the article. VCG and ACF drafted the manuscript. All authors have approved the final draft of the manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goodoory, V.C., Ford, A.C. Antibiotics and Probiotics for Irritable Bowel Syndrome. Drugs 83, 687–699 (2023). https://doi.org/10.1007/s40265-023-01871-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-023-01871-y

Navigation