Skip to main content
Log in

Potential Therapeutic Agents That Target ATP Binding Cassette A1 (ABCA1) Gene Expression

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

The cholesterol efflux protein ATP binding cassette protein A1 (ABCA) and apolipoprotein A1 (apo A1) are key constituents in the process of reverse-cholesterol transport (RCT), whereby excess cholesterol in the periphery is transported to the liver where it can be converted primarily to bile acids for either use in digestion or excreted. Due to their essential roles in RCT, numerous studies have been conducted in cells, mice, and humans to more thoroughly understand the pathways that regulate their expression and activity with the goal of developing therapeutics that enhance RCT to reduce the risk of cardiovascular disease. Many of the drugs and natural compounds examined target several transcription factors critical for ABCA1 expression in both macrophages and the liver. Likewise, several miRNAs target not only ABCA1 but also the same transcription factors that are critical for its high expression. However, after years of research and many preclinical and clinical trials, only a few leads have proven beneficial in this regard. In this review we discuss the various transcription factors that serve as drug targets for ABCA1 and provide an update on some important leads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Schmitz G, Langmann T. Structure, function and regulation of the ABC1 gene product. Curr Opin Lipidol. 2001;12:129–40. https://doi.org/10.1097/00041433-200104000-00006.

    Article  CAS  PubMed  Google Scholar 

  2. Wang N, Silver DL, Thiele C, Tall AR. ATP-binding cassette transporter A1 (ABCA1) functions as a cholesterol efflux regulatory protein. J Biol Chem. 2001;276:23742–7. https://doi.org/10.1074/jbc.M102348200.

    Article  CAS  PubMed  Google Scholar 

  3. Singaraja RR, Fievet C, Castro G, James ER, Hennuyer N, Clee SM, Bissada N, Choy JC, Fruchart JC, McManus BM, Staels B, Hayden MR. Increased ABCA1 activity protects against atherosclerosis. J Clin Investig. 2002;110:35–42. https://doi.org/10.1172/JCI15748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bodzioch M, Orso E, Klucken J, Langmann T, Böttcher A, Diederich W, Drobnik W, Barlage S, Büchler C, Porsch-Ozcürümez M, Kaminski WE, Hahmann HW, Oette K, Rothe G, Aslanidis C, Lackner KJ, Schmitz G. The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nat Genet. 1999;22:347–51. https://doi.org/10.1038/11914.

    Article  CAS  PubMed  Google Scholar 

  5. Brooks-Wilson A, Marcil M, Clee SM, Zhang LH, Roomp K, van Dam M, Yu L, Brewer C, Collins JA, Molhuizen HO, Loubser O, Ouelette BF, Fichter K, Ashbourne-Excoffon KJ, Sensen CW, Scherer S, Mott S, Denis M, Martindale D, Frohlich J, Morgan K, Koop B, Pimstone S, Kastelein JJ, Genest J Jr, Hayden MR. Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nat Genet. 1999;22:336–45. https://doi.org/10.1038/11905.

    Article  CAS  PubMed  Google Scholar 

  6. Rust S, Rosier M, Funke H, Real J, Amoura Z, Piette JC, Deleuze JF, Brewer HB, Duverger N, Denèfle P, Assmann G. Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1. Nat Genet. 1999;22:352–5. https://doi.org/10.1038/11921.

    Article  CAS  PubMed  Google Scholar 

  7. Tamehiro N, Shigemoto-Mogami Y, Kqkeya T, Okuhira K, Suzuki K, Sato R, Nagao T, Nishimaki-Mogami T. Sterol regulatory element-binding protein-2 and liver X receptor-driven dual promoter regulation of hepatic ABC transporter A1 gene expression: mechanism underlying the unique response to cellular cholesterol status. J Biol Chem. 2007;282:21090–9. https://doi.org/10.1074/jbc.M701228200.

    Article  CAS  PubMed  Google Scholar 

  8. Costet P, Luo Y, Wang N, Tall AR. Sterol-dependent transactivation of the ABC1 promoter by the liver X receptor/retinoid X receptor. J Biol Chem. 2000;275:28240–5. https://doi.org/10.1074/jbc.M003337200.

    Article  CAS  PubMed  Google Scholar 

  9. Schwartz K, Lawn RM, Wade DP. ABC1 gene expression and apo A-I-mediated cholesterol efflux are regulated by LXR. Biochem Biophys Res Commun. 2000;274:794–802. https://doi.org/10.1006/bbrc.2000.3243.

    Article  CAS  PubMed  Google Scholar 

  10. Field FJ, Watt K, Mathur SN. TNF-α decreases ABCA1 expression and attenuates HDL cholesterol efflux in the human intestinal cell line Caco-2. J Lipid Res. 2010;51:1407–15. https://doi.org/10.1194/jlr.M002410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Broccardo C, Luciani M, Chimini G. The ABCA subclass of mammalian transporters. Biochim Biophys Acta. 1999;1461:395–404. https://doi.org/10.1016/s0005-2736(99)00170-4.

    Article  CAS  PubMed  Google Scholar 

  12. Santamarina-Fojo S, Peterson K, Knapper C, Qiu Y, Freeman L, Cheng JF, Osorio J, Remaley A, Yang XP, Haudenschild C, Prades C, Chimini G, Blackmon E, Francois T, Duverger N, Rubin EM, Rosier M, Denèfle P, Fredrickson DS, Brewer HB Jr. Complete genomic sequence of the human ABCA1 gene: analysis of the human and mouse ATP-binding cassette A promoter. Proc Natl Acad Sci USA. 2000;97:7987–92. https://doi.org/10.1073/pnas.97.14.7987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hozoji M, Munehira Y, Ikeda Y, Makishima M, Matsuo M, Kioka N, Ueda K. Direct interaction of nuclear liver X receptor-beta with ABCA1 modulates cholesterol efflux. J Biol Chem. 2008;283:30057–63. https://doi.org/10.1074/jbc.M804599200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lee JY, Parks JS. ATP-binding cassette transporter A1 and its role in HDL formation. Curr Opin Lipidol. 2005;16:19–25. https://doi.org/10.1097/00041433-200502000-00005.

    Article  PubMed  Google Scholar 

  15. Mooradian AD, Haas MJ. Targeting high-density lipoproteins: increasing de novo production versus decreasing clearance. Drugs. 2015;75:713–22. https://doi.org/10.1007/s40265-015-0390-1.

    Article  CAS  PubMed  Google Scholar 

  16. Wang J, Burnett JR, Neasr S, Young K, Zinman B, Hanley AJ, Connelly PW, Harris SB, Hegele RA. Common and rare ABCA1 variants affecting plasma HDL cholesterol. Arterioscler Thromb Vasc Biol. 2000;20:1983–9. https://doi.org/10.1161/01.atv.20.8.1983.

    Article  CAS  PubMed  Google Scholar 

  17. Clee SM, Zwinderman AH, Engert JC, Zwarts KY, Molhuizen HO, Roomp K, Jukema JW, van Wijland M, van Dam M, Hudson TJ, Brooks-Wilson A, Genest JJ, Kastelein JJ, Hayden MR. Common genetic variation in ABCA1 is associated with altered lipoprotein levels and a modified risk for coronary artery disease. Circul. 2001;103:1198–205. https://doi.org/10.1161/01.cir.103.9.1198.

    Article  CAS  Google Scholar 

  18. Harada T, Imai Y, Nojiri T, Morita H, Hayashi D, Maemura K, Fukino K, Kawanami D, Nishimura G, Tsushima K, Monzen K, Yamazaki T, Mitsuyama S, Shintani T, Watanabe N, Seto K, Sugiyama T, Nakamura F, Ohno M, Hirata Y, Yamazaki T, Nagai R. A common Ile 823 Met variant of ATP-binding cassette transporter A1 gene (ABCA1) alters high density lipoprotein cholesterol levels in Japanese population. Atherosclerosis. 2003;169:105–12. https://doi.org/10.1016/s0021-9150(03)00135-7.

    Article  CAS  PubMed  Google Scholar 

  19. Tregouet DA, Ricard S, Nicaud V, Arnould I, Soubigou S, Rosier M, Duverger N, Poirer O, Mace S, Kee F, Morrison C, Denefle P, Tiert L, Evans A, Deleuze JF, Cambien F. In-depth haplotype analysis of ABCA1 gene polymorphisms in relation to plasma apoAI levels and myocardial infarction. Arterioscler Thromb Vasc Biol. 2004;24:775–81. https://doi.org/10.1161/01.ATV.0000121573.29550.1a.

    Article  CAS  PubMed  Google Scholar 

  20. Frikke-Schmidt R, Nordestgaard BG, Jensen GB, Steffensen R, Tybaerg-Hansen A. Genetic variation in ABCA1 predicts ischemic heart disease in the general population. Arterioscler Thromb Vasc Biol. 2007;28:180–6. https://doi.org/10.1161/ATVBAHA.107.153858.

    Article  CAS  PubMed  Google Scholar 

  21. Hamjane N, Benyahya F, Nourouti NG, Mechita MB, Barakat A. Cardiovascular diseases and metabolic abnormalities associated with obesity: what is the role of inflammatory responses? A systematic review. Microvasc Res. 2020;131: 104023. https://doi.org/10.1016/j.mvr.2020.104023.

    Article  CAS  PubMed  Google Scholar 

  22. Motillo S, Filion KB, Genest J, Joseph L, Pilote L, Poirier P, Rinfret S, Schiffrin EL, Eisenberg MJ. The metabolic syndrome and cardiovascular risk: a systematic review and meta-analysis. J Am Coll Cardiol. 2010;56:1113–32. https://doi.org/10.1016/j.jacc.2010.05.034.

    Article  Google Scholar 

  23. Kraus BR, Hartman AD. Adipose tissue and cholesterol metabolism. J Lipid Res. 1984;25:97–110.

    Article  Google Scholar 

  24. Schreibman PH, Dell RB. Human adipocyte cholesterol. Concentration, localization, synthesis and turnover. J Clin Investig. 1975;55:986–93. https://doi.org/10.1172/JCI108028.

  25. Yu BL, Zhao SP, Hu JR. Cholesterol imbalance in adipocytes: a possible mechanism of adipocyte dysfunction in obesity. Obes Rev. 2010;11:560–7. https://doi.org/10.1111/j.1467-789X.2009.00699.x.

    Article  CAS  PubMed  Google Scholar 

  26. Choramanska B, Mysliwiec P, Hady HR, Dadan J, Mysliwiec H, Bonda T, Chabowski A, Miklosz A. The implication of adipocyte ATP-binding cassette A1 and G1 transporters in metabolic complications of obesity. J Physiol Pharm. 2019;70:143–52. https://doi.org/10.26402/jpp.2019.1.14.

    Article  CAS  Google Scholar 

  27. deHaan W, Bhattacharjee A, Ruddle P, Kang MH, Hayden MR. ABCA1 in adipocytes regulates adipose tissue lipid content, glucose tolerance, and insulin sensitivity. J Lipid Res. 2014;55:516–23. https://doi.org/10.1194/jlr.M045294.

    Article  CAS  Google Scholar 

  28. Umemoto T, Han CY, Mitra P, et al. Apolipoprotein A1 and high-density lipoprotein have anti-inflammatory effects on adipocytes via cholesterol transporters: ATP-binding cassette A-1, ATP-binding cassette G-1, and scavenger receptor B-1. Circ Res. 2013;112:1345–54. https://doi.org/10.1161/CIRCRESAHA.111.300581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sparrow CP, Baffic J, Lam MH, Lund EG, Adams AD, Fu X, Hayes N, Jones AB, Macnaul KL, Ondeyka J, Singh S, Wang J, Zhou G, Moller DE, Wright SD, Menke JG. A potent synthetic LXR agonist is more effective than cholesterol loading at inducing ABCA1 mRNA and stimulating cholesterol efflux. J Biol Chem. 2002;277:10021–7. https://doi.org/10.1074/jbc.M108225200.

    Article  CAS  PubMed  Google Scholar 

  30. Quinet EM, Savio DA, Halpern AR, Chen L, Miller CP, Nambi P. Gene-selective modulation by a synthetic oxysterol ligand of the liver X receptor. J Lipid Res. 2004;45:1929–42. https://doi.org/10.1194/jlr.M400257-JLR200.

    Article  CAS  PubMed  Google Scholar 

  31. Hammer SS, Beli E, Kady N, Wang Q, Wood K, Lydic TA, Malek G, Saban DR, Wang XX, Hazra S, Levi M, Busik JV, Grant MB. The mechanism of diabetic retinopathy pathogenesis unifying key lipid regulators, sirtuin 1 and liver X receptor. EBioMedicine. 2017;22:181–90. https://doi.org/10.1016/j.ebiom.2017.07.008.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kick E, Martin R, Xie Y, Flatt B, Schweiger E, Wang TL, Busch B, Nyman M, Gu XH, Yan G, Wagner B, Nanao M, Nguyen L, Stout T, Plonowski A, Schulman I, Ostrowski J, Kirchgessner T, Wexler R, Mohan R. Liver X receptor (LXR) partial agonists: biaryl pyrazoles and imidazoles displaying a preference for LXRβ. Bioorg Med Chem Lett. 2015;25:372–7. https://doi.org/10.1016/j.bmcl.2014.11.029.

    Article  CAS  PubMed  Google Scholar 

  33. Miao B, Zondlo S, Gibbs S, Cromley D, Hosagrahara VP, Kirchgessner TG, Billheimer J, Mukherjee R. Raising HDL cholesterol without inducing hepatic steatosis and hypertriglyceridemia by a selective LXR modulator. J Lipid Res. 2004;45:1410–7. https://doi.org/10.1194/jlr.M300450-JLR200.

    Article  CAS  PubMed  Google Scholar 

  34. Delvecchio CJ, Bilan P, Radford K, Stephen J, Trigatti BL, Cox G, Parameswaran K, Capone JP. Liver X receptor stimulates cholesterol efflux and inhibits expression of proinflammatory mediators in human airway smooth muscle cells. Mol Endocrinol. 2007;21:1324–34. https://doi.org/10.1210/me.2007-0017.

    Article  CAS  PubMed  Google Scholar 

  35. Kannisto K, Gafvels M, Jiang Z-Y, Slatis K, Hu X, Jorns C, Steffensen KR, Eggerston G. LXR driven induction of HDL-cholesterol is independent of intestinal cholesterol absorption and ABCA1 protein expression. Lipids. 2014;49:71–83. https://doi.org/10.1007/s11745-013-3853-8.

    Article  CAS  PubMed  Google Scholar 

  36. DiBlasio-Smith EA, Arai M, Quinet EM, Evans MJ, Kornaga T, Basso MD, Chen L, Feingold I, Halpern AR, Liu Q-Y, Nambi P, Savio D, Wang S, Mounts WM, Isler JA, Slager AM, Burczynski ME, Dorner AJ, LaVallie ER. Discovery and implementation of transcriptional biomarkers of synthetic LXR agonists in peripheral blood cells. J Transl Med. 2008;6:59. https://doi.org/10.1186/1479-5876-6-59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Quinet EM, Basso MD, Halpern AR, Yates DW, Steffan RJ, Clerin V, Resmini C, Keith JC, Berrodin TJ, Feingold I, Wenyan Zhong W, Hartman HB, Evans MJ, Gardell SJ, DiBlasio-Smith E, Mounts WM, LaVallie ER, Wrobel J, Nambi P, Vlasuket GP. LXR ligand lowers LDL cholesterol in primates, is lipid neutral in hamster, and reduces atherosclerosis in mouse. J Lipid Res. 2009;50:2358–70. https://doi.org/10.1194/jlr.M900037-JLR200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yan W, Zhang T, Cheng J, Zhou X, Qu X, Hu H. Liver X receptor agonist methyl-3β-hydroxy-5α,6α-epoxycholonate attenuates atherosclerosis in apolipoprotein E knockout mice without increasing plasma triglyceride. Pharmacology. 2010;86:306–12. https://doi.org/10.1159/000321320.

    Article  CAS  PubMed  Google Scholar 

  39. Castro Navas FF, Giorgi G, Maggioni D, Pacciarini M, Russo V, Marinozzi M. C24-hydroxylated stigmastane derivatives as liver X receptor agonists. Chem Phys Lipids. 2018;212:44–50. https://doi.org/10.1016/j.chemphyslip.2018.01.005.

    Article  CAS  PubMed  Google Scholar 

  40. Marinozzi M, Castro Navas FF, Maggioni D, Carosati E, Bocci G, Carloncelli M, Giorgi G, Cruciani G, Fontana R, Russo V. Side-chain modified ergosterol and stigmasterol derivatives as liver X receptor agonists. J Med Chem. 2017;60:6548–62. https://doi.org/10.1021/acs.jmedchem.7b00091.

    Article  CAS  PubMed  Google Scholar 

  41. Fukomoto H, Deng A, Irizarry MC, Fitzgerald ML, Rebeck GW. Induction of the cholesterol transporter ABCA1 in central nervous system cells by liver X receptor agonists increases secreted A beta levels. J Biol Chem. 2002;277:48508–13. https://doi.org/10.1074/jbc.M209085200.

    Article  Google Scholar 

  42. Terasaka N, Hiroshima A, Koieyama T, Ubukata N, Morikawa Y, Nakai D, Inaba T. T-0901317, a synthetic liver X receptor ligand, inhibits development of atherosclerosis in LDL receptor-deficient mice. FEBS Lett. 2003;536:6–11. https://doi.org/10.1016/s0014-5793(02)03578-0.

    Article  CAS  PubMed  Google Scholar 

  43. Beyer TP, Schmidt RJ, Foxworthy P, Zhang Y, Dai J, Bensch WR, Kauffman RF, Gao H, Ryan TP, Jiang XC, Karathanasis SK, Eacho PI, Cao G. Coadministration of a liver X receptor agonist and a peroxisome proliferator activator receptor-alpha agonist in mice: effects of nuclear receptor interplay on high-density lipoprotein and triglyceride metabolism in vivo. J Pharmacol Exp Ther. 2004;309:861–8. https://doi.org/10.1124/jpet.103.064535.

    Article  CAS  PubMed  Google Scholar 

  44. Quinet EM, Savio DA, Halpern AR, Chen L, Schuster GU, Gustafson J-A, Basso MD, Nambi P. Liver X receptor (LXR)-beta regulation in LXRalpha-deficient mice: implications for therapeutic targeting. Mol Pharmacol. 2006;70:1340–9. https://doi.org/10.1124/mol.106.022608.

    Article  CAS  PubMed  Google Scholar 

  45. Panzenboeck U, Kratzer I, Sovic A, Wintersperger A, Bernhart E, Hammer A, Malle E, Sattler W. Regulatory effects of synthetic liver X receptor- and peroxisome -proliferator activated receptor agonists on sterol transport pathways in polarized cerebrovascular endothelial cells. Int J Biochem Cell Biol. 2006;38:1314–29. https://doi.org/10.1016/j.biocel.2006.01.013.

    Article  CAS  PubMed  Google Scholar 

  46. Dai X-Y, Ou X, Hao X-R, Cao D-L, Tang Y-L, Hu Y-W, Li X-X, Tang C-K. The effect of T0901317 on ATP-binding cassette transporter A1 and Niemann-Pick type C1 in apo E/ mice. J Cardiovasc Pharmacol. 2008;51:467–75. https://doi.org/10.1097/FJC.0b013e31816a5be3.

    Article  CAS  PubMed  Google Scholar 

  47. Zannotti I, Poti F, Pedrelli M, Favari E, Moleri E, Franceschini G, Calabresi L, Bernini F. The LXR agonist T0901317 promotes the reverse cholesterol transport from macrophages by increasing plasma efflux potential. J Lipid Res. 2008;49:954–60. https://doi.org/10.1194/jlr.M700254-JLR200.

    Article  CAS  Google Scholar 

  48. Larrede S, Quinn CM, Jessup W, Frisdal E, Olivier M, Hsieh V, Kim M-J, Van Eck M, Couvert P, Carrie A, Giral P, Chapman MJ, Guerin M, Le Goff W. Stimulation of cholesterol efflux by LXR agonists in cholesterol-loaded human macrophages is ABCA1-dependent but ABCG1-independent. Arterioscler Thromb Vasc Biol. 2009;29:1930–6. https://doi.org/10.1161/ATVBAHA.109.194548.

    Article  CAS  PubMed  Google Scholar 

  49. Vershuren L, de Vries-van der Weij J, Zadelaar S, Kleemann R, Koostra T. LXR agonist suppresses atherosclerotic lesion growth and promotes lesion regression in apo E*3Leiden mice: time course and mechanisms. J Lipid Res. 2009;50:301–11. https://doi.org/10.1194/jlr.M800374-JLR200.

  50. Maejima T, Sugano T, Yamazaki H, Yoshinaka Y, Doi T, Tanabe S, Nishimaki-Mogami T. Pitavastatin increases ABCA1 expression by dual mechanisms: SREBP2-driven transcriptional activation and PPARα-dependent protein stabilization but without activating LXR in rat hepatoma McARH7777 cells. J Pharmacol Sci. 2011;116:107–15. https://doi.org/10.1254/jphs.10241fp.

  51. Honzumi S, Shima A, Hiroshima A, Koieyama T, Terasaka N. Synthetic LXR agonist inhibits the development of atherosclerosis in New Zealand White rabbits. Biochim Biophys Acta. 2011;1811:1136–45. https://doi.org/10.1016/j.bbalip.2011.08.009.

    Article  CAS  PubMed  Google Scholar 

  52. Chen J, Zhao L, Sun D, Narsinh K, Li C, Zhang Z, Qi S, Wei G, Li W, Guo W, Cao F. Liver X receptor activation attenuates plaque formation and improves vasomotor function of the aortic artery in atherosclerotic apoE(−/−) mice. Inflamm Res. 2012;61:1299–307. https://doi.org/10.1007/s00011-012-0529-4.

    Article  CAS  PubMed  Google Scholar 

  53. Ma AZS, Song ZY, Zhang Q. Cholesterol efflux is LXRα isoform dependent in human macrophages. BMC Cardiovasc Disord. 2014;14:80. https://doi.org/10.1186/1471-2261-14-80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kirchgessner TG, Martin R, Sleph P, Grimm D, Liu X, Lupisella J, Smalley J, Narayanan R, Xie Y, Ostrowsk J, Cantor GH, Mohan R, Kick E. Pharmacological characterization of a novel liver X receptor agonist with partial LXRα activity and a favorable window in nonhuman primates. J Pharmacol Exp Ther. 2015;352:305–14. https://doi.org/10.1124/jpet.114.219923.

    Article  CAS  PubMed  Google Scholar 

  55. Manna PR, Sennoune SR, Martinez-Zaguilan R, Slominski AI, Pruitt K. Regulation of retinoid-mediated cholesterol efflux involves liver X receptor activation in mouse macrophages. Biochem Biophys Res Commun. 2015;2015(464):312–7. https://doi.org/10.1016/j.bbrc.2015.06.150.

    Article  CAS  Google Scholar 

  56. Tamehiro N, Park MH, Hawxhurst V, Nagpal K, Adams K, Zannis VI, Colenbock DT, Fitzgerald ML. LXR agonism upregulates the macrophage ABCA1/syntrophin protein complex that can bind apoA-I and stabilized ABCA1 protein, but complex loss does not inhibit lipid efflux. Biochem. 2015;54:6931–41. https://doi.org/10.1021/acs.biochem.5b00894.

    Article  CAS  Google Scholar 

  57. Carter AY, Letronne F, Fitz NF, Mounier A, Wolfe CM, Nam KNM, Reeves VL, Kamboh H, Lefterov I, Koldamova R. Liver X receptor agonist treatment significantly affects phenotype and transcriptome of APOE3 and APOE4 Abca1 haplo-deficient mice. PLoS ONE. 2017;12:e0172161. https://doi.org/10.1371/journal.pone.0172161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kaseda R, Tsuchida Y, Yang HC, Yancey PG, Zhong J, Tao H, Bian A, Fogo AB, Linton MRF, Fazio S, Ikizler TA, Kon V. Chronic kidney disease alters lipid trafficking and inflammatory responses in macrophages: effects of liver X receptor agonism. BMC Nephrol. 2018;18:17. https://doi.org/10.1186/s12882-018-0814-8.

    Article  CAS  Google Scholar 

  59. Katz A, Udata C, Ott E, Hickey L, Burczynski ME, Burghart P, Vesterqvist O, Meng X. Safety, pharmacokinetics, and pharmacodynamics of single doses of LXR-623, a novel liver X-receptor agonist, in healthy participants. J Clin Pharm 2009;49:643–9. https://doi.org/10.1177/0091270009335768.

  60. LaClair KD, Manaye KF, Lee DL, Allard JS, Savonenko AV, Troncoso JC, Wong PC. Treatment with bexarotene, a compound that increases apolipoprotein E, provides no cognitive benefit in mutant APP/PS1 mice. Mol Neurodegener. 2013;8:18. https://doi.org/10.1186/1750-1326-8-18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kuntz MM, Candela P, Saint-Pol J, Lamartiniere Y, Boucau MC, Sevin E, Fenart L, Gosselet F. Bexarotene promotes cholesterol efflux and restricts apical-to-basolateral transport of amyloid-β peptides in an in vitro model of the human blood-brain barrier. J Alzheimer’s Dis. 2015;48:849–62. https://doi.org/10.3233/JAD-150469.

    Article  CAS  Google Scholar 

  62. Tachibana M, Shinohara M, Yamazaki Y, Liu C-C, Roger J, Bu G, Kanekiyo T. Rescuing effects of RXR-agonist bexarotene on aging-related synapse loss depend on neuronal LRP1. Exp Neuro. 2016;277:1–9. https://doi.org/10.1016/j.expneurol.2015.12.003.

    Article  CAS  Google Scholar 

  63. Nishimaki-Mogami T, Tamehiro N, Sato Y, Okuhira K, Sai K, Kagechika H, Shudo K, Abe-Dohmae S, Yokoyama S, Ohno Y, Inoue K, Sawada J-I. The RXR agonists PA024 and HX630 have different abilities to activate LXR/RXR and to induce ABCA1 expression in macrophage cell lines. Biochem Pharmacol. 2008;76:1006–13. https://doi.org/10.1016/j.bcp.2008.08.005.

    Article  CAS  PubMed  Google Scholar 

  64. Claudel T, Leibowitz MD, Fievet C, Tailleux A, Wagner B, Repa JJ, Torpier G, Lobaccaro JM, Paterniti JR, Mangelsdorf DJ, Heyman RA, Auwerx J. Reduction of atherosclerosis in apolipoprotein E knockout mice by activation of the retinoid X receptor. Proc Natl Acad Sci USA. 2001;98:2610–5. https://doi.org/10.1073/pnas.041609298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chawla A, Boisvert WA, Lee CH, Laffitte BA, Barak Y, Joseph SB, Liao D, Nagy L, Edwards PA, Curtiss LK, Evans RM, Tontonoz P. A PPAR gamma-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol Cell. 2001;7:161–71. https://doi.org/10.1016/s1097-2765(01)00164-2.

    Article  CAS  PubMed  Google Scholar 

  66. Repa JJ, Turley SD, Lobaccaro JA, Medina J, Li L, Lustig K, Shan B, Heyman RA, Dietschy JM, Mangelsdorf DJ. Regulation of absorption and ABC1-mediated efflux of cholesterol by RXR heterodimers. Science. 2000;289:1524–9. https://doi.org/10.1126/science.289.5484.1524.

    Article  CAS  PubMed  Google Scholar 

  67. Chen X, Zhao Y, Guo Z, Zhou L, Okoro EU, Yang H. Transcriptional regulation of ATP-binding cassette transporter A1 expression by a novel signaling pathway. J Biol Chem. 2011;286:8917–23. https://doi.org/10.1074/jbc.M110.214429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cui H, Okuhira K, Ohoka N, Naito M, Kagechika H, Hirose A, Nishimaki-Mogami T. Tributylin chloride induces ABCA1 expression and apolipoprotein A-1-mediated cellular cholesterol efflux by activating LXRα/RXRα. Biochem Pharmacol. 2011;81:819–24. https://doi.org/10.1016/j.bcp.2010.12.023.

    Article  CAS  PubMed  Google Scholar 

  69. Sun Y, Fan J, Zhu Z, Guo X, Zhou T, Duan W, Shen X. Small molecule TBTC as a new selective retinoid X receptor α agonist improves behavioral deficit in Alzheimer’s disease model mice. Eur J Pharmacol. 2015;762:202–13. https://doi.org/10.1016/j.ejphar.2015.05.050.

    Article  CAS  PubMed  Google Scholar 

  70. Costet P, Lalanne F, Gerbod-Giannone MC, Molina JR, Fu X, Lund EG, Gudas LJ, Tall AR. Retinoic acid receptor-mediated induction of ABCA1 in macrophages. Mol Cell Biol. 2003;23:7756–66. https://doi.org/10.1128/MCB.23.21.7756-7766.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chen J, Costa LG, Guizzeti M. Retinoic acid isomers up-regulate ATP binding cassette A1 and G1 and cholesterol efflux in rat astrocytes: implications for their therapeutic and teratogenic effects. J Pharmacol Exp Ther. 2011;338:870–8. https://doi.org/10.1124/jpet.111.182196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Arora A, Taskinen JH, Olkkonen VM. Coordination of inter-organelle communication and lipid fluxes by OSBP-related proteins. Prog Lipid Res. 2022;86: 101146. https://doi.org/10.1016/j.plipres.2022.101146.

    Article  CAS  PubMed  Google Scholar 

  73. van der Kant R, Zondervan I, Janssen L, Neefjes J. Cholesterol-binding molecules MLN64 and ORP1L mark distinct late endosomes with transporters ABCA3 and NPC1. J Lipid Res. 2013;54:2153–65. https://doi.org/10.1194/jlr.M037325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhao K, Ridgway ND. Oxysterol-binding protein-related protein 1L regulates cholesterol egress from the endo-lysosomal system. Cell Rep. 2017;19:1807–18. https://doi.org/10.1016/j.celrep.2017.05.028.

    Article  CAS  PubMed  Google Scholar 

  75. Lee S, Wang PY, Jeong Y, Mangelsdorf DJ, Anderson RG, Michaely P. Sterol-dependent nuclear import of ORP1S promotes LXR regulated trans-activation of apoE. Exp Cell Res. 2012;318:2128–42. https://doi.org/10.1016/j.yexcr.2012.06.012.

    Article  CAS  PubMed  Google Scholar 

  76. Wright MB, Santos JV, Kemmer C, Maugeais C, Carralot J-P, Roever S, Molina J, Ducasa GM, Mitrofanova A, Sloan A, Ahmad A, Pedigo C, Ge M, Pressly J, Barisoni L, Mendez A, Sgrignani J, Cavalli A, Merscher S, Prunotto M, Fornoni A. Compounds targeting OSBPL7 increase ABCA1-dependent cholesterol efflux preserving kidney function in two models of kidney disease. Nat Commun. 2021;12:4662. https://doi.org/10.1038/s41467-021-24890-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Miranda van Eck M, Bos IST, Kaminski WE, Evelyn Orsó E, Gregor Rothe G, Jaap Twisk J, Alfred Böttcher A, Edwin S, Van Amersfoort ES, Trudy A, Christiansen-Weber TA, Wai-Ping Fung-Leung W-P, Theo JC, Van Berkel TJC, Gerd Schmitz G. Luekocyte ABCA1 controls susceptibility to atherosclerosis and macrophage recruitment into tissues. Proc Natl Acad Sci USA. 202;99:6298–303. https://doi.org/10.1073/pnas.092327399.

  78. Zhou W, Lin J, Chen H, Wang J, Liu Y, Xia M. Retinoic acid induces macrophage cholesterol efflux and inhibits atherosclerotic plaque formation in apoE-deficient mice. Br J Nutr. 2015;114:509–18. https://doi.org/10.1017/S0007114515002159.

    Article  CAS  PubMed  Google Scholar 

  79. Lasch A, Alarcan J, Lampen A, Braeuning A, Lichtenstein D. Combinations of LXR and RXR agonists induced triglyceride accumulation in human HepaRG cells in a synergistic manner. Arch Toxicol. 2020;94:1303–20. https://doi.org/10.1007/s00204-020-02685-7.

    Article  CAS  PubMed  Google Scholar 

  80. Suzuki Y, Shimada J, Shudo K, Matsumura M, Crippa MP, Kojima S. Physical interaction between retinoic acid receptor and Sp1: mechanism for induction of urokinase by retinoic acid. Blood. 1999;1999(93):4264–76. https://doi.org/10.1182/blood.V93.12.4264.

    Article  Google Scholar 

  81. Huang YC, Chen JY, Hung WC. Vitamin D3 receptor/Sp2 complex is required for the induction of p27Kip1 expression by vitamin D3. Oncogene. 2004;23:4856–61. https://doi.org/10.1038/sj.onc.1207621.

    Article  CAS  PubMed  Google Scholar 

  82. Sun G, Porter W, Safe S. Estrogen-induced retinoic acid receptor alpha 1 gene expression: role of estrogen receptor-Sp1 complex. Mol Endocrinol. 1998;12:882–90. https://doi.org/10.1210/mend.12.6.0125.

    Article  CAS  PubMed  Google Scholar 

  83. Thymiakou E, Zannis VI, Kardassis D. Physical and functional interactions between liver X receptor/retinoid X receptor and Sp1 modulate the transcriptional induction of the human ATP binding cassette transporter A1 gene by oxysterols and retinoids. Biochem. 2007;46:11473–83. https://doi.org/10.1021/bi700994m.

    Article  CAS  Google Scholar 

  84. Meyers CD, Kamanna VS, Kashyap ML. Niacin therapy in atherosclerosis. Curr Opin Lipidol. 2004;15:659–65. https://doi.org/10.1097/00041433-200412000-00006.

    Article  CAS  PubMed  Google Scholar 

  85. Carlson LA. Nicotinic acid and other therapies for raising high-density lipoprotein. Curr Opin Cardiol. 2006;21:336–44. https://doi.org/10.1097/01.hco.0000231404.76930.e9.

    Article  PubMed  Google Scholar 

  86. AIM-High Investigators, Boden WE, Probstfield JL, Anderson T, Chaitman BR, Desvignes-Nickens P, Koprowicz K, McBride R, Teo K, Weintraub W. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N Engl J Med. 2011;365:2244–67. https://doi.org/10.1056/NEJMoa1107579.

  87. Shepherd J, Packard CJ, Patsch JR, Gotto AM Jr, Taunton OD. Effects of nicotinic acid therapy on plasma high density lipoprotein subfraction and composition and on apolipoprotein A metabolism. J Clin Investig. 1979;63:858–67. https://doi.org/10.1172/JCI109385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Grundy SM, Mok HY, Zech L, Berman M. Influence of nicotinic acid on metabolism of cholesterol and triglycerides in man. J Lipid Res. 1981;22:24–36. https://doi.org/10.1016/S0022-2275(20)34737-4.

    Article  CAS  PubMed  Google Scholar 

  89. Lamon-Fava SM, Diffenderfer MR, Barrett PH, Buchsbaum A, Nyaku M, Horvath KV, Asztalos BF, Otokozawa S, Ai M, Matthan NR, Lichtenstein AH, Dolnikowski GG, Schaefer EJ. Extended-release niacin alters the metabolism of plasma apolipoprotein (apo) A-I and ApoB-containing lipoproteins. Artersioscler Thromb Vasc Biol. 2008;28:1672–8. https://doi.org/10.1161/ATVBAHA.108.164541.

    Article  CAS  Google Scholar 

  90. Haas MJ, Alamir A-R, Sultan S, Chehade JM, Wong NCW, Mooradian AD. Nicotinic acid induces apolipoprotein A-I gene expression in HepG2 and Caco-2 cell lines. Metabolism. 2011;60:1790–6. https://doi.org/10.1016/j.metabol.2011.05.005.

    Article  CAS  PubMed  Google Scholar 

  91. Zhang L-H, Kamanna VS, Ganji SH, Xiong X-M, Kashyap ML. Niacin increases HDL biogenesis by enhancing DR4-dependent transcription of ABCA1 and lipidation of apolipoprotein A-I in HepG2 cells. J Lipid Res. 2012;53:941–50. https://doi.org/10.1194/jlr.M020917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Matsuura F, Oku H, Koseki M, Sandoval JC, Yuasa-Kawase M, Tsubakio-Yamamoto K, Masuda D, Maeda N, Tsujii K-I, Ishigami M, Nishida M, Hirano K-I, Kihara S, Hori M, Shimomura I, Yamashita S. Adiponectin accelerates reverse cholesterol transport by increasing high density lipoprotein assembly in the liver. Biochem Biophys Res Commun. 2007;358:1091–5. https://doi.org/10.1016/j.bbrc.2007.05.040.

    Article  CAS  PubMed  Google Scholar 

  93. Liang B, Wang X, Guo W, Yang Z, Bai R, Liu M, Xiao C, Bian Y. Adiponectin upregulates ABCA1 expression through liver X receptor alpha signaling pathway in RAW 264.7 macrophages. Int J Clin Exp Pathol. 2015;8:450–7.

  94. Oku H, Matsuura F, Koseki M, Sandoval JC, Yuasa-Kawase M, Tsubakio-Yamamoto K, Masuda D, Maeda N, Ohama T, Ishigami M, Nishida M, Hirano K-I, Kihara S, Hori M, Shimomura K, Yamashita S. Adiponectin deficiency suppresses ABCA1 expression and apo A-I synthesis in the liver. FEBS Lett. 2007;581:5029–33. https://doi.org/10.1016/j.febslet.2007.09.038.

    Article  CAS  PubMed  Google Scholar 

  95. Kumada M, Kihara S, Sumitsuji S, Kawamoto T, Matsumoto S, Ouchi N, Arita Y, Okamoto Y, Shimomura I, Kiraoka H, Nakamura T, Funahashi T, Matsuza Y, Osaka CAD Study Group. Coronary artery disease. Association of hypoadiponectinemia with coronary artery disease in men. Arterioscler Thromb Vasc Biol. 2003;23:85–9. https://doi.org/10.1161/01.atv.0000048856.22331.50.

  96. Ryo M, Nakamura T, Kihara S, Kumada M, Shibazaki S, Takahashi M, Nagai M, Matsuzawa Y, Funahashi T. Adiponectin as a biomarker of the metabolic syndrome. Circ J. 2004;68:975–81. https://doi.org/10.1253/circj.68.975.

    Article  CAS  PubMed  Google Scholar 

  97. Ntalos G, Gatselis NK, Makaritsis K, Dalekos GN. Adipokines as mediators of endothelial function and atherosclerosis. Atherosclerosis. 2013;227:216–21. https://doi.org/10.1016/j.atherosclerosis.2012.12.029.

    Article  CAS  Google Scholar 

  98. Lee S, Kwak HB. Role of adiponectin in metabolic and cardiovascular disease. J Exerc Rehabil. 2014;10:54–9. https://doi.org/10.12965/jer.140100.

  99. Argmann CA, Sawyez CG, McNeil CJ, Hegele RA, Huff MW. Activation of peroxisome proliferator-activated receptor gamma and retinoid receptor results in net depletion of cellular cholesteryl esters in macrophages exposed to oxidized lipoproteins. Arterioscler Thromb Vasc Biol. 2003;23:475–82. https://doi.org/10.1161/01.ATV.0000058860.62870.6E.

    Article  CAS  PubMed  Google Scholar 

  100. Wang X, Luo J, Li N, Liu L, Han X, Liu C, Zuo X, Jiang X, Li Y, Xu Y, Si S. E3317 promotes cholesterol efflux in macrophage cells via enhancing ABCA1 expression. Biochem Biophys Res Commun. 2018;504:68–74. https://doi.org/10.1016/j.bbrc.2018.08.125.

    Article  CAS  PubMed  Google Scholar 

  101. Silva JC, de Oliveira EM, Turato WM, Trossini GHG, Maltarollo VG, Pitta MGR, Pitta IR, de Las HB, Bosca L, Rudnicki M, Abdalla DSP. GQ-11: a new PPAR agonist improves obesity-induced metabolic alterations in LDLr/ mice. Int J Obes. 2018;42:1062–72. https://doi.org/10.1038/s41366-018-0011-7.

    Article  CAS  Google Scholar 

  102. Nakaya K, Ayaori M, Hisada T, Sawada S, Tanaka N, Iwamoto N, Ogura M, Yakushiji E, Kusuhara M. Telmisartan enhances cholesterol efflux from THP-1 macrophages by activating PPARgamma. J Atheroscler Thromb. 2007;14:133–41. https://doi.org/10.5551/jat.14.133.

    Article  CAS  PubMed  Google Scholar 

  103. Mogilenko DA, Shavva VS, Dizhe EB, Orlov SV, Perevozhikov AP. PPARγ activates ABCA1 gene transcription but reduces the level of ABCA1 protein in HepG2 cells. Biochem Biophys Res Commun. 2010;2010(402):477–82. https://doi.org/10.1016/j.bbrc.2010.10.053.

    Article  CAS  Google Scholar 

  104. Tanabe J, Tamasawa N, Yamashita N, Matsuki K, Murakami H, Matsui J, Sugimoto K, Yasujima M, Suda T. Effects of combined PPARgamma and PPARalpha agonist therapy on reverse cholesterol transport in the Zucker diabetic fatty rat. Diabetes Obes Metab. 2008;10:772–9. https://doi.org/10.1111/j.1463-1326.2007.00810.x.

    Article  CAS  PubMed  Google Scholar 

  105. Jiang M, Li X. Activation of PPARγ does not contribute to macrophage ABCA1 expression and ABCA1-mediated cholesterol efflux to apoAI. Biochem Biophys Res Comm. 2017;482:849–56. https://doi.org/10.1016/j.bbrc.2016.11.123.

    Article  CAS  PubMed  Google Scholar 

  106. Ogata M, Tsujita M, Hossain MA, Akita N, Gonzalez FJ, Staels B, Suzuki S, Fukutomi T, Kumura G, Yokoyama S. On the mechanism for PPAR agonists to enhance ABCA1 gene expression. Atherosclerosis. 2009;205:413–9. https://doi.org/10.1016/j.atherosclerosis.2009.01.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ozaka H, Ayaori M, Iizuka M, Terao Y, Uto-Kondo H, Yakushiji E, Takiguchi S, Nakaya KM, Hisada T, Uehara Y, Masatsune Ogura M, Makoto Sasaki M, Komatsu T, Horii S, Mochizuki S, Yoshimura M, Ikewaki K. Pioglitazone enhances cholesterol efflux from macrophages by increasing ABCA1/ABCG1 expression via PPARγ/LXRα pathway: findings from in vitro and ex vivo studies. Atherosclerosis. 2011;219:141–50. https://doi.org/10.1016/j.atherosclerosis.2011.07.113.

  108. Wang J-M, Wang D, Tan YY, Zhao G, Ji ZL. 22(R)-hydroxycholesterol and pioglitazone synergistically decrease cholesterol ester via the PPARγ-LXRα-ABCA1 pathway in cholesterosis of the gallbladder. Biochem Biophys Res Commun. 2014;447:152–7. https://doi.org/10.1016/j.bbrc.2014.03.130 (Epub 2014 Apr 2).

    Article  CAS  PubMed  Google Scholar 

  109. Chinetti G, Lestavel S, Bocher V, Ramaley AT, Neve B, Torra IP, Teissier E, Minnich A, Jaye M, Duverger N, Brewer HB, Fruchart JC, Clavey V, Staels B. PPAR-alpha and PPAR-gamma activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nat Med. 2001;7:53–8. https://doi.org/10.1038/83348.

    Article  CAS  PubMed  Google Scholar 

  110. Li AC, Binder CJ, Gutierrez A, Brown KK, Plotkin CR, Pattison JW, Valledor AF, Davis RA, Wilson TM, Witzum JL, Palinski W, Glass CK. Differential inhibition of macrophage foam-cell formation and atherosclerosis in mice by PPARalpha, beta/delta, and gamma. J Clin Investig. 2004;114:1564–76. https://doi.org/10.1172/JCI18730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Li C, Tu Y, Liu T-R, Guo Z-G, Xie D, Zhong J-K, Fan Y-Z, Lai W. Rosiglitazone attenuates atherosclerosis and increases high-density lipoprotein function in atherosclerotic rabbits. Int J Mol Med. 2015;35:715–23. https://doi.org/10.3892/ijmm.2015.2072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Llaveria G, Rebollo A, Pou J, Vazquez-Carrera M, Sanchez RM, Laguna JC, Alegret M. Effects of rosiglitazone and atorvastatin on the expression of genes that control cholesterol homeostasis in differentiating monocytes. Biochem Pharmacol. 2006;71:605–14. https://doi.org/10.1016/j.bcp.2005.11.022.

    Article  CAS  Google Scholar 

  113. Cabrero A, Cubero M, Llaverias G, Jove M, Planavila A, Alegret MN, Sanchez R, Laguna JC, Carrera MV. Differential effects of peroxisome proliferator-activated receptor activators on the mRNA levels of genes involved in lipid metabolism in primary human monocyte-derived macrophages. Metabolism. 2003;52:652–7. https://doi.org/10.1053/meta.2003.50100.

    Article  CAS  PubMed  Google Scholar 

  114. Lee J, Hong EM, Byun HW, Choi MH, Jang HJ, Eun CS, Kae SH, Choi HS. The effect of PPARalpha and PPARgamma ligands on inflammation and ABCA1 expression in cultured gallbladder epithelial cells. Dig Dis Sci. 2008;53:1707–15. https://doi.org/10.1007/s10620-007-0029-5.

    Article  CAS  PubMed  Google Scholar 

  115. Ruan XZ, Moorhead JF, Fernando R, Wheeler DC, Powis SH, Varghese Z. PPAR agonists protect mesangial cells from interleukin 1beta-induced intracellular lipid accumulation by activating the ABCA1 cholesterol efflux pathway. J Am Soc Nephrol. 2003;14:593–600. https://doi.org/10.1097/01.asn.0000050414.52908.da.

    Article  CAS  PubMed  Google Scholar 

  116. Guan J-Z, Tamasawa N, Murakami H, Matsui J, Yamato K, Suda T. Clofibrate, a peroxisome-proliferator, enhances reverse cholesterol transport through cytochrome P450 activation and oxysterol generation. Tohoku J Exp Med. 2003;201:251–9. https://doi.org/10.1620/tjem.201.251.

    Article  CAS  PubMed  Google Scholar 

  117. Thomas J, Bramlett KS, Montrose C, Foxworthy P, Eacho PI, McCann D, Cao G, Keifer A, McCowan J, Yu K-L, Grese T, Chin WW, Burris TP, Michael LF. A chemical switch regulates fibrate specificity for peroxisome proliferator-activated receptor alpha (PPARalpha) versus liver X receptor. J Biol Chem. 2003;2003(278):2403–10. https://doi.org/10.1074/jbc.M209629200.

    Article  CAS  Google Scholar 

  118. Forcheron F, Cachefo A, Thevebib S, Pinteur C, Beylot M. Mechanisms of the triglyceride-and cholesterol-lowering effect of fenofibrate in hyperlipidemic type 2 diabetic patients. Diabetes. 2002;2002(51):3486–91. https://doi.org/10.2337/diabetes.51.12.3486.

    Article  Google Scholar 

  119. Kooistra T, Verschuren L, de Vries-van der Weij J, Koenig W, Toet K, Princen HMG, Kleemann R. Fenofibrate reduces atherogenesis in ApoE*Leiden mice: evidence for multiple antiatherogenic effects besides lowering plasma cholesterol. Arterioscler Thromb Vasc Biol. 2006;26:2322-30. https://doi.org/10.1161/01.ATV.0000238348.05028.14.

  120. Briand F, Naik SU, Fuki I, Millar JS, MacPhee C, Walker M, Billheimer J, Rothblat G, Rader DJ. Both the peroxisome proliferator-activated receptor delta agonist, GW0742, and ezetimibe promote reverse cholesterol transport in mice by reducing intestinal reabsorption of HDL-derived cholesterol. Clin Trans Sci. 2009;2:127–33. https://doi.org/10.1111/j.1752-8062.2009.00098.x.

    Article  CAS  Google Scholar 

  121. Sprecher DL, Massien C, Pearce G, Billin AN, Perlstein I, Wilson TM, Hassall DG, Ancellin N, Patterson SD, Lobe DE, Johnson TG. Triglyceride: high-density lipoprotein cholesterol effects in healthy subjects administered a peroxisome proliferator activated receptor delta agonist. Arterioscler Thromb Vasc Biol. 2007;27:359–65. https://doi.org/10.1161/01.ATV.0000252790.70572.0c.

    Article  CAS  PubMed  Google Scholar 

  122. Oliver WR Jr, Shenk JL, Snaith MR, Russell CS, Plunket KD, Bodkin NL, Lweis MC, Winegar DA, Sznaidman ML, Lambert MH, Xu HE, Sternbach DD, Kliewer SA, Hansen BC, Wilson TM. A selective peroxisome proliferator-activated receptor delta agonist promotes reverse cholesterol transport. Proc Natl Acad Sci USA. 2001;98:5306–11. https://doi.org/10.1073/pnas.091021198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Szanto A, Benko S, Szatmari I, Balint BL, Furtos I, Ruhl R, Molnar S, Csiba L, Ganti R, Calandra S, Larrson H, Diczfalusy U, Nagy L. Transcriptional regulation of human CYP27 integrates retinoid, peroxisome proliferator-activated receptor, and liver X receptor signaling in macrophages. Mol Cell Biol. 2004;2004(24):8154–66. https://doi.org/10.1128/MCB.24.18.8154-8166.2004.

    Article  CAS  Google Scholar 

  124. Yoshii H, Onuma T, Yamazaki T, Watada H, Matsuhisa M, Matsumoto M, Kitagawa K, Kitakaze M, Yamasaki Y, Kawamori R, PROFIT-J Study Group. Effects of pioglitazone on macrovascular events in patients with type 2 diabetes mellitus at high risk of stroke: the PROFIT-J study. J Atheroscler Thromb 2014;21:563–73. https://doi.org/10.5551/jat.21626.

  125. Tsunoda F, Asztalos IB, Horvath KV, Steiner G, Schaefer EJ, Asztalos BF. Fenofibrate, HDL, and cardiovascular disease in type-2 diabets: the DAIS trial. Atheroscler. 2016;247:35–9. https://doi.org/10.1016/j.atherosclerosis.2016.01.028.

    Article  CAS  Google Scholar 

  126. Triolo M, Annema W, de Boer JF, Tietge UJF, Dullaart RPF. Simvastatin and bezafibrate increase cholesterol efflux in men with type 2 diabetes. Eur J Clin Investig. 2014;44:240–8. https://doi.org/10.1111/eci.12226.

    Article  CAS  Google Scholar 

  127. Maejima T, Yamazaki H, Aoki T, Tamaki T, Sato F, Kitahara M, Saito Y. Effect of pitavastatin on apolipoprotein A-I production in HepG2 cells. Biochem Biophys Res Commun. 2004;324:835–9. https://doi.org/10.1016/j.bbrc.2004.09.122.

    Article  CAS  PubMed  Google Scholar 

  128. Sone H, Shimano H, Shu M, Nakakuki M, Takahashi A, Sakai M, Sakamoto Y, Yokoo T, Matsuzaka K, Okazaki H, Nakagawa Y, Iida KT, Suzuki H, Toyoshima H, Horiuchi S, Yamada N. Statins downregulate ATP-binding-cassette transporter A1 gene expression in macrophages. Biochem Biophys Res Commun. 2004;316:790–4. https://doi.org/10.1016/j.bbrc.2004.02.121.

    Article  CAS  PubMed  Google Scholar 

  129. Ando H, Tsuruoka S, Yamamoto H, Takamura T, Kaneko S, Fujimura A. Effects of pravastatin on the expression of ATP-binding cassette transporter A1. J Pharm Exp Therap. 2004;311:420–5. https://doi.org/10.1124/jpct.104.068213.

    Article  CAS  Google Scholar 

  130. Martin C, Duez H, Blanquart C, Berezowski V, Poulain P, Fruchart JC, Najib-Fruchart J, Glineur C, Staels B. Statin-induced inhibition of the Rho-signaling pathway activates PPARalpha and induces HDL, apoA-I. J Clin Investig. 2001;107:1423–32. https://doi.org/10.1172/JCI10852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Fajas L, Schoonjans K, Gelman L, Kim JB, Najib J, Martin G, Fruchart JC, Briggs M, Spiegelman BM, Auwerx J. Regulation of peroxisome proliferator activated receptor gamma expression by adipocyte differentiation and determination factor 1/sterol regulatory element binding protein 1: implications for adipocyte differentiation and metabolism. Mol Cell Biol. 1999;19:5495–503. https://doi.org/10.1128/MCB.19.8.5495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Lee CJ, Choi S, Cheon DH, Kim KY, Cheon EJ, Ann S-J, Noh H-M, Park S, Kang S-M, Choi D, Lee JE, Lee S-H. Effect of two lipid-lowering strategies on high-density lipoprotein function and some HDL-related proteins: a randomized clinical trial. Lipids Health Dis. 2017;16:49. https://doi.org/10.1186/s12944-017-0433-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Murao K, Wada Y, Nakamura T, Taylor AH, Mooradian AD, Wong NC. Effects of glucose and insulin on rat apolipoprotein A-I gene expression. J Biol Chem. 1998;273:18959–65. https://doi.org/10.1074/jbc.273.30.18959.

    Article  CAS  PubMed  Google Scholar 

  134. Lam JK, Matsubara S, Mihara K, Zheng XL, Mooradian AD, Wong NC. Insulin induction of apolipoprotein AI, role of Sp1. Biochem. 2003;42:2680–90. https://doi.org/10.1021/bi026984h.

    Article  CAS  Google Scholar 

  135. Nonomura K, Arai Y, Mitani H, Abe-Dohmae S, Yokoyama S. Insulin down-regulates specific activity of ATP-binding cassette transporter A1 for high density lipoprotein biogenesis through its specific phosphorylation. Atherosclerosis. 2011;216:334–41. https://doi.org/10.1016/j.atherosclerosis.2011.02.021.

    Article  CAS  PubMed  Google Scholar 

  136. Turcot V, Bouchard L, Faucher G, Tchernof A, Deshaies Y, Perusse L, Bélisle A, Marceau S, Biron S, Lescelleur O, Biertho L, Vohl MC. DPP4 gene DNA methylation in the omentum is associated with its gene expression and plasma lipid profile in severe obesity. Obesity. 2011;19:388–95. https://doi.org/10.1038/oby.2010.198.

    Article  CAS  PubMed  Google Scholar 

  137. Bouchard L, Thibaoult S, Guay SP, Santure M, Monpetit A, St-Pierre J, Perron P, Brisson D. Leptin gene epigenetic adaptation to impaired glucose metabolism during pregnancy. Diabetes Care. 2010;33:2436–41. https://doi.org/10.2337/dc10-1024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Tobi EW, Lumey LH, Talens RP, Kremer D, Putter H, Stein AD, Slagboom PE, Heijmans BT. DNA methylation differences after exposure to prenatal famine are common and timing- and age-specific. Hum Mol Genet. 2009;18:4046–53. https://doi.org/10.1093/hmg/ddp353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Talens RP, Boomsma DK, Tobi EW, Kremer D, Jukema JW, Willemson G, Putter H, Slagboom PE, Heijmans BT. Variation, patterns and temporal stability of DNA methylation: considerations for epigenetic epidemiology. FASEB J. 2010;24:3135–44. https://doi.org/10.1096/fj.09-150490.

    Article  CAS  PubMed  Google Scholar 

  140. Guay S-P, Brisson D, Munger J, Lamarche B, Gaudet D, Bouchard L. ABCA1 gene promoter DNA methylation is associated with HDL particle profile and coronary artery disease in familial hypercholesterolemia. Epigenetics. 2012;7:464–72. https://doi.org/10.4161/epi.19633.

    Article  CAS  PubMed  Google Scholar 

  141. Hogue JC, Lamarche B, Gaudet D, Tremblay AJ, Desperes JP, Bergeron J, Gagné C, Couture P. Association of heterozygous familial hypercholesterolemia with smaller HDL particle size. Atherosclerosis. 2007;190:429–35. https://doi.org/10.1016/j.atherosclerosis.2006.02.023.

    Article  CAS  PubMed  Google Scholar 

  142. van der Graaf A, Vissers MN, Gaudet D, Brisson D, Sivapalaratnam S, Roseboom TJ, Jansen AC, Kastelein JJ, Hutten BA. Dyslipidemia of mothers with familial hypercholesterolemia deteriorates lipids in adult offspring. Arterscler Thromb Vasc Biol. 2010;30:2673–7. https://doi.org/10.1161/ATVBAHA.110.209064.

    Article  CAS  Google Scholar 

  143. Wang D, Hiebel V, Xu T, Ladurner A, Atanasov AG, Heiss EH, Dirsch VM. Impact of natural products on the cholesterol transporter, ABCA1. J Ethnopharm. 2020;249: 112444. https://doi.org/10.1016/j.jep.2019.112444.

    Article  CAS  Google Scholar 

  144. Wang D, Hievl V, Ladurner A, Latkolik SL, Bucar F, Heiss EH, Dirsch VM, Atanasov AG. 6-Dihydroparadol, a ginger constituent, enhances cholesterol efflux from THP-1-derived macrophages. Mol Nutr Food Res. 2018. https://doi.org/10.1002/mnfr.201800011.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Jiang Z, Sang H, Ful X, Liang Y, Li L. Alpinetin enhances cholesterol efflux and inhibits lipid accumulation in oxidized low-density lipoprotein-loaded human macrophages. Biotechnol Appl Biochem. 2015;62:840–7. https://doi.org/10.1002/bab.1328.

    Article  CAS  PubMed  Google Scholar 

  146. Wagsater D, Dimberg J, Sirsjo A. Induction of ATP-binding cassette A1 by all-trans retinoic acid: possible role of liver X receptor-alpha. Int J Mol Med. 2003;11:419–23. https://doi.org/10.3892/ijmm.11.4.419.

    Article  PubMed  Google Scholar 

  147. Zhao GJ, Tang SL, Lv YC, Ouyang XP, He PP, Yao F, Chen WJ, Lu Q, Tang YY, Zhang M, Fu Y, Zhang DW, Yin K, Tang CK. Antagonism of betulinic acid on LPS-mediated inhibition of ABCA1 and cholesterol efflux through inhibiting nuclear factor-κB signaling pathway and miR-33 expression. PLoS ONE. 2013;8: e74782. https://doi.org/10.1371/journal.pone.0074782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Zolberg RN, Bechor S, Harari A, Ben-Amotz A, Kamari Y, Harats D, Shaish A. The inhibition of macrophage foam cell formation by 9-cis beta-carotene is driven by BCMO1 activity. PLoS ONE. 2015;10: e115272. https://doi.org/10.1371/journal.pone.0115272.

    Article  Google Scholar 

  149. Chen FY, Zhou J, Guo N, Ma WG, Huang X, Wang H, Yuan ZY. Curcumin retunes cholesterol transport homeostasis and inflammation response in M1 macrophage to prevent atherosclerosis. Biochem Biophys Res Commun. 2015;467:872–8. https://doi.org/10.1016/j.bbrc.2015.10.051.

    Article  CAS  PubMed  Google Scholar 

  150. Lin XL, Liu MH, Hu HJ, Feng HR, Fan XJ, Zou WW, Pan YQ, Hu XM, Wang Z. Curcumin enhanced cholesterol efflux by upregulating ABCA1 expression through AMPK-SIRT1-LXRalpha signaling in THP-1 macrophage-derived foam cells. DNA Cell Biol. 2015;34:561–72. https://doi.org/10.1089/dna.2015.2866.

    Article  CAS  PubMed  Google Scholar 

  151. Saenz J, Alba G, Reyes-Quiroz ME, Geniz I, Jimenez J, Sobrino F, Santa-Maria C. Curcumin enhances LXRalpha in an AMP-activated protein kinase-dependent manner in human macrophages. J Nutr Biochem. 2018;54:48–56. https://doi.org/10.1016/j.jnutbio.2017.11.006.

    Article  CAS  PubMed  Google Scholar 

  152. Lv YC, Yang J, Yao F, Xie W, Tang YY, Ouyang XP, He PP, Tan YL, Li L, Zhang M, Liu D, Cayabyab FS, Zheng XL, Tang CK. Diosgenin inhibits atherosclerosis via suppressing the MiR-19b-induced downregulation of ATP-binding cassette transporter A1. Atherosclerosis. 2015;240:80–9. https://doi.org/10.1016/j.atherosclerosis.2015.02.044.

    Article  CAS  PubMed  Google Scholar 

  153. Liu XX, Zhang XW, Wang K, Wang XY, Ma WL, Cao W, Mo D, Sun Y, Li XQ. Kuwanon G attenuates atherosclerosis by upregulation of LXRalpha-ABCA1/ABCG1 and inhibition of NFkappaB activity in macrophages. Toxicol Appl Pharmacol. 2018;341:56–63. https://doi.org/10.1016/j.taap.2018.01.007.

    Article  CAS  PubMed  Google Scholar 

  154. Li X, Zhou Y, Yu C, Yang H, Zhang C, Ye Y, Xiao S. Paeonol suppresses lipid accumulation in macrophages via upregulation of ATP binding cassette transporter A1 and downregulation of the cluster of differentiation 36. Int J Oncol. 2015;46:764–74. https://doi.org/10.3892/ijo.2014.2757.

    Article  CAS  PubMed  Google Scholar 

  155. Zhao JF, Jim Leu SJ, Shyue SK, Su KH, Wei J, Lee TS. Novel effect of paeonol on the formation of foam cells: promotion of LXRalpha-ABCA1-dependent cholesterol efflux in macrophages. Am J Chin Med. 2013;41:1079–96. https://doi.org/10.1142/S0192415X13500730.

    Article  CAS  PubMed  Google Scholar 

  156. Wang D, Xia M, Yan X, Li D, Wang I, Xu Y, Jin T, Ling W. Gut microbiota metabolism of anthocyanin promotes reverse cholesterol transport in mic via repressing miRNA-10b. Circ Res. 2012;111:967–81. https://doi.org/10.1161/CIRCRESAHA.112.266502.

    Article  CAS  PubMed  Google Scholar 

  157. Li CH, Gong D, Chen LY, Zhang M, Xia XD, Cheng HP, Huang C, Zhao ZW, Zheng XL, Tang XE, Tang CK. Puerarin promotes ABCA1-mediated cholesterol efflux and decreases cellular lipid accumulation in THP-1 macrophages. Eur J Pharmacol. 2017;811:74–86. https://doi.org/10.1016/j.ejphar.2017.05.055.

    Article  CAS  PubMed  Google Scholar 

  158. Chang YC, Lee TS, Chiang AN. Quercetin enhances ABCA1 expression and cholesterol efflux through a p-38-dependent pathway in macrophages. J Lipid Res. 2012;53:1840–50. https://doi.org/10.1194/jlr.M024471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Li S, Cao H, Shen D, Jia Q, Chen C, Xing SL. Quercetin protects against oxLDL induced injury via upregulation of ABCA1, LXRalpha, and PCSK9 in RAW264.7 macrophages. Mol Med Rep. 2018;18:799–806. https://doi.org/10.3892/mmr.2018.9048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Liu Z, Wamg K, Huang E, Gao S, Li H, Lu J, Tian K, Little PJ, Shen X, Xu S, Liu P. Tanshinone IIA suppresses cholesterol accumulation in human macrophages: role of heme oxygenase-1. J Lipid Res. 2014;55:201–13. https://doi.org/10.1194/jlr.M040394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Jia LQ, Zhang N, Xu YM, Chen WN, Zhu ML, Song N, Ren L, Cao HM, Wang JY, Yang GL. Tanshinone IIA affect the HDL subfractions distribution, not serum lipid levels: involving in intake and efflux of cholesterol. Arch Biochem Biophys. 2016;592:50–9. https://doi.org/10.1016/j.abb.2016.01.001.

    Article  CAS  PubMed  Google Scholar 

  162. Egert S, Bosy-Westphal A, Seiberl J, Kürbitz C, Settler U, Plachta-Danielzik S, Wagner AE, Frank J, Schrezenmeir J, Rimbach G, Wolffram S, Müller MJ. Quercetin reduces systolic blood pressure and plasma oxidised low-density lipoprotein concentrations in overweight subjects with a high-cardiovascular disease risk phenotype: a double-blinded, placebo-controlled cross-over study. Br J Nutr. 2009;102:1065–74. https://doi.org/10.1017/S0007114509359127.

    Article  CAS  PubMed  Google Scholar 

  163. Campbell MS, Quyang A, I M K, Charnigo RJ, Westgate PM, Fleenor BS. Influence of enhanced bioavailable curcumin on obesity-associated cardiovascular disease risk factors and arterial function: a double-blinded, randomized, controlled trial. Nutrition 2019;62:135–9. https://doi.org/10.1016/j.nut.2019.01.002.

  164. Yang J, Zhang Y, Nia X, Zhao A. β-Carotene supplementation and risk of cardiovascular disease: a systematic review and meta-analysis of randomized controlled trials. Nutrients. 2022;14:1284. https://doi.org/10.3390/nu14061284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Haas MJ, Jurado-Flores M, Hammoud R, Feng V, Gonzales K, Onstead-Haas L, Mooradian AD. The effects of known cardioprotective drugs on proinflammatory cytokine secretion from human coronary artery endothelial cells. Am J Ther. 2019;26:e321–32. https://doi.org/10.1097/MJT.0000000000000648.

    Article  PubMed  Google Scholar 

  166. Maitra U, Li L. Molecular mechanisms responsible for the reduced expression of cholesterol transporters from macrophages by low-dose endotoxin. Arterioscler Thromb Vasc Biol. 2013;33:24–33. https://doi.org/10.1161/ATVBAHA.112.300049.

    Article  CAS  PubMed  Google Scholar 

  167. van Leuven SI, Hezemans R, Levels JH, Snoek S, Stokkers PC, Hovingh GK, Kastelein JJ, Stroes ES, de Groot E, Hommes DW. Enhanced atherogenesis and altered high density lipoprotein in patients with Crohn’s disease. J Lipid Res. 2007;48:2640–6. https://doi.org/10.1194/jlr.M700176-JLR200.

    Article  CAS  PubMed  Google Scholar 

  168. Palacio C, Alexandraki K, Bertholf RL, Mooradian AD. Transient dyslipidemia mimicking the plasma lipid profile of Tangier disease in a diabetic patient with gram negative sepsis. Ann Clin Lab Sci. 2011;41:150–3.

    PubMed  Google Scholar 

  169. Van Deventer SJ. Tumor necrosis factor and Crohn’s disease. Gut. 1997;40:443–8. https://doi.org/10.1136/gut.40.4.443.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Wang Y. Mitogen-activated protein kinases in heart development and diseases. Circul. 2007;116:1413–23. https://doi.org/10.1161/CIRCULATIONAHA.106.679589.

    Article  CAS  Google Scholar 

  171. Sebolt-Leopold JS, Herrera R. Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat Rev Cancer. 2004;4:937–47. https://doi.org/10.1038/nrc1503.

    Article  CAS  PubMed  Google Scholar 

  172. Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev. 2001;81:807–69. https://doi.org/10.1152/physrev.2001.81.2.807.

    Article  CAS  PubMed  Google Scholar 

  173. Zhou X, Yin Z, Guo X, Hajjar DP, Han J. Inhibition of ERK1/2 and activation of liver X receptor synergistically induce macrophage ABCA1 expression and cholesterol efflux. J Biol Chem. 2010;285:6316–26. https://doi.org/10.1074/jbc.M109.073601.

    Article  CAS  PubMed  Google Scholar 

  174. Kobayashi H, Tomari Y. RISC assembly: coordination between small RNA’s and argonaute proteins. Biochim Biophys Acta. 2016;1859:71–81. https://doi.org/10.1016/j.bbagrm.2015.08.007.

    Article  CAS  PubMed  Google Scholar 

  175. Finnegan EF, Pasquinelli AE. MicroRNA biogenesis: regulating the regulators. Crit Rev Biochem Mol Biol. 2013;48:51–68. https://doi.org/10.3109/10409238.2012.738643.

    Article  CAS  PubMed  Google Scholar 

  176. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215–33. https://doi.org/10.1016/j.cell.2009.01.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Michell DL, Vickers KC. Lipoprotein carriers of microRNAs. Biochim Biophys Acta. 2016;186:2069–74. https://doi.org/10.1016/j.bbalip.2016.01.011.

    Article  CAS  Google Scholar 

  178. Garcia-Martin R, Wang G, Brandao BB, Zaontto TM, Shah S, Patel SK, Schilling B, Kahn CR. MicroRNA sequence codes for small extracellular vesicle release and cellular retention. Nature. 2022;601:446–51. https://doi.org/10.1038/s41586-021-04234-3.

    Article  CAS  PubMed  Google Scholar 

  179. Rayner KJ, Moore KJ. MicroRNA control of high-density lipoprotein metabolism and function. Circ Res. 2014;114:183–92. https://doi.org/10.1161/CIRCRESAHA.114.300645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Canfran-Duque A, Lin C-S, Goedeke L, Suarez Y, Fernandez-Hernando C. Micro-RNAs and high-density lipoprotein metabolism. Arterioscler Thromb Vasc Biol. 2016;36:1076–84. https://doi.org/10.1161/ATVBAHA.116.307028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Feinberg MW, Moore KJ. MicroRNA regulation of atherosclerosis. Circ Res. 2016;118:703–20. https://doi.org/10.1161/CIRCRESAHA.115.306300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Fernandez-Tussy P, Ruz-Maldonado I, Fernandez-Hernando C. MicroRNAs and circular RNAs in lipoprotein metabolism. Curr Atheroscler Rep. 2021;23:33. https://doi.org/10.1007/s11883-021-00934-3.

    Article  CAS  PubMed  Google Scholar 

  183. Sun D, Zhang J, Xie J, Wei W, Chen MM, Zhao. MiR-26 controls LXR-dependent cholesterol efflux by targeting ABCA1 and ARL7. FEBS Lett. 2012;586:1472–9. https://doi.org/10.1016/j.febslet.2012.03.068.

  184. Zhang M, Wu JF, Chen WJ, Tang SL, Mo ZC, Tang YY, Li Y, Wang JL, Liu XY, Peng J, Chen K, He PP, Lv YC, Ouyang XP, Yao F, Tang DP, Cayabyab FS, Zhang DW, Zheng XL, Tian GP, Tang CK. MicroRNA-27a/b regulates cellular cholesterol efflux, influx, and esterification/hydrolysis in THP-1 macrophages. Atherosclerosis. 2014;234:54–64. https://doi.org/10.1016/j.atherosclerosis.2014.02.008.

    Article  CAS  PubMed  Google Scholar 

  185. Najafi-Shoushtari SH, Kristo F, Li Y, Shioda T, Cohen DE, Gerszten RE, Naar AM. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science. 2010;328:1566–9. https://doi.org/10.1126/science.1189123.

    Article  CAS  PubMed  Google Scholar 

  186. Xu Y, Xu Y, Zhu Y, Sun H, Juguilon C, Li F, Fan D, Yin L, Zhang Y. Macrophage miR-34a is a key regulator of cholesterol efflux and atherosclerosis. Mol Ther. 2020;28:202–16. https://doi.org/10.1016/j.ymthe.2019.09.008.

    Article  CAS  PubMed  Google Scholar 

  187. Kim J, Yoon H, Ramirez CM, Lee SM, Hoe HS, Fernandez-Hernando C. Mir-106b impairs cholesterol efflux and increases abeta levels by repressing abca1 expression. Exp Neurol. 2012;235:476–83. https://doi.org/10.1016/j.expneurol.2011.11.010.

    Article  CAS  PubMed  Google Scholar 

  188. Wang L, Sinnott-Armstrong N, Wagschal A, Wark AR, Camporez JP, Perry RJ, Ji F, Sohn Y, Oh J, Wu S, Chery J, Moud BN, Saadat A, Dankel SN, Mellgren G, Tallapragada DSP, Strobel SM, Lee M-J, Tewhey R, Sabeti PC, Schaefer A, Petri A, Kauppinen S, Chung RT, Soukas A, Avruch J, Fried SK, Hauner H, Sadreyev RI, Shulman GI, Claussnitzer M, Näär AM. A microRNA linking human positive selection and metabolic disorders. Cell. 2020;183:684–701. https://doi.org/10.1016/j.cell.2020.09.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Ramirez CM, Rotllan N, Vlassov AV, Dávalos A, Li M, Goedeke L, Aranda JF, Cirera-Salinas D, Araldi E, Salerno A, Wanschel A, Zavadil J, Castrillo A, Kim J, Suárez Y, Fernández-Hernando C. Control of cholesterol metabolism and plasma high-density lipoprotein levels by micro RNA-144. Circ Res. 2013;112:1592–601. https://doi.org/10.1161/CIRCRESAHA.112.300626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. de Aguiar Vallim TQ, Tarling EJ, Kim T, Civelek M, Baldan A, Esau C, Edwards PA. MicroRNA-144 regulates hepatic ATP binding cassette transporter A1 and plasma high-density lipoprotein after activation of the nuclear farnesoid X receptor. Circ Res. 2013;112:1602–12. https://doi.org/10.1161/CIRCRESAHA.112.300648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Hall IF, Climent M, Viviani Anselmi C, Papa L, Tragante V, Lambroia L Farina FM, Kleber ME, Marz W, Bigouri C, Condorelli G, Elia L. rs41291957 controls miR-143 and miR-145 expression and impacts coronary artery disease risk. EMBO Mol Med. 2021;13:e14060. https://doi.org/10.15252/emmm.202114060.

  192. Goedeke L, Rotlan N, Canfran-Duque A, Aranda JF, Ramírez CM, Araldi E, Lin C-S, Anderson NN, Wagschal A, de Cabo R, Horton JD, Lasunción MA, Näär AM, Suárez Y, Fernández-Hernando C. Miro-RNA-148a regulates LDL receptor and ABCA1 expression to control circulating lipoprotein levels. Nat Med. 2015;21:1280–9. https://doi.org/10.1038/nm.3949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Vinod M, Chennamsetty I, Colin S, Belloy L, De Paoli F, Schaider H, Graier WF, Frank S, Kratky D, Staels B, Chinetti-Gbaguidi G, Kostner GM. miR-206 controls LXRα expression and promotes LXR-mediated cholesterol efflux in macrophages. Biochim Biophys Acta. 2014;1841:827–35. https://doi.org/10.1016/j.bbalip.2014.02.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Huang J-W, Jiang X, Li Z-I, Jiang C-R. MicroRNA-328-5P alleviates macrophage lipid accumulation through histone deacetylase 3/ATP-binding cassette transporter A1 pathway. Lipids. 2021;56:301–11. https://doi.org/10.1002/lipid.12297.

    Article  CAS  PubMed  Google Scholar 

  195. Ramirez CM, Davalos A, Goedeke L, Salerno AG, Warrier N, Cirera-Salinas D, Suarez Y, Fernandez-Hernando C. MicroRNA-758 regulates cholesterol efflux through posttranslational repression of ATP-binding cassette transporter A1. Arterioscler Thromb Vasc Biol. 2011;31:2707–14. https://doi.org/10.1161/ATVBAHA.111.232066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Rutland JC, Politz F, Zhang T, Pederson T. MicroRNA-206 colocalizes with ribosome-rich regions in both the nucleus and cytoplasm of rat myogenic cells. Proc Natl Acad Sci. 2006;103:18957–62. https://doi.org/10.1073/pnas.0609466103.

    Article  CAS  Google Scholar 

  197. Truesdell SS, Mortensen RD, Seo M, Schroeder JC, Lee JH, LeTonqueze O, Vasudevan S. MicroRNA-mediated mRNA translation activation in quiescent cells and oocytes involves recruitment of a nuclear microRNP. Sci Rep. 2012;2:842. https://doi.org/10.1038/srep00842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Nicholls SJ, Andrews J, Kastelein JJP, Merkely B, Nissen SE, Ray KK, Schwartz GG, Worthley SG, Keyserling C, Dasseux J-L, Griffith L, Kim SW, Janssan A, Di Giovanni G, Pisaniello AD, Scherer DJ, Psaltis PJ, Butters J. Effect of serial infusions of CER-001, a pre-β high-density lipoprotein mimetic, on coronary atherosclerosis in patients following acute coronary syndromes in the CER-001 atherosclerosis regression acute coronary syndrome trial: a randomized clinical trial. JAMA Cardiol. 2018;3:815–22. https://doi.org/10.1001/jamacardio.2018.2121.

    Article  PubMed  PubMed Central  Google Scholar 

  199. Zheng KH, Kaiser Y, van Olden CC, Santos RD, Dasseux J-L, Genest J, Gaudet D, Westerink J, Keyserling C, Verberne HJ, Leitersdorf E, Hegele RA, Descamps OS, Hopkins P, Nederveen AJ, Stroes ESG. No benefit of HDL mimetic CER-001 on carotid atherosclerosis in patients with genetically determined very low HDL levels. Atherosclerosis. 2020;311:13–9. https://doi.org/10.1016/j.atherosclerosis.2020.08.004.

    Article  CAS  PubMed  Google Scholar 

  200. Nicholls SJ, Puri R, Ballantyne CM, Jukema JW, Kastelein JJP, Koenig W, Wright RS, Kallend D, Wijngaard P, Borgman M, Wolski K, Nissen SE. Effect of infusion of high-density lipoprotein mimetic containing recombinant apolipoprotein A-I milano on coronary disease in patients with an acute coronary syndrome in the MILANO-PILOT trial: a randomized clinical trial. JAMA Cardiol. 2018;3:806–14. https://doi.org/10.1001/jamacardio.2018.2112.

    Article  PubMed  PubMed Central  Google Scholar 

  201. Richard LD, Rajesh M, LeAnne TB, Danielle D, Robert BN, Mohamad N, Alan MF, Daniel JR. Oral apolipoprotein A-I mimetic D-4F lowers HDL-inflammatory index in high-risk patients: a first-in-human multiple-dose, randomized controlled trial. Clin Transl Sci 2007;10:455–69. https://doi.org/10.1111/cts.12487.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Haas.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this article.

Funding

This work received no funding from sources public or private.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and materials

Not applicable.

Code availability

Not applicable.

Author contributions

Dr Haas and Dr Mooradian both contributed substantially to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haas, M.J., Mooradian, A.D. Potential Therapeutic Agents That Target ATP Binding Cassette A1 (ABCA1) Gene Expression. Drugs 82, 1055–1075 (2022). https://doi.org/10.1007/s40265-022-01743-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-022-01743-x

Navigation