Skip to main content
Log in

New Therapeutic Horizons in Chronic Kidney Disease: The Role of SGLT2 Inhibitors in Clinical Practice

  • Current Opinion
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Chronic kidney disease (CKD) is a serious, progressive condition associated with significant patient morbidity. Hypertension control and use of renin-angiotensin system blockers are the cornerstones of treatment for CKD. However, even with these treatment strategies, many individuals will progress towards kidney failure. Recently, sodium–glucose cotransporter 2 (SGLT2) inhibitor clinical trials with primary renal endpoints have firmly established SGLT2 inhibition, in addition to standard of care, as an effective strategy to slow down the progression of CKD and reduce some of its associated complications. The emergence of this new clinical evidence supports the use of SGLT2 inhibitors in the management of CKD in people with and without diabetes. As licensing and guidelines for SGLT2 inhibitors are updated, there is a need to adapt CKD treatment pathways and for this class of drugs to be included as part of standard care for CKD management. In this article, we have used consensus opinion alongside the available evidence to provide support for the healthcare community involved in CKD management, regarding the role of SGLT2 inhibitors in clinical practice. By highlighting appropriate prescribing and practical considerations, we aim to encourage greater and safe use of SGLT2 inhibitors for people with CKD, both with and without diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Adler AI, Stevens RJ, Manley SE, Bilous RW, Cull CA, Holman RR. Development and progression of nephropathy in type 2 diabetes: the United Kingdom prospective diabetes study (UKPDS 64). Kidney Int. 2003;63(1):225–32.

    Article  PubMed  Google Scholar 

  2. Chen Y, Lee K, Ni Z, He JC. Diabetic kidney disease: challenges, advances, and opportunities. Kidney Dis (Basel). 2020;6(4):215–25.

    Article  PubMed  PubMed Central  Google Scholar 

  3. GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet (London, England). 2020;395(10225):709–33.

    Article  Google Scholar 

  4. Segall L, Nistor I, Covic A. Heart failure in patients with chronic kidney disease: a systematic integrative review. Biomed Res Int. 2014;2014:937398.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Jankowski J, Floege J, Fliser D, Böhm M, Marx N. Cardiovascular disease in chronic kidney disease: pathophysiological insights and therapeutic options. Circulation. 2021;143(11):1157–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vanholder R, Massy Z, Argiles A, Spasovski G, Verbeke F, Lameire N. Chronic kidney disease as cause of cardiovascular morbidity and mortality. Nephrol Dial Transplant. 2005;20(6):1048–56.

    Article  CAS  PubMed  Google Scholar 

  7. Thompson S, James M, Wiebe N, Hemmelgarn B, Manns B, Klarenbach S, et al. Cause of death in patients with reduced kidney function. J Am Soc Nephrol. 2015;26(10):2504–11.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Disease K. Improving Global Outcomes (KDIGO) Diabetes Work Group KDIGO 2020 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease. Kidney Int. 2020;98(4s):S1-s115.

    Google Scholar 

  9. National Institute for Health and Care Excellence. Clinical guideline [CG182]: Chronic kidney disease in adults: assessment and management 2014. Available from: https://www.nice.org.uk/guidance/cg182.

  10. Lewis EJ, Hunsicker LG, Bain RP, Rohde RD. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med. 1993;329(20):1456–62.

    Article  CAS  PubMed  Google Scholar 

  11. Lewis EJ, Hunsicker LG, Clarke WR, Berl T, Pohl MA, Lewis JB, et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med. 2001;345(12):851–60.

    Article  CAS  PubMed  Google Scholar 

  12. Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE, Parving HH, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001;345(12):861–9.

    Article  CAS  PubMed  Google Scholar 

  13. Bakris GL, Agarwal R, Anker SD, Pitt B, Ruilope LM, Rossing P, et al. Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes. N Engl J Med. 2020;383(23):2219–29.

    Article  CAS  PubMed  Google Scholar 

  14. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–28.

    Article  CAS  PubMed  Google Scholar 

  15. Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377(7):644–57.

    Article  CAS  PubMed  Google Scholar 

  16. Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380(4):347–57.

    Article  CAS  PubMed  Google Scholar 

  17. Cannon CP, Pratley R, Dagogo-Jack S, Mancuso J, Huyck S, Masiukiewicz U, et al. Cardiovascular outcomes with ertugliflozin in type 2 diabetes. N Engl J Med. 2020;383(15):1425–35.

    Article  CAS  PubMed  Google Scholar 

  18. Wanner C, Inzucchi SE, Lachin JM, Fitchett D, von Eynatten M, Mattheus M, et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med. 2016;375(4):323–34.

    Article  CAS  PubMed  Google Scholar 

  19. Perkovic V, de Zeeuw D, Mahaffey KW, Fulcher G, Erondu N, Shaw W, et al. Canagliflozin and renal outcomes in type 2 diabetes: results from the CANVAS Program randomised clinical trials. Lancet Diabetes Endocrinol. 2018;6(9):691–704.

    Article  CAS  PubMed  Google Scholar 

  20. Mosenzon O, Wiviott SD, Cahn A, Rozenberg A, Yanuv I, Goodrich EL, et al. Effects of dapagliflozin on development and progression of kidney disease in patients with type 2 diabetes: an analysis from the DECLARE-TIMI 58 randomised trial. Lancet Diabetes Endocrinol. 2019;7(8):606–17.

    Article  CAS  PubMed  Google Scholar 

  21. McMurray JJV, Solomon SD, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019;381(21):1995–2008.

    Article  CAS  PubMed  Google Scholar 

  22. Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ, Carson P, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med. 2020;383(15):1413–24.

    Article  CAS  PubMed  Google Scholar 

  23. Heerspink HJL, Stefánsson BV, Correa-Rotter R, Chertow GM, Greene T, Hou FF, et al. Dapagliflozin in patients with chronic kidney disease. N Engl J Med. 2020;383(15):1436–46.

    Article  CAS  PubMed  Google Scholar 

  24. U.S. Food and Drug Administration. FDA Approves Treatment for Chronic Kidney Disease2021. Available from: https://www.fda.gov/news-events/press-announcements/fda-approves-treatment-chronic-kidney-disease.

  25. AstraZeneca UK Limited. Forxiga approved in the EU for the treatment of chronic kidney disease in patients with and without type-2 diabetes2021. Available from: https://www.astrazeneca.com/media-centre/press-releases/2021/forxiga-approved-in-the-eu-for-ckd.html.

  26. AstraZeneca UK Limited. Forxiga approved in Japan for the treatment of chronic kidney disease in patients with and without type-2 diabetes2021. Available from: https://www.astrazeneca.com/media-centre/press-releases/2021/forxiga-approved-in-japan-for-ckd.html.

  27. Škrtić M, Cherney DZ. Sodium-glucose cotransporter-2 inhibition and the potential for renal protection in diabetic nephropathy. Curr Opin Nephrol Hypertens. 2015;24(1):96–103.

    Article  PubMed  Google Scholar 

  28. Zannad F, Ferreira JP, Pocock SJ, Anker SD, Butler J, Filippatos G, et al. SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: a meta-analysis of the EMPEROR-Reduced and DAPA-HF trials. Lancet (London, England). 2020;396(10254):819–29.

    Article  Google Scholar 

  29. Bhatt DL, Szarek M, Pitt B, Cannon CP, Leiter LA, McGuire DK, et al. Sotagliflozin in patients with diabetes and chronic kidney disease. N Engl J Med. 2021;384(2):129–39.

    Article  CAS  PubMed  Google Scholar 

  30. Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019;380(24):2295–306.

    Article  CAS  PubMed  Google Scholar 

  31. Heerspink HJL, Oshima M, Zhang H, Li J, Agarwal R, Capuano G, et al. Canagliflozin reduces kidney-related adverse events in type 2 diabetes and ckd: findings from the randomized CREDENCE trial. Am J Kidney Dis. 2021;2:2.

    Google Scholar 

  32. Wheeler DC, Toto RD, Stefánsson BV, Jongs N, Chertow GM, Greene T, et al. A pre-specified analysis of the DAPA-CKD trial demonstrates the effects of dapagliflozin on major adverse kidney events in patients with IgA nephropathy. Kidney Int. 2021;100(1):215–24.

    Article  CAS  PubMed  Google Scholar 

  33. ClinicalTrials.gov. EMPA-KIDNEY (The Study of Heart and Kidney Protection With Empagliflozin) [Available from: https://www.clinicaltrials.gov/ct2/show/**NC**T***03594110.

  34. Heerspink HJL, Karasik A, Thuresson M, Melzer-Cohen C, Chodick G, Khunti K, et al. Kidney outcomes associated with use of SGLT2 inhibitors in real-world clinical practice (CVD-REAL 3): a multinational observational cohort study. Lancet Diabetes Endocrinol. 2020;8(1):27–35.

    Article  CAS  PubMed  Google Scholar 

  35. Couser WG, Remuzzi G, Mendis S, Tonelli M. The contribution of chronic kidney disease to the global burden of major noncommunicable diseases. Kidney Int. 2011;80(12):1258–70.

    Article  PubMed  Google Scholar 

  36. Darlington O, Dickerson C, Evans M, McEwan P, Sörstadius E, Sugrue D, et al. Costs and healthcare resource use associated with risk of cardiovascular morbidity in patients with chronic kidney disease: evidence from a systematic literature review. Adv Ther. 2021;38(2):994–1010.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wyld ML, Lee CM, Zhuo X, White S, Shaw JE, Morton RL, et al. Cost to government and society of chronic kidney disease stage 1–5: a national cohort study. Intern Med J. 2015;45(7):741–7.

    Article  CAS  PubMed  Google Scholar 

  38. Vupputuri S, Kimes TM, Calloway MO, Christian JB, Bruhn D, Martin AA, et al. The economic burden of progressive chronic kidney disease among patients with type 2 diabetes. J Diabetes Complications. 2014;28(1):10–6.

    Article  PubMed  Google Scholar 

  39. McQueen RB, Farahbakhshian S, Bell KF, Nair KV, Saseen JJ. Economic burden of comorbid chronic kidney disease and diabetes. J Med Econ. 2017;20(6):585–91.

    Article  PubMed  Google Scholar 

  40. Aggarwal HK, Jain D, Pawar S, Yadav RK. Health-related quality of life in different stages of chronic kidney disease. QJM. 2016;109(11):711–6.

    Article  CAS  PubMed  Google Scholar 

  41. Willis M, Nilsson A, Kellerborg K, Ball P, Roe R, Traina S, et al. Cost-effectiveness of canagliflozin added to standard of care for treating diabetic kidney disease (DKD) in patients with type 2 diabetes mellitus (T2DM) in England: estimates using the CREDEM-DKD model. Diabetes Ther. 2021;12(1):313–28.

    Article  PubMed  Google Scholar 

  42. McEwan P, Darlington O, Wheeler D, Heerspink H, Bergenheim K, Sanchez JG. POS-335: Cost-effectiveness of dapagliflozin as a treatment for chronic kidney disease: A health-economic analysis oF DAPA-CKD. Kidney Int Rep. 2021;6(4):S145–6.

    Article  Google Scholar 

  43. McEwan P, Darlington O, Miller R, McMurray JJV, Wheeler DC, Heerspink HJL, et al. Cost-effectiveness of dapagliflozin in addition to current background therapy as a treatment for chronic kidney disease. . CJASN. 2021.

  44. McEwan P, Darlington O, Boyce R, Heerspink HL, Wheeler DC, Garcia Sanchez JJ, editors. MO876: Estimating the budget impact of dapagliflozin for the treatment of chronic kidney disease from a UK payer perspective. ERA-EDTA; 2021; Virtual. .

  45. Buse JB, Wexler DJ, Tsapas A, Rossing P, Mingrone G, Mathieu C, et al. 2019 update to: Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia. 2020;63(2):221-8.

  46. Cosentino F, Grant PJ, Aboyans V, Bailey CJ, Ceriello A, Delgado V, et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 2020;41(2):255–323.

    Article  PubMed  Google Scholar 

  47. EMC. SmPC: Forxiga 10 mg film-coated tablets2021. Available from: https://www.medicines.org.uk/emc/product/7607/smpc.

  48. EMC. SmPC: Invokana 100 mg and 300 mg film-coated tables2020. Available from: https://www.medicines.org.uk/emc/product/8855/smpc.

  49. Paul SK, Bhatt DL, Montvida O. The association of amputations and peripheral artery disease in patients with type 2 diabetes mellitus receiving sodium-glucose cotransporter type-2 inhibitors: real-world study. Eur Heart J. 2021;42(18):1728–38.

    Article  CAS  PubMed  Google Scholar 

  50. Mahling M, Schork A, Nadalin S, Fritsche A, Heyne N, Guthoff M. Sodium-glucose cotransporter 2 (SGLT2) inhibition in kidney transplant recipients with diabetes mellitus. Kidney Blood Press Res. 2019;44(5):984–92.

    Article  CAS  PubMed  Google Scholar 

  51. Schwaiger E, Burghart L, Signorini L, Ristl R, Kopecky C, Tura A, et al. Empagliflozin in posttransplantation diabetes mellitus: A prospective, interventional pilot study on glucose metabolism, fluid volume, and patient safety. Am J Transplant. 2019;19(3):907–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. AlKindi F, Al-Omary HL, Hussain Q, Al Hakim M, Chaaban A, Boobes Y. Outcomes of SGLT2 inhibitors use in diabetic renal transplant patients. Transplant Proc. 2020;52(1):175–8.

    Article  CAS  PubMed  Google Scholar 

  53. Song CC, Brown A, Winstead R, Yakubu I, Demehin M, Kumar D, et al. Early initiation of sodium-glucose linked transporter inhibitors (SGLT-2i) and associated metabolic and electrolyte outcomes in diabetic kidney transplant recipients. Endocrinol Diabetes Metab. 2021;4(2):e00185.

    Article  CAS  PubMed  Google Scholar 

  54. Shah M, Virani Z, Rajput P, Shah B. Efficacy and safety of canagliflozin in kidney transplant patients. Indian J Nephrol. 2019;29(4):278–81.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Rajasekeran H, Kim SJ, Cardella CJ, Schiff J, Cattral M, Cherney DZI, et al. Use of Canagliflozin in kidney transplant recipients for the treatment of type 2 diabetes: a case series. Diabetes Care. 2017;40(7):e75–6.

    Article  PubMed  Google Scholar 

  56. Evans M, Hicks D, Patel D, Patel V, McEwan P, Dashora U. Optimising the benefits of SGLT2 inhibitors for type 1 diabetes. Diabetes Ther. 2020;11(1):37–52.

    Article  PubMed  Google Scholar 

  57. Ptaszynska A, Johnsson KM, Parikh SJ, de Bruin TW, Apanovitch AM, List JF. Safety profile of dapagliflozin for type 2 diabetes: pooled analysis of clinical studies for overall safety and rare events. Drug Saf. 2014;37(10):815–29.

    Article  CAS  PubMed  Google Scholar 

  58. Hirji I, Guo Z, Andersson SW, Hammar N, Gomez-Caminero A. Incidence of urinary tract infection among patients with type 2 diabetes in the UK General Practice Research Database (GPRD). J Diabetes Complications. 2012;26(6):513–6.

    Article  PubMed  Google Scholar 

  59. Wilke T, Boettger B, Berg B, Groth A, Mueller S, Botteman M, et al. Epidemiology of urinary tract infections in type 2 diabetes mellitus patients: an analysis based on a large sample of 456,586 German T2DM patients. J Diabetes Complications. 2015;29(8):1015–23.

    Article  PubMed  Google Scholar 

  60. Yavin Y, Mansfield TA, Ptaszynska A, Johnsson K, Parikh S, Johnsson E. Effect of the SGLT2 inhibitor dapagliflozin on potassium levels in patients with type 2 diabetes mellitus: a pooled analysis. Diabetes Ther. 2016;7(1):125–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tang H, Zhang X, Zhang J, Li Y, Del Gobbo LC, Zhai S, et al. Elevated serum magnesium associated with SGLT2 inhibitor use in type 2 diabetes patients: a meta-analysis of randomised controlled trials. Diabetologia. 2016;59(12):2546–51.

    Article  CAS  PubMed  Google Scholar 

  62. Tsimihodimos V, Filippatos TD, Elisaf MS. Effects of sodium-glucose co-transporter 2 inhibitors on metabolism: unanswered questions and controversies. Expert Opin Drug Metab Toxicol. 2017;13(4):399–408.

    Article  CAS  PubMed  Google Scholar 

  63. Li X, Li T, Cheng Y, Lu Y, Xue M, Xu L, et al. Effects of SGLT2 inhibitors on fractures and bone mineral density in type 2 diabetes: an updated meta-analysis. Diabetes Metab Res Rev. 2019;35(7):e3170.

    Article  PubMed  Google Scholar 

  64. Lambers Heerspink HJ, de Zeeuw D, Wie L, Leslie B, List J. Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes. Diabetes Obes Metab. 2013;15(9):853–62.

    Article  CAS  PubMed  Google Scholar 

  65. Maruyama T, Takashima H, Oguma H, Nakamura Y, Ohno M, Utsunomiya K, et al. Canagliflozin improves erythropoiesis in diabetes patients with anemia of chronic kidney disease. Diabetes Technol Ther. 2019;21(12):713–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Oshima M, Neuen BL, Jardine MJ, Bakris G, Edwards R, Levin A, et al. Effects of canagliflozin on anaemia in patients with type 2 diabetes and chronic kidney disease: a post-hoc analysis from the CREDENCE trial. Lancet Diabetes Endocrinol. 2020;8(11):903–14.

    Article  CAS  PubMed  Google Scholar 

  67. Bailey CJ, Gross JL, Pieters A, Bastien A, List JF. Effect of dapagliflozin in patients with type 2 diabetes who have inadequate glycaemic control with metformin: a randomised, double-blind, placebo-controlled trial. Lancet (London, England). 2010;375(9733):2223–33.

    Article  CAS  Google Scholar 

  68. Ferrannini E, Seman L, Seewaldt-Becker E, Hantel S, Pinnetti S, Woerle HJ. A Phase IIb, randomized, placebo-controlled study of the SGLT2 inhibitor empagliflozin in patients with type 2 diabetes. Diabetes Obes Metab. 2013;15(8):721–8.

    Article  CAS  PubMed  Google Scholar 

  69. Wilding JP, Ferrannini E, Fonseca VA, Wilpshaar W, Dhanjal P, Houzer A. Efficacy and safety of ipragliflozin in patients with type 2 diabetes inadequately controlled on metformin: a dose-finding study. Diabetes Obes Metab. 2013;15(5):403–9.

    Article  CAS  PubMed  Google Scholar 

  70. Cefalu WT, Leiter LA, Yoon KH, Arias P, Niskanen L, Xie J, et al. Efficacy and safety of canagliflozin versus glimepiride in patients with type 2 diabetes inadequately controlled with metformin (CANTATA-SU): 52 week results from a randomised, double-blind, phase 3 non-inferiority trial. Lancet (London, England). 2013;382(9896):941–50.

    Article  CAS  Google Scholar 

  71. Schork A, Saynisch J, Vosseler A, Jaghutriz BA, Heyne N, Peter A, et al. Effect of SGLT2 inhibitors on body composition, fluid status and renin-angiotensin-aldosterone system in type 2 diabetes: a prospective study using bioimpedance spectroscopy. Cardiovasc Diabetol. 2019;18(1):46.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Ohara K, Masuda T, Morinari M, Okada M, Miki A, Nakagawa S, et al. The extracellular volume status predicts body fluid response to SGLT2 inhibitor dapagliflozin in diabetic kidney disease. Diabetol Metab Syndr. 2020;12:37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Masuda T, Watanabe Y, Fukuda K, Watanabe M, Onishi A, Ohara K, et al. Unmasking a sustained negative effect of SGLT2 inhibition on body fluid volume in the rat. Am J Physiol Renal Physiol. 2018;315(3):F653–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Dhatariya KK. Defining and characterising diabetic ketoacidosis in adults. Diabetes Res Clin Pract. 2019;155:107797.

    Article  CAS  PubMed  Google Scholar 

  75. Perlman A, Heyman SN, Matok I, Stokar J, Muszkat M, Szalat A. Acute renal failure with sodium-glucose-cotransporter-2 inhibitors: analysis of the FDA adverse event report system database. Nutr Metab Cardiovasc Dis. 2017;27(12):1108–13.

    Article  CAS  PubMed  Google Scholar 

  76. Oshima M, Jardine MJ, Agarwal R, Bakris G, Cannon CP, Charytan DM, et al. Insights from CREDENCE trial indicate an acute drop in estimated glomerular filtration rate during treatment with canagliflozin with implications for clinical practice. Kidney Int. 2021;99(4):999–1009.

    Article  CAS  PubMed  Google Scholar 

  77. Menne J, Dumann E, Haller H, Schmidt BMW. Acute kidney injury and adverse renal events in patients receiving SGLT2-inhibitors: A systematic review and meta-analysis. PLoS Med. 2019;16(12):e1002983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank David Wheeler of the University College, London for reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Evans.

Ethics declarations

Funding

This manuscript was supported by a grant from AstraZeneca UK Ltd. in respect to medical writing and publication costs. AstraZeneca has not influenced the content of the publication, nor been involved in the design, collection, analysis, or reporting of any data presented. AstraZeneca UK Ltd. has reviewed this document for factual accuracy only.

Conflicts of interest

ME reports honoraria from AstraZeneca, Novo Nordisk, Takeda, and NAPP and research support from Novo Nordisk outside the submitted work. ARM is an employee of Health Economics and Outcomes Research Ltd., Cardiff, UK, who received fees from AstraZeneca in relation to this study. MBW reports investigator-led research grants from Sanofi, Eli Lilly, and AstraZeneca and personal fees from AstraZeneca, Boehringer Ingelheim, and MSD outside the submitted work. WH reports grants and personal fees from AstraZeneca, grants and personal fees from Boehringer Ingelheim, grants and personal fees from NAPP, and from MSD, outside the submitted work. SCB reports personal fees and other from Abbott, personal fees and other from AstraZeneca, personal fees and other from Boehringer Ingelheim, personal fees and other from Eli Lilly, personal fees and other from Merck Sharp & Dohme, personal fees and other from Novo Nordisk, personal fees and other from Sanofi-Aventis, other from Cardiff University, other from Doctors.net, other from Elsevier, other from OnMedica, other from OmniaMed, other from Medscape, other from All-Wales Medicines Strategy Group, other from National Institute for Health and Care Excellence (NICE) UK, and other from Glycosmedia, outside the submitted work. PAK reports personal fees for lecturing from Astra Zeneca, Boehringer Ingelheim, NAPP, MundiPharma, and Novo Nordisk outside the submitted work. SD has received honorarium from AstraZeneca, Boehringer Ingelheim, Lilly, Novo Nordisk, Takeda, MSD, NAPP, Bayer, and Roche for attending and participating in educational events and advisory boards, outside the submitted work. UD reports personal fees from AstraZeneca, Napp, Sanofi, BI, Lilly, and Novo Nordisk, outside the submitted work. ZY reports personal fees from AstraZeneca, personal fees from Lilly, personal fees from Boehringer Ingelheim, and personal fees from Novartis outside the submitted work. DCP reports personal fees from AstraZeneca, personal fees from Boehringer Ingelheim, personal fees from Eli Lilly, non-financial support from Napp, personal fees from Novo Nordisk, personal fees from MSD, and personal fees and non-financial support from Sanofi outside the submitted work. In addition, DCP is an executive committee member of the Association of British Clinical Diabetologists and member of the CaReMe UK group. WDS holds research grants from Bayer, Novo Nordisk, and Novartis and has received speaker honoraria from AstraZeneca, Bayer, Bristol-Myers Squibb, Merck, Napp, Novartis, Novo Nordisk, and Takeda. WDS is supported by the NIHR Exeter Clinical Research Facility and the NIHR Collaboration for Leadership in Applied Health Research and Care (CLAHRC) for the South West Peninsula.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and materials

Not applicable.

Code availability

Not applicable.

Author contribution

All authors have been involved in the design of this review. Marc Evans and Angharad R Morgan produced the primary manuscript. All authors have contributed to the drafting and revision of the manuscript. All authors meet the International Committee of Medical Journal Editors (ICMJE) criteria for authorship for this article, take responsibility for the integrity of the work as a whole, and have given their approval for this version to be published.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evans, M., Morgan, A.R., Whyte, M.B. et al. New Therapeutic Horizons in Chronic Kidney Disease: The Role of SGLT2 Inhibitors in Clinical Practice. Drugs 82, 97–108 (2022). https://doi.org/10.1007/s40265-021-01655-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-021-01655-2

Navigation