Skip to main content

Advertisement

Log in

Optimising the Heart Failure Treatment Pathway: The Role of SGLT2 Inhibitors

  • Current Opinion
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Sodium-glucose cotransporter 2 (SGLT2) inhibitors were first developed as glucose-lowering therapies for the treatment of diabetes. However, these drugs have now been recognised to prevent worsening heart-failure events, improve health-related quality of life, and reduce mortality in people with heart failure with reduced ejection fraction (HFrEF), including those both with and without diabetes. Despite robust clinical trial data demonstrating favourable outcomes with SGLT2 inhibitors for patients with HFrEF, there is a lack of familiarity with the HF indication for these drugs, which have been the remit of diabetologists to date. In this article we use consensus expert opinion alongside the available evidence and label indication to provide support for the healthcare community treating people with HF regarding positioning of SGLT2 inhibitors within the treatment pathway. By highlighting appropriate prescribing and practical considerations, we hope to encourage greater, and safe, use of SGLT2 inhibitors in this population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Vallon V, Thomson SC. Targeting renal glucose reabsorption to treat hyperglycaemia: the pleiotropic effects of SGLT2 inhibition. Diabetologia. 2017;60(2):215–25. https://doi.org/10.1007/s00125-016-4157-3.

    Article  CAS  PubMed  Google Scholar 

  2. Saisho Y. SGLT2 inhibitors: the star in the treatment of type 2 diabetes? Diseases. 2020. https://doi.org/10.3390/diseases8020014.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Vasilakou D, Karagiannis T, Athanasiadou E, Mainou M, Liakos A, Bekiari E, et al. Sodium-glucose cotransporter 2 inhibitors for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med. 2013;159(4):262–74. https://doi.org/10.7326/0003-4819-159-4-201308200-00007.

    Article  PubMed  Google Scholar 

  4. Ghosh RK, Ghosh GC, Gupta M, Bandyopadhyay D, Akhtar T, Deedwania P, et al. Sodium glucose co-transporter 2 inhibitors and heart failure. Am J Cardiol. 2019;124(11):1790–6. https://doi.org/10.1016/j.amjcard.2019.08.038.

    Article  CAS  PubMed  Google Scholar 

  5. Staels B. Cardiovascular protection by sodium glucose cotransporter 2 inhibitors: potential mechanisms. Am J Cardiol. 2017;120(1s):S28-s36. https://doi.org/10.1016/j.amjcard.2017.05.013.

    Article  CAS  PubMed  Google Scholar 

  6. Verma S, McMurray JJV. SGLT2 inhibitors and mechanisms of cardiovascular benefit: a state-of-the-art review. Diabetologia. 2018;61(10):2108–17. https://doi.org/10.1007/s00125-018-4670-7.

    Article  CAS  PubMed  Google Scholar 

  7. Filippatos TD, Liontos A, Papakitsou I, Elisaf MS. SGLT2 inhibitors and cardioprotection: a matter of debate and multiple hypotheses. Postgrad Med. 2019;131(2):82–8. https://doi.org/10.1080/00325481.2019.1581971.

    Article  PubMed  Google Scholar 

  8. Levy D, Kenchaiah S, Larson MG, Benjamin EJ, Kupka MJ, Ho KK, et al. Long-term trends in the incidence of and survival with heart failure. N Engl J Med. 2002;347(18):1397–402. https://doi.org/10.1056/NEJMoa020265.

    Article  PubMed  Google Scholar 

  9. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation. 2016;133(4):e38-360. https://doi.org/10.1161/cir.0000000000000350.

    Article  PubMed  Google Scholar 

  10. British Heart Foundation. UK factsheet. 2020. https://www.bhf.org.uk/what-we-do/our-research/heart-statistics. Accessed 1 Dec 2020.

  11. Cook C, Cole G, Asaria P, Jabbour R, Francis DP. The annual global economic burden of heart failure. Int J Cardiol. 2014;171(3):368–76. https://doi.org/10.1016/j.ijcard.2013.12.028.

    Article  PubMed  Google Scholar 

  12. Braunschweig F, Cowie MR, Auricchio A. What are the costs of heart failure? Europace. 2011;13(Suppl 2):ii13–7. https://doi.org/10.1093/europace/eur081.

  13. Dei Cas A, Khan SS, Butler J, Mentz RJ, Bonow RO, Avogaro A, et al. Impact of diabetes on epidemiology, treatment, and outcomes of patients with heart failure. JACC Heart Fail. 2015;3(2):136–45. https://doi.org/10.1016/j.jchf.2014.08.004.

    Article  PubMed  Google Scholar 

  14. Kenny HC, Abel ED. Heart failure in type 2 diabetes mellitus. Circ Res. 2019;124(1):121–41. https://doi.org/10.1161/circresaha.118.311371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rosano GM, Vitale C, Seferovic P. Heart failure in patients with diabetes mellitus. Card Fail Rev. 2017;3(1):52–5. https://doi.org/10.15420/cfr.2016:20:2.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–28. https://doi.org/10.1056/NEJMoa1504720.

    Article  CAS  PubMed  Google Scholar 

  17. Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377(7):644–57. https://doi.org/10.1056/NEJMoa1611925.

    Article  CAS  PubMed  Google Scholar 

  18. Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380(4):347–57. https://doi.org/10.1056/NEJMoa1812389.

    Article  CAS  PubMed  Google Scholar 

  19. Cosentino F, Cannon CP, Cherney DZI, Masiukiewicz U, Pratley R, Dagogo Jack S, et al. Efficacy of ertugliflozin on heart failure-related events in patients with type 2 diabetes mellitus and established atherosclerotic cardiovascular disease: results of the vertis cv trial. Circulation. 2020. https://doi.org/10.1161/circulationaha.120.050255.

    Article  PubMed  PubMed Central  Google Scholar 

  20. McMurray JJV, Solomon SD, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019;381(21):1995–2008. https://doi.org/10.1056/NEJMoa1911303.

    Article  CAS  PubMed  Google Scholar 

  21. Berg DD, Jhund PS, Docherty KF, Murphy SA, Verma S, Inzucchi SE, et al. Time to clinical benefit of dapagliflozin and significance of prior heart failure hospitalization in patients with heart failure with reduced ejection fraction. JAMA Cardiol. 2021. https://doi.org/10.1001/jamacardio.2020.7585.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kosiborod MN, Jhund PS, Docherty KF, Diez M, Petrie MC, Verma S, et al. Effects of dapagliflozin on symptoms, function, and quality of life in patients with heart failure and reduced ejection fraction: results from the DAPA-HF trial. Circulation. 2020;141(2):90–9. https://doi.org/10.1161/circulationaha.119.044138.

    Article  CAS  PubMed  Google Scholar 

  23. Martinez FA, Serenelli M, Nicolau JC, Petrie MC, Chiang CE, Tereshchenko S, et al. Efficacy and safety of dapagliflozin in heart failure with reduced ejection fraction according to age: insights from DAPA-HF. Circulation. 2020;141(2):100–11. https://doi.org/10.1161/circulationaha.119.044133.

    Article  CAS  PubMed  Google Scholar 

  24. McEwan P, Darlington O, McMurray JJV, Jhund PS, Docherty KF, Böhm M, et al. Cost-effectiveness of dapagliflozin as a treatment for heart failure with reduced ejection fraction: a multinational health-economic analysis of DAPA-HF. Eur J Heart Fail. 2020. https://doi.org/10.1002/ejhf.1978.

    Article  PubMed  Google Scholar 

  25. AJMC. FDA approves Dapagliflozin to treat heart failure, breaking new ground in SGLT2 competition. 2020. https://www.ajmc.com/view/fda-approves-dapagliflozin-to-treat-heart-failure-breaking-new-ground-in-sglt2-competition. Accessed 1 Dec 2020.

  26. AstraZeneca. Forxiga approved in Japan for chronic heart failure. 2020. https://www.astrazeneca.com/media-centre/press-releases/2020/forxiga-approved-in-japan-for-heart-failure.html. Accessed 1 Dec 2020.

  27. European Medicines Agency. Forxiga: EPAR—medicine overview. 2020. https://www.ema.europa.eu/en/documents/overview/forxiga-epar-medicine-overview_en.pdf. Accessed 1 Dec 2020.

  28. National Institute for Health and Care Excellence. Technology appraisal guidance [TA679]: Dapagliflozin for treating chronic heart failure with reduced ejection fraction. 2021. https://www.nice.org.uk/guidance/ta679. Accessed 26 Feb 2021.

  29. Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ, Carson P, et al. Cardiovascular and renal outcomes with Empagliflozin in heart failure. N Engl J Med. 2020;383(15):1413–24. https://doi.org/10.1056/NEJMoa2022190.

    Article  CAS  PubMed  Google Scholar 

  30. Zannad F, Ferreira JP, Pocock SJ, Anker SD, Butler J, Filippatos G, et al. SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: a meta-analysis of the EMPEROR-Reduced and DAPA-HF trials. Lancet (London, England). 2020;396(10254):819–29. https://doi.org/10.1016/s0140-6736(20)31824-9.

    Article  CAS  Google Scholar 

  31. Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019;380(24):2295–306. https://doi.org/10.1056/NEJMoa1811744.

    Article  CAS  PubMed  Google Scholar 

  32. Heerspink HJL, Stefánsson BV, Correa-Rotter R, Chertow GM, Greene T, Hou FF, et al. Dapagliflozin in patients with chronic kidney disease. N Engl J Med. 2020;383(15):1436–46. https://doi.org/10.1056/NEJMoa2024816.

    Article  CAS  PubMed  Google Scholar 

  33. Iyngkaran P, Thomas M, Majoni W, Anavekar NS, Ronco C. Comorbid heart failure and renal impairment: epidemiology and management. Cardiorenal Med. 2012;2(4):281–97. https://doi.org/10.1159/000342487.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Chambergo-Michilot D, Tauma-Arrué A, Loli-Guevara S. Effects and safety of SGLT2 inhibitors compared to placebo in patients with heart failure: a systematic review and meta-analysis. Int J Cardiol Heart Vasc. 2021;32:100690. https://doi.org/10.1016/j.ijcha.2020.100690.

    Article  PubMed  Google Scholar 

  35. Caparrotta TM, Greenhalgh AM, Osinski K, Gifford RM, Moser S, Wild SH, et al. Sodium-glucose co-transporter 2 inhibitors (SGLT2i) exposure and outcomes in type 2 diabetes: a systematic review of population-based observational studies. Diabetes Ther. 2021;12(4):991–1028. https://doi.org/10.1007/s13300-021-01004-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shah A, Gandhi D, Srivastava S, Shah KJ, Mansukhani R. Heart failure: a class review of pharmacotherapy. P t. 2017;42(7):464–72.

    PubMed  PubMed Central  Google Scholar 

  37. National Institute for Health and Care Excellence. NICE guideline [NG106]: Chronic heart failure in adults: diagnosis and management. 2018. https://www.nice.org.uk/guidance/ng106. Accessed 1 Dec 2020.

  38. National Institute for Health and Care Excellence. Technology appraisal guidance [TA388]: Sacubitril valsartan for treating symptomatic chronic heart failure with reduced ejection fraction. 2016. https://www.nice.org.uk/guidance/ta388. Accessed 1 Dec 2020.

  39. McMurray JJ, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014;371(11):993–1004. https://doi.org/10.1056/NEJMoa1409077.

    Article  CAS  PubMed  Google Scholar 

  40. Vaduganathan M, Claggett BL, Jhund PS, Cunningham JW, Pedro Ferreira J, Zannad F, et al. Estimating lifetime benefits of comprehensive disease-modifying pharmacological therapies in patients with heart failure with reduced ejection fraction: a comparative analysis of three randomised controlled trials. Lancet (London, England). 2020;396(10244):121–8. https://doi.org/10.1016/s0140-6736(20)30748-0.

    Article  CAS  Google Scholar 

  41. Paolillo S, Dell’Aversana S, Esposito I, Poccia A, Perrone FP. The use of β-blockers in patients with heart failure and comorbidities: doubts, certainties and unsolved issues. Eur J Intern Med. 2021. https://doi.org/10.1016/j.ejim.2021.03.035.

    Article  PubMed  Google Scholar 

  42. Borer JS. Angiotensin-converting enzyme inhibition: a landmark advance in treatment for cardiovascular diseases. Eur Heart J Suppl. 2007;9(suppl_E):E2–9.

  43. Ruschitzka F, Taddei S. Angiotensin-converting enzyme inhibitors: first-line agents in cardiovascular protection? Eur Heart J. 2012;33(16):1996–8. https://doi.org/10.1093/eurheartj/ehs108.

    Article  CAS  PubMed  Google Scholar 

  44. Cosentino F, Grant PJ, Aboyans V, Bailey CJ, Ceriello A, Delgado V, et al. 2019 ESC guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 2020;41(2):255–323. https://doi.org/10.1093/eurheartj/ehz486.

    Article  PubMed  Google Scholar 

  45. Willenheimer R, van Veldhuisen DJ, Silke B, Erdmann E, Follath F, Krum H, et al. Effect on survival and hospitalization of initiating treatment for chronic heart failure with bisoprolol followed by enalapril, as compared with the opposite sequence: results of the randomized Cardiac Insufficiency Bisoprolol Study (CIBIS) III. Circulation. 2005;112(16):2426–35. https://doi.org/10.1161/circulationaha.105.582320.

    Article  CAS  PubMed  Google Scholar 

  46. Sliwa K, Norton GR, Kone N, Candy G, Kachope J, Woodiwiss AJ, et al. Impact of initiating carvedilol before angiotensin-converting enzyme inhibitor therapy on cardiac function in newly diagnosed heart failure. J Am Coll Cardiol. 2004;44(9):1825–30. https://doi.org/10.1016/j.jacc.2004.05.087.

    Article  CAS  PubMed  Google Scholar 

  47. Linde C, Qin L, Bakhai A, Furuland H, Evans M, Ayoubkhani D, et al. Serum potassium and clinical outcomes in heart failure patients: results of risk calculations in 21 334 patients in the UK. ESC Heart Fail. 2019;6(2):280–90. https://doi.org/10.1002/ehf2.12402.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Linde C, Bakhai A, Furuland H, Evans M, McEwan P, Ayoubkhani D, et al. Real-world associations of renin-angiotensin-aldosterone system inhibitor dose, hyperkalemia, and adverse clinical outcomes in a cohort of patients with new-onset chronic kidney disease or heart failure in the United Kingdom. J Am Heart Assoc. 2019;8(22):e012655. https://doi.org/10.1161/jaha.119.012655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Palaka E, Grandy S, Darlington O, McEwan P, van Doornewaard A. Associations between serum potassium and adverse clinical outcomes: a systematic literature review. Int J Clin Pract. 2020;74(1):e13421. https://doi.org/10.1111/ijcp.13421.

    Article  PubMed  Google Scholar 

  50. McEwan P, Hurst M, Hoskin L, Badora K, Sugrue D, James G et al. The relationship between duration of heart failure, serum potassium concentration and adverse clinical outcomes. Eur Heart J. 2020;41(Supplement_2):ehaa946.0943.

  51. Reed JW. Impact of sodium-glucose cotransporter 2 inhibitors on blood pressure. Vasc Health Risk Manag. 2016;12:393–405. https://doi.org/10.2147/vhrm.S111991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Evans M, Hicks D, Patel D, Patel V, McEwan P, Dashora U. Optimising the benefits of SGLT2 inhibitors for type 1 diabetes. Diabetes Ther. 2020;11(1):37–52. https://doi.org/10.1007/s13300-019-00728-6.

    Article  PubMed  Google Scholar 

  53. Ansary TM, Nakano D, Nishiyama A. Diuretic effects of sodium glucose cotransporter 2 inhibitors and their influence on the renin-angiotensin system. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20030629.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Mazidi M, Rezaie P, Gao HK, Kengne AP. Effect of sodium-glucose cotransport-2 inhibitors on blood pressure in people with type 2 diabetes mellitus: a systematic review and meta-analysis of 43 randomized control trials with 22 528 patients. J Am Heart Assoc. 2017. https://doi.org/10.1161/jaha.116.004007.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Sano M. A new class of drugs for heart failure: SGLT2 inhibitors reduce sympathetic overactivity. J Cardiol. 2018;71(5):471–6. https://doi.org/10.1016/j.jjcc.2017.12.004.

    Article  PubMed  Google Scholar 

  56. Heerspink HJ, Perkins BA, Fitchett DH, Husain M, Cherney DZ. Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: cardiovascular and kidney effects, potential mechanisms, and clinical applications. Circulation. 2016;134(10):752–72. https://doi.org/10.1161/circulationaha.116.021887.

    Article  CAS  PubMed  Google Scholar 

  57. Thong KY, Yadagiri M, Barnes DJ, Morris DS, Chowdhury TA, Chuah LL, et al. Clinical risk factors predicting genital fungal infections with sodium-glucose cotransporter 2 inhibitor treatment: the ABCD nationwide dapagliflozin audit. Prim Care Diabetes. 2018;12(1):45–50. https://doi.org/10.1016/j.pcd.2017.06.004.

    Article  PubMed  Google Scholar 

  58. Nyenwe EA, Kitabchi AE. The evolution of diabetic ketoacidosis: an update of its etiology, pathogenesis and management. Metabolism. 2016;65(4):507–21. https://doi.org/10.1016/j.metabol.2015.12.007.

    Article  CAS  PubMed  Google Scholar 

  59. Musso G, Gambino R, Cassader M, Pagano G. A novel approach to control hyperglycemia in type 2 diabetes: sodium glucose co-transport (SGLT) inhibitors: systematic review and meta-analysis of randomized trials. Ann Med. 2012;44(4):375–93. https://doi.org/10.3109/07853890.2011.560181.

    Article  CAS  PubMed  Google Scholar 

  60. Bailey CJ, Gross JL, Hennicken D, Iqbal N, Mansfield TA, List JF. Dapagliflozin add-on to metformin in type 2 diabetes inadequately controlled with metformin: a randomized, double-blind, placebo-controlled 102-week trial. BMC Med. 2013;11:43. https://doi.org/10.1186/1741-7015-11-43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ramírez-Rodríguez AM, González-Ortiz M, Martínez-Abundis E. Effect of Dapagliflozin on insulin secretion and insulin sensitivity in patients with prediabetes. Exp Clin Endocrinol Diabetes. 2020;128(8):506–11. https://doi.org/10.1055/a-0664-7583.

    Article  CAS  PubMed  Google Scholar 

  62. Stenlöf K, Cefalu WT, Kim KA, Alba M, Usiskin K, Tong C, et al. Efficacy and safety of canagliflozin monotherapy in subjects with type 2 diabetes mellitus inadequately controlled with diet and exercise. Diabetes Obes Metab. 2013;15(4):372–82. https://doi.org/10.1111/dom.12054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cefalu WT, Leiter LA, Yoon KH, Arias P, Niskanen L, Xie J, et al. Efficacy and safety of canagliflozin versus glimepiride in patients with type 2 diabetes inadequately controlled with metformin (CANTATA-SU): 52 week results from a randomised, double-blind, phase 3 non-inferiority trial. Lancet (London, England). 2013;382(9896):941–50. https://doi.org/10.1016/s0140-6736(13)60683-2.

    Article  CAS  Google Scholar 

  64. Bays HE, Weinstein R, Law G, Canovatchel W. Canagliflozin: effects in overweight and obese subjects without diabetes mellitus. Obesity (Silver Spring). 2014;22(4):1042–9. https://doi.org/10.1002/oby.20663.

    Article  CAS  Google Scholar 

  65. Hollander P, Bays HE, Rosenstock J, Frustaci ME, Fung A, Vercruysse F, et al. Coadministration of canagliflozin and phentermine for weight management in overweight and obese individuals without diabetes: a randomized clinical trial. Diabetes Care. 2017;40(5):632–9. https://doi.org/10.2337/dc16-2427.

    Article  CAS  PubMed  Google Scholar 

  66. List JF, Woo V, Morales E, Tang W, Fiedorek FT. Sodium-glucose cotransport inhibition with dapagliflozin in type 2 diabetes. Diabetes Care. 2009;32(4):650–7. https://doi.org/10.2337/dc08-1863.

    Article  CAS  PubMed  Google Scholar 

  67. Pereira MJ, Eriksson JW. Emerging role of SGLT-2 inhibitors for the treatment of obesity. Drugs. 2019;79(3):219–30. https://doi.org/10.1007/s40265-019-1057-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lundkvist P, Sjöström CD, Amini S, Pereira MJ, Johnsson E, Eriksson JW. Dapagliflozin once-daily and exenatide once-weekly dual therapy: a 24-week randomized, placebo-controlled, phase II study examining effects on body weight and prediabetes in obese adults without diabetes. Diabetes Obes Metab. 2017;19(1):49–60. https://doi.org/10.1111/dom.12779.

    Article  CAS  PubMed  Google Scholar 

  69. Sargeant JA, Henson J, King JA, Yates T, Khunti K, Davies MJ. A review of the effects of glucagon-like peptide-1 receptor agonists and sodium-glucose cotransporter 2 inhibitors on lean body mass in humans. Endocrinol Metab (Seoul). 2019;34(3):247–62. https://doi.org/10.3803/EnM.2019.34.3.247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. National Institute for Health and Care Excellence. Clinical guideline [CG187]: acute heart failure: diagnosis and management. 2014. https://www.nice.org.uk/guidance/cg187/. Accessed 1 Dec 2020.

  71. Bhatt DL, Szarek M, Steg PG, Cannon CP, Leiter LA, McGuire DK, et al. Sotagliflozin in patients with diabetes and recent worsening heart failure. N Engl J Med. 2020. https://doi.org/10.1056/NEJMoa2030183.

    Article  PubMed  Google Scholar 

  72. Bhatt DL, Szarek M, Pitt B, Cannon CP, Leiter LA, McGuire DK, et al. Sotagliflozin in patients with diabetes and chronic kidney disease. N Engl J Med. 2020. https://doi.org/10.1056/NEJMoa2030186.

    Article  PubMed  Google Scholar 

  73. Anker SD, Butler J, Filippatos GS, Jamal W, Salsali A, Schnee J, et al. Evaluation of the effects of sodium-glucose co-transporter 2 inhibition with empagliflozin on morbidity and mortality in patients with chronic heart failure and a preserved ejection fraction: rationale for and design of the EMPEROR-preserved trial. Eur J Heart Fail. 2019;21(10):1279–87. https://doi.org/10.1002/ejhf.1596.

    Article  CAS  PubMed  Google Scholar 

  74. Williams DM, Evans M. Dapagliflozin for heart failure with preserved ejection fraction: will the deliver study deliver? Diabetes Ther. 2020;11(10):2207–19. https://doi.org/10.1007/s13300-020-00911-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Evans.

Ethics declarations

Funding

Support for this work was provided by AstraZeneca UK Ltd., who provided funding for medical writing. AstraZeneca UK Ltd. has reviewed this document for factual accuracy only.

Conflict of interest

ME reports honoraria from AstraZeneca, NovoNordisk, Takeda and NAPP, and research support from NovoNordisk outside the submitted work. Marc Evans received financial support for consultancy from Novartis, Merck Sharp & Dohme Corp. and Novo Nordisk, and has served on the speaker’s bureau for Novartis, Lilly, Boehringer lngelheim, Merck Sharp & Dohme Corp., Novo Nordisk, Janssen and Takeda. ARM is an employee of Health Economics and Outcomes Research Ltd., Cardiff, UK, who received fees from AstraZeneca in relation to this study. ZY reports personal fees from AstraZeneca, personal fees from Lilly, personal fees from Boehringer Ingelheim and personal fees from Novartis outside the submitted work. GE has received honoraria for lectures from AstraZeneca, Boehringer Ingelheim, Bayer, Pfizer. UD reports personal fees from AstraZeneca, Napp, Sanofi, BI, Lilly and Novo Nordisk, outside the submitted work. DCP reports personal fees from AstraZeneca, personal fees from Boehringer Ingelheim, personal fees from Eli Lilly, non-financial support from Napp, personal fees from Novo Nordisk, personal fees from MSD, personal fees and non-financial support from Sanofi outside the submitted work. In addition, DCP is an executive committee member of the Association of British Clinical Diabetologists and member of the CaReMe UK group. PB reports personal fees and non-financial support from Abbott, personal fees and non-financial support from AstraZeneca, personal fees and non-financial support from Boehringer Ingelheim, personal fees and non-financial support from Eli Lilly, personal fees and non-financial support from Janssen, personal fees and non-financial support from MSD, personal fees and non-financial support from Napp, personal fees and non-financial support from Novo Nordisk, personal fees, non-financial support and other from Primary Care Diabetes Society, personal fees and non-financial support from iHeed/University of Warwick, and personal fees and non-financial support from Diabetes UK, outside the submitted work. WH reports grants and personal fees from AstraZeneca, grants and personal fees from Boehringer Ingelheim, grants and personal fees from NAPP, from MSD, outside the submitted work. JNT has nothing to disclose. NK reports personal fees from AstraZeneca, personal fees from Boehringer Ingelheim, personal fees from Lilly, personal fees from Sanofi, personal fees from Mylan, personal fees from Roche, personal fees from ABBOTT, and personal fees from Napp outside the submitted work. JM has received honoraria from AstraZeneca, Boehringer Ingelheim and Novartis for various activities including attending and participating in educational events and advisory boards. JPHW reports grants, personal fees and other from AstraZeneca, other from Astellas, personal fees and other from Boehringer Ingelheim, other from Janssen, personal fees and other from Napp, grants, personal fees and other from Novo Nordisk, personal fees and other from Mundipharma, other from Sanofi, grants and personal fees from Takeda, other from Rhythm Pharmaceuticals, other from Wilmington Healthcare, other from Eli Lilly, outside the submitted work. SCB reports personal fees and other from Abbott, personal fees and other from AstraZeneca, personal fees and other from Boehringer Ingelheim, personal fees and other from Cellnovo, personal fees and other from Eli Lilly, personal fees and other from Merck Sharp & Dohme, personal fees and other from Novo Nordisk, personal fees and other from Sanofi-Aventis, other from Cardiff University, other from Doctors.net, other from Elsevier, other from Onmedica, other from Omnia-Med, other from Medscape, other from All-Wales Medicines Strategy Group, other from National Institute for Health and Care Excellence (NICE) UK, and other from Glycosmedia, outside the submitted work.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Authors’ contributions

ME and ARM researched data for the article, contributed to discussion of content, wrote the article and reviewed and edited the manuscript before submission. ZY, GE, UD, DCP, PB, WH, JNT, NK, JM, JPHW and SCB contributed to discussion of content and reviewed and edited the manuscript before submission. All named authors meet the International Committee of Medical Journal Editors (ICMJE) criteria for authorship for this article, take responsibility for the integrity of the work as a whole, and have given their approval for this version to be published.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evans, M., Morgan, A.R., Yousef, Z. et al. Optimising the Heart Failure Treatment Pathway: The Role of SGLT2 Inhibitors. Drugs 81, 1243–1255 (2021). https://doi.org/10.1007/s40265-021-01538-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-021-01538-6

Navigation