Skip to main content

Advertisement

Log in

Vedolizumab and Extraintestinal Manifestations in Inflammatory Bowel Disease

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

A Correction to this article was published on 28 August 2021

This article has been updated

Abstract

In Crohn’s disease and ulcerative colitis, inflammation is not limited to the digestive tract. Extraintestinal manifestations (EIMs), which affect up to 50% of patients, can substantially impair quality of life. EIMs may parallel luminal disease activity or have an independent course. They most commonly involve the musculoskeletal system (e.g., peripheral or axial arthritis) and skin (e.g., erythema nodosum and pyoderma gangrenosum). Less commonly, the hepatobiliary tract (e.g., primary sclerosing cholangitis [PSC]) and the eye (e.g., episcleritis, scleritis, and uveitis) are involved. Although the pathophysiology of EIMs is poorly understood, they are likely either manifestations of a primary systemic immune disease with variable expression amongst organs, or secondary phenomena to bowel inflammation. Additional pathophysiologic mechanisms may include aberrant lymphocyte homing mediated by ectopic expression of gut-specific chemokines and adhesion molecules, cross-reactivity between microbial and self-antigens, autoantibodies against epitopes shared by the intestine and extraintestinal tissues, elevated serum concentrations of cytokines, and alterations in innate immunity. Many EIMs independent of intestinal disease activity can be successfully treated with tumor necrosis factor (TNF) antagonists. The efficacy of vedolizumab—a monoclonal antibody targeting the α4β7 integrin—for the treatment of EIMs is uncertain, but data are emerging from post hoc analyses of randomized controlled trials, prospective and retrospective cohort studies, and case series. Vedolizumab may be effective in treating EIMs related to luminal disease activity (e.g., type 1 peripheral arthritis and erythema nodosum) but has not shown biochemical improvement in PSC. Its postulated role in the development of de novo EIMs is heavily confounded by the high proportion of patients previously exposed to TNF antagonists; new EIMs could result from TNF antagonist treatment cessation rather than being caused by vedolizumab. A common limitation of clinical studies is the lack of multidisciplinary involvement in the diagnosis and monitoring of EIMs, which may lead to misdiagnosis and overreporting. Future studies should rigorously measure EIMs in parallel with objective measures of luminal disease activity to provide more robust data on the relative efficacy of new drugs, especially as increasing numbers of gut-selective compounds enter clinical development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Vavricka SR, Schoepfer A, Scharl M, Lakatos PL, Navarini A, Rogler G. Extraintestinal Manifestations of Inflammatory Bowel Disease. Inflamm Bowel Dis. 2015;21(8):1982–92.

    Article  PubMed  Google Scholar 

  2. Marinelli C, Savarino E, Inferrera M, Lorenzon G, Rigo A, Ghisa M, et al. Factors influencing disability and quality of life during treatment: a cross-sectional study on IBD patients. Gastroenterol Res Pract. 2019;2019:5354320.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hedin CRH, Vavricka SR, Stagg AJ, Schoepfer A, Raine T, Puig L, et al. The pathogenesis of extraintestinal manifestations: implications for IBD research, diagnosis, and therapy. J Crohns Colitis. 2019;13(5):541–54.

    Article  PubMed  CAS  Google Scholar 

  4. Adams DH, Eksteen B. Aberrant homing of mucosal T cells and extra-intestinal manifestations of inflammatory bowel disease. Nat Rev Immunol. 2006;6(3):244–51.

    Article  PubMed  CAS  Google Scholar 

  5. Feagan BG, Rutgeerts P, Sands BE, Hanauer S, Colombel JF, Sandborn WJ, et al. Vedolizumab as induction and maintenance therapy for ulcerative colitis. N Engl J Med. 2013;369(8):699–710.

    Article  PubMed  CAS  Google Scholar 

  6. Sandborn WJ, Feagan BG, Rutgeerts P, Hanauer S, Colombel JF, Sands BE, et al. Vedolizumab as induction and maintenance therapy for Crohn’s disease. N Engl J Med. 2013;369(8):711–21.

    Article  PubMed  CAS  Google Scholar 

  7. Bernstein CN, Blanchard JF, Rawsthorne P, Yu N. The prevalence of extraintestinal diseases in inflammatory bowel disease: a population-based study. Am J Gastroenterol. 2001;96(4):1116–22.

    Article  PubMed  CAS  Google Scholar 

  8. Vavricka SR, Brun L, Ballabeni P, Pittet V, Prinz Vavricka BM, Zeitz J, et al. Frequency and risk factors for extraintestinal manifestations in the Swiss inflammatory bowel disease cohort. Am J Gastroenterol. 2011;106(1):110–9.

    Article  PubMed  Google Scholar 

  9. Karmiris K, Avgerinos A, Tavernaraki A, Zeglinas C, Karatzas P, Koukouratos T, et al. Prevalence and characteristics of extra-intestinal manifestations in a large cohort of greek patients with inflammatory bowel disease. J Crohns Colitis. 2016;10(4):429–36.

    Article  PubMed  Google Scholar 

  10. Vavricka SR, Rogler G, Gantenbein C, Spoerri M, Prinz Vavricka M, Navarini AA, et al. Chronological order of appearance of extraintestinal manifestations relative to the time of IBD diagnosis in the Swiss Inflammatory Bowel Disease Cohort. Inflamm Bowel Dis. 2015;21(8):1794–800.

    Article  PubMed  Google Scholar 

  11. Veloso FT, Carvalho J, Magro F. Immune-related systemic manifestations of inflammatory bowel disease. A prospective study of 792 patients. J Clin Gastroenterol. 1996;23(1):29–34.

    Article  PubMed  CAS  Google Scholar 

  12. Severs M, van Erp SJ, van der Valk ME, Mangen MJ, Fidder HH, van der Have M, et al. Smoking is associated with extra-intestinal manifestations in inflammatory bowel disease. J Crohns Colitis. 2016;10(4):455–61.

    Article  PubMed  CAS  Google Scholar 

  13. Greenstein AJ, Janowitz HD, Sachar DB. The extra-intestinal complications of Crohn’s disease and ulcerative colitis: a study of 700 patients. Medicine (Baltimore). 1976;55(5):401–12.

    Article  PubMed  CAS  Google Scholar 

  14. Monsén USJ, Hellers G, Johansson C. Extracolonic diagnoses in ulcerative colitis: and epidemiological study. Am J Gastroenterol. 1990;85(6):711–6.

    PubMed  Google Scholar 

  15. Taleban S, Li D, Targan SR, Ippoliti A, Brant SR, Cho JH, et al. Ocular manifestations in inflammatory bowel disease are associated with other extra-intestinal manifestations, gender, and genes implicated in other immune-related traits. J Crohns Colitis. 2016;10(1):43–9.

    Article  PubMed  Google Scholar 

  16. Orchard TR, Wordsworth BP, Jewell DP. Peripheral arthropathies in inflammatory bowel disease: their articular distribution and natural history. Gut. 1998;42(3):387–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Smale S, Natt RS, Orchard TR, Russell AS, Bjarnason I. Inflammatory bowel disease and spondylarthropathy. Arthritis Rheum. 2001;44(12):2728–36.

    Article  PubMed  CAS  Google Scholar 

  18. Karreman MC, Luime JJ, Hazes JMW, Weel A. The prevalence and incidence of axial and peripheral spondyloarthritis in inflammatory bowel disease: a systematic review and meta-analysis. J Crohns Colitis. 2017;11(5):631–42.

    PubMed  Google Scholar 

  19. Orchard TR, Holt H, Bradbury L, Hammersma J, McNally E, Jewell DP, et al. The prevalence, clinical features and association of HLA-B27 in sacroiliitis associated with established Crohn’s disease. Aliment Pharmacol Ther. 2009;29(2):193–7.

    Article  PubMed  CAS  Google Scholar 

  20. Polcz M, Gu J, Florin T. Pyoderma gangrenosum in inflammatory bowel disease: the experience at Mater Health Services’ Adult Hospital 1998–2009. J Crohns Colitis. 2011;5(2):148–51.

    Article  PubMed  Google Scholar 

  21. Weizman A, Huang B, Berel D, Targan SR, Dubinsky M, Fleshner P, et al. Clinical, serologic, and genetic factors associated with pyoderma gangrenosum and erythema nodosum in inflammatory bowel disease patients. Inflamm Bowel Dis. 2014;20(3):525–33.

    Article  PubMed  Google Scholar 

  22. Ghanchi FD, Rembacken BJ. Inflammatory bowel disease and the eye. Surv Ophthalmol. 2003;48(6):663–76.

    Article  PubMed  Google Scholar 

  23. Yokoda RT, Carey EJ. Primary biliary cholangitis and primary sclerosing cholangitis. Am J Gastroenterol. 2019;114(10):1593–605.

    Article  PubMed  Google Scholar 

  24. Prideaux L, Kamm MA, De Cruz PP, Chan FK, Ng SC. Inflammatory bowel disease in Asia: a systematic review. J Gastroenterol Hepatol. 2012;27(8):1266–80.

    Article  PubMed  Google Scholar 

  25. Fraga M, Fournier N, Safroneeva E, Pittet V, Godat S, Straumann A, et al. Primary sclerosing cholangitis in the Swiss Inflammatory Bowel Disease Cohort Study: prevalence, risk factors, and long-term follow-up. Eur J Gastroenterol Hepatol. 2017;29(1):91–7.

    Article  PubMed  Google Scholar 

  26. Bruining DH, Siddiki HA, Fletcher JG, Tremaine WJ, Sandborn WJ, Loftus EV Jr. Prevalence of penetrating disease and extraintestinal manifestations of Crohn’s disease detected with CT enterography. Inflamm Bowel Dis. 2008;14(12):1701–6.

    Article  PubMed  Google Scholar 

  27. Campbell JJ, Butcher EC. Chemokines in tissue-specific and microenvironment-specific lymphocyte homing. Curr Opin Immunol. 2000;12(3):336–41.

    Article  PubMed  CAS  Google Scholar 

  28. Butcher EC, Picker LJ. Lymphocyte homing and homeostasis. Science. 1996;272(5258):60–6.

    Article  PubMed  CAS  Google Scholar 

  29. Vermeire S, O’Byrne S, Keir M, Williams M, Lu TT, Mansfield JC, et al. Etrolizumab as induction therapy for ulcerative colitis: a randomised, controlled, phase 2 trial. Lancet. 2014;384(9940):309–18.

    Article  PubMed  CAS  Google Scholar 

  30. Ghosh S, Goldin E, Gordon FH, Malchow HA, Rask-Madsen J, Rutgeerts P, et al. Natalizumab for active Crohn’s disease. N Engl J Med. 2003;348(1):24–32.

    Article  PubMed  CAS  Google Scholar 

  31. Svensson M, Agace WW. Role of CCL25/CCR9 in immune homeostasis and disease. Expert Rev Clin Immunol. 2006;2(5):759–73.

    Article  PubMed  CAS  Google Scholar 

  32. Trivedi PJ, Bruns T, Ward S, Mai M, Schmidt C, Hirschfield GM, et al. Intestinal CCL25 expression is increased in colitis and correlates with inflammatory activity. J Autoimmun. 2016;68:98–104.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Eksteen B, Grant AJ, Miles A, Curbishley SM, Lalor PF, Hubscher SG, et al. Hepatic endothelial CCL25 mediates the recruitment of CCR9+ gut-homing lymphocytes to the liver in primary sclerosing cholangitis. J Exp Med. 2004;200(11):1511–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Grant AJ, Lalor PF, Hubscher SG, Briskin M, Adams DH. MAdCAM-1 expressed in chronic inflammatory liver disease supports mucosal lymphocyte adhesion to hepatic endothelium (MAdCAM-1 in chronic inflammatory liver disease). Hepatology. 2001;33(5):1065–72.

    Article  PubMed  CAS  Google Scholar 

  35. Ciccia F, Guggino G, Rizzo A, Saieva L, Peralta S, Giardina A, et al. Type 3 innate lymphoid cells producing IL-17 and IL-22 are expanded in the gut, in the peripheral blood, synovial fluid and bone marrow of patients with ankylosing spondylitis. Ann Rheum Dis. 2015;74(9):1739–47.

    Article  PubMed  CAS  Google Scholar 

  36. Salmi M, Jalkanen S. Human leukocyte subpopulations from inflamed gut bind to joint vasculature using distinct sets of adhesion molecules. J Immunol. 2001;166(7):4650–7.

    Article  PubMed  CAS  Google Scholar 

  37. Salmi M, Andrew DP, Butcher EC, Jalkanen S. Dual binding capacity of mucosal immunoblasts to mucosal and synovial endothelium in humans: dissection of the molecular mechanisms. J Exp Med. 1995;181(1):137–49.

    Article  PubMed  CAS  Google Scholar 

  38. Taurog JD, Richardson JA, Croft JT, Simmons WA, Zhou M, Fernandez-Sueiro JL, et al. The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J Exp Med. 1994;180(6):2359–64.

    Article  PubMed  CAS  Google Scholar 

  39. Scofield RH, Kurien B, Gross T, Warren WL, Harley JB, Scofield RH, et al. HLA-B27 binding of peptide from its own sequence and similar peptides from bacteria: implications for spondyloarthropathies. The Lancet. 1995;345(8964):1542–4.

    Article  CAS  Google Scholar 

  40. Ramos M, Alvarez I, Sesma L, Logean A, Rognan D, de Castro LJA. Molecular mimicry of an HLA-B27-derived ligand of arthritis-linked subtypes with chlamydial proteins. J Biol Chem. 2002;277(40):37573–81.

    Article  PubMed  CAS  Google Scholar 

  41. Horai R, Zárate-Bladés Carlos R, Dillenburg-Pilla P, Chen J, Kielczewski Jennifer L, Silver Phyllis B, et al. Microbiota-dependent activation of an autoreactive T cell receptor provokes autoimmunity in an immunologically privileged site. Immunity. 2015;43(2):343–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Biancone L, Mandal A, Yang H, Dasgupta T, Paoluzi AO, Marcheggiano A, et al. Production of immunoglobulin G and G1 antibodies to cytoskeletal protein by lamina propria cells in ulcerative colitis. Gastroenterology. 1995;109(1):3–12.

    Article  PubMed  CAS  Google Scholar 

  43. Geng X, Biancone L, Dai HH, Lin JJC, Yoshizaki N, Dasgupta A, et al. Tropomyosin isoforms in intestinal mucosa: Production of autoantibodies to tropomyosin isoforms in ulcerative colitis. Gastroenterology. 1998;114(5):912–22.

    Article  PubMed  CAS  Google Scholar 

  44. Das KM, Vecchi M, Sakamaki S. A shared and unique epitope(s) on human colon, skin, and biliary epithelium detected by a monoclonal antibody. Gastroenterology. 1990;98(2):464–9.

    Article  PubMed  CAS  Google Scholar 

  45. Bhagat S, Das KM. A shared and unique peptide in the human colon, eye, and joint detected by a monoclonal antibody. Gastroenterology. 1994;107(1):103–8.

    Article  PubMed  CAS  Google Scholar 

  46. Smith AM, Rahman FZ, Hayee B, Graham SJ, Marks DJ, Sewell GW, et al. Disordered macrophage cytokine secretion underlies impaired acute inflammation and bacterial clearance in Crohn’s disease. J Exp Med. 2009;206(9):1883–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Park JH, Peyrin-Biroulet L, Eisenhut M, Shin JI. IBD immunopathogenesis: A comprehensive review of inflammatory molecules. Autoimmun Rev. 2017;16(4):416–26.

    Article  PubMed  CAS  Google Scholar 

  48. Queiro R, Maiz O, Intxausti J, de Dios JR, Belzunegui J, Gonzalez C, et al. Subclinical sacroiliitis in inflammatory bowel disease: a clinical and follow-up study. Clin Rheumatol. 2000;19(6):445–9.

    Article  PubMed  CAS  Google Scholar 

  49. Peeters H, Vander Cruyssen B, Mielants H, de Vlam K, Vermeire S, Louis E, et al. Clinical and genetic factors associated with sacroiliitis in Crohn’s disease. J Gastroenterol Hepatol. 2008;23(1):132–7.

    PubMed  Google Scholar 

  50. Fornaciari G, Salvarani C, Beltrami M, Macchioni P, Stockbrugger RW, Russel MG. Muscoloskeletal manifestations in inflammatory bowel disease. Can J Gastroenterol. 2001;15(6):399–403.

    Article  PubMed  CAS  Google Scholar 

  51. Rudwaleit M, Jurik AG, Hermann KG, Landewe R, van der Heijde D, Baraliakos X, et al. Defining active sacroiliitis on magnetic resonance imaging (MRI) for classification of axial spondyloarthritis: a consensual approach by the ASAS/OMERACT MRI group. Ann Rheum Dis. 2009;68(10):1520–7.

    Article  PubMed  CAS  Google Scholar 

  52. Harbord M, Annese V, Vavricka SR, Allez M, Barreiro-de Acosta M, Boberg KM, et al. The first European evidence-based consensus on extra-intestinal manifestations in inflammatory bowel disease. J Crohns Colitis. 2016;10(3):239–54.

    Article  PubMed  Google Scholar 

  53. Magro F, Gionchetti P, Eliakim R, Ardizzone S, Armuzzi A, Barreiro-de Acosta M, et al. Third European Evidence-based Consensus on Diagnosis and Management of Ulcerative Colitis. Part 1: definitions, diagnosis, extra-intestinal manifestations, pregnancy, cancer surveillance, surgery, and ileo-anal pouch disorders. J Crohns Colitis. 2017;11(6):649–70.

    Article  PubMed  Google Scholar 

  54. Creemers M, Franssen M, van de Putte L, Gribnau F, van Riel P. Methotrexate in severe ankylosing spondylitis: an open study. J Rheumatol. 1995;22:1104–7.

    PubMed  CAS  Google Scholar 

  55. Ostendorf B, Specker C, Schneider M. Methotrexate lacks efficacy in the treatment of severe ankylosing spondylitis compared with rheumatoid and psoriatic arthritis. J Clin Rheumatol. 1998;4(3):129–36.

    Article  PubMed  CAS  Google Scholar 

  56. Haibel H, Rudwaleit M, Braun J, Sieper J. Six months open label trial of leflunomide in active ankylosing spondylitis. Ann Rheum Dis. 2005;64(1):124–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. El Miedany Y, Youssef S, Ahmed I, El Gaafary M. The gastrointestinal safety and effect on disease activity of etoricoxib, a selective cox-2 inhibitor in inflammatory bowel diseases. Am J Gastroenterol. 2006;101(2):311–7.

    Article  PubMed  CAS  Google Scholar 

  58. Sandborn WJ, Stenson WJ, Brynskov J, Lorenz RG, Steidle G, Robbins J, et al. Safety of celecoxib in patients with ulcerative colitis in remission: a randomized, placebo-controlled pilot study. Clin Gastroenterol Hepatol. 2006;4:203–11.

    Article  PubMed  CAS  Google Scholar 

  59. Gionchetti P, Rizzello F. IBD: IBD and spondyloarthritis: joint management. Nat Rev Gastroenterol Hepatol. 2016;13(1):9–10.

    Article  PubMed  Google Scholar 

  60. van der Heijde D, Ramiro S, Landewe R, Baraliakos X, Van den Bosch F, Sepriano A, et al. 2016 update of the ASAS-EULAR management recommendations for axial spondyloarthritis. Ann Rheum Dis. 2017;76(6):978–91.

    Article  PubMed  Google Scholar 

  61. Chen J, Lin S, Liu C. Sulfasalazine for ankylosing spondylitis. Cochrane Database Syst Rev. 2014;27(11):CD004800.

    Google Scholar 

  62. Dougados M, vam der Linden S, Leirisalo-Repo M, Huitfeldt B, Juhlin R, Veys E, et al. Sulfasalazine in the treatment of spondylarthropathy. A randomized, multicenter, double-blind, placebo-controlled study. Arthritis Rheum. 1995;38(5):618–27.

    Article  PubMed  CAS  Google Scholar 

  63. Clegg DO, Reda DJ, Weisman MH, Blackburn WD, Cush JJ, Cannon GW, et al. Comparison of sulfasalazine and placebo in the treatment of ankylosing spondylitis. A Department of Veterans Affairs Cooperative Study. Arthritis Rheum. 1996;39(12):2004–12.

    Article  PubMed  CAS  Google Scholar 

  64. Maxwell LJ, Zochling J, Boonen A, Singh JA, Veras MM, Tanjong Ghogomu E, et al. TNF-alpha inhibitors for ankylosing spondylitis. Cochrane Database Syst Rev. 2015;18(4):CD005468.

    Google Scholar 

  65. Herfarth H, Obermeier F, Andus T, Rogler G, Nikolaus S, Kuehbacher T, et al. Improvement of arthritis and arthralgia after treatment with infliximab (Remicade) in a German prospective, open-label, multicenter trial in refractory Crohn’s disease. Am J Gastroenterol. 2002;97(10):2688–90.

    Article  PubMed  Google Scholar 

  66. Van den Bosch F, Kruithof E, De Vos M, De Keyser F, Mielants H. Crohn’s disease associated with spondyloarthropathy: effect of TNF- alpha blockade with infliximab on articular symptoms. Lancet. 2000;356(9244):1821–2.

    Article  PubMed  Google Scholar 

  67. Generini S, Giacomelli R, Fedi R, Fulminis A, Pignone A, Frieri G, et al. Infliximab in spondyloarthropathy associated with Crohn’s disease: an open study on the efficacy of inducing and maintaining remission of musculoskeletal and gut manifestations. Ann Rheum Dis. 2004;63(12):1664–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Lofberg R, Louis EV, Reinisch W, Robinson AM, Kron M, Camez A, et al. Adalimumab produces clinical remission and reduces extraintestinal manifestations in Crohn's disease: results from CARE. Inflamm Bowel Dis. 2012;18:1–9.

    Article  PubMed  Google Scholar 

  69. Rispo A, Scarpa R, Di Girolamo E, Cozzolino A, Lembo G, Atteno M, et al. Infliximab in the treatment of extra-intestinal manifestations of Crohn’s disease. Scand J Rheumatol. 2005;34(5):387–91.

    Article  PubMed  CAS  Google Scholar 

  70. Barreiro-de-Acosta M, Lorenzo A, Dominguez-Munoz JE. Efficacy of adalimumab for the treatment of extraintestinal manifestations of Crohn’s disease. Rev Esp Enferm Dig. 2012;104(9):468–72.

    Article  PubMed  CAS  Google Scholar 

  71. Ritchlin C, Rahman P, Kavanaugh A, McInnes IB, Puig L, Li S, et al. Efficacy and safety of the anti-IL-12/23 p40 monoclonal antibody, ustekinumab, in patients with active psoriatic arthritis despite conventional non-biological and biological anti-tumour necrosis factor therapy: 6-month and 1-year results of the phase 3, multicentre, double-blind, placebo-controlled, randomised PSUMMIT 2 trial. Ann Rheum Dis. 2014;73(6):990–9.

    Article  PubMed  CAS  Google Scholar 

  72. McInnes IB, Kavanaugh A, Gottlieb AB, Puig L, Rahman P, Ritchlin C, et al. Efficacy and safety of ustekinumab in patients with active psoriatic arthritis: 1 year results of the phase 3, multicentre, double-blind, placebo-controlled PSUMMIT 1 trial. The Lancet. 2013;382(9894):780–9.

    Article  CAS  Google Scholar 

  73. Deodhar A, Gensler LS, Sieper J, Clark M, Calderon C, Wang Y, et al. Three multicenter, randomized, double-blind, placebo-controlled studies evaluating the efficacy and safety of ustekinumab in axial spondyloarthritis. Arthritis Rheumatol. 2019;71(2):258–70.

    Article  PubMed  CAS  Google Scholar 

  74. Matsumoto S, Mashima H. Efficacy of ustekinumab against infliximab-induced psoriasis and arthritis associated with Crohn’s disease. Biologics. 2018;12:69–73.

    PubMed  PubMed Central  Google Scholar 

  75. Macaluso FS, Fries W, Viola A, Costantino G, Muscianisi M, Cappello M, et al. Effectiveness of ustekinumab on Crohn’s disease associated spondyloarthropathy: real-world data from the sicilian network for inflammatory bowel diseases (SN-IBD). Expert Opin Biol Ther. 2020;20(11):1381–4.

    Article  PubMed  CAS  Google Scholar 

  76. van der Heijde D, Deodhar A, Wei JC, Drescher E, Fleishaker D, Hendrikx T, et al. Tofacitinib in patients with ankylosing spondylitis: a phase II, 16-week, randomised, placebo-controlled, dose-ranging study. Ann Rheum Dis. 2017;76(8):1340–7.

    Article  PubMed  CAS  Google Scholar 

  77. Wang W, Cleveland NK, Ollech J, Rubin DT. Use of tofacitinib for the treatment of arthritis associated with ulcerative colitis. ACG Case Rep J. 2019;6(9):e00226.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Le Berre C, Loeuille D, Peyrin-Biroulet L. Combination therapy with vedolizumab and tofacitinib in a patient with ulcerative colitis and spondyloarthropathy. Clin Gastroenterol Hepatol. 2019;17(4):794–6.

    Article  PubMed  Google Scholar 

  79. Marzano AV, Borghi A, Stadnicki A, Crosti C, Cugno M. Cutaneous manifestations in patients with inflammatory bowel diseases: pathophysiology, clinical features, and therapy. Inflamm Bowel Dis. 2014;20(1):213–27.

    Article  PubMed  Google Scholar 

  80. Plumptre I, Knabel D, Tomecki K. Pyoderma gangrenosum: a review for the gastroenterologist. Inflamm Bowel Dis. 2018;24(12):2510–7.

    Article  PubMed  Google Scholar 

  81. Mir-Madjlessi SHTJ, Farmer RG. Clinical course and evolution of erythema nodosum and pyoderma gangrenosum in chronic ulcerative colitis: a study of 42 patients. Am J Gastroenterol. 1985;80(8):615–20.

    PubMed  CAS  Google Scholar 

  82. Weenig RH, Davis MD, Dahl PR, Su WP. Skin ulcers misdiagnosed as pyoderma gangrenosum. N Engl J Med. 2002;347(18):1412–8.

    Article  PubMed  Google Scholar 

  83. Marzano AV, Ishak RS, Saibeni S, Crosti C, Meroni PL, Cugno M. Autoinflammatory skin disorders in inflammatory bowel diseases, pyoderma gangrenosum and Sweet’s syndrome: a comprehensive review and disease classification criteria. Clin Rev Allergy Immunol. 2013;45(2):202–10.

    Article  PubMed  CAS  Google Scholar 

  84. Siroy A, Wasman J. Metastatic Crohn disease: a rare cutaneous entity. Arch Pathol Lab Med. 2012;136(3):329–32.

    Article  PubMed  Google Scholar 

  85. Timani S, Mutasim DF. Skin manifestations of inflammatory bowel disease. Clin Dermatol. 2008;26(3):265–73.

    Article  PubMed  Google Scholar 

  86. Clayton TH, Walker BP, Stables GI. Treatment of chronic erythema nodosum with infliximab. Clin Exp Dermatol. 2006;31(6):823–4.

    Article  PubMed  CAS  Google Scholar 

  87. Thomas KS, Ormerod AD, Craig FE, Greenlaw N, Norrie J, Mitchell E, et al. Clinical outcomes and response of patients applying topical therapy for pyoderma gangrenosum: a prospective cohort study. J Am Acad Dermatol. 2016;75(5):940–9.

    Article  PubMed  Google Scholar 

  88. Le Cleach L, Moguelet P, Perrin P, Chosidow O. Is topical monotherapy effective for localized pyoderma gangrenosum? Arch Dermatol. 2011;147(1):101–3.

    Article  PubMed  Google Scholar 

  89. Ormerod AD, Thomas KS, Craig FE, Mitchell E, Greenlaw N, Norrie J, et al. Comparison of the two most commonly used treatments for pyoderma gangrenosum: results of the STOP GAP randomised controlled trial. BMJ. 2015;12(350):h2958.

    Article  Google Scholar 

  90. Brooklyn TN, Dunnill MG, Shetty A, Bowden JJ, Williams JD, Griffiths CE, et al. Infliximab for the treatment of pyoderma gangrenosum: a randomised, double blind, placebo controlled trial. Gut. 2006;55(4):505–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Argüelles-Arias F, Castro-Laria L, Lobatón T, Aguas-Peris M, Rojas-Feria M, Barreiro-de Acosta M, et al. Characteristics and treatment of pyoderma gangrenosum in inflammatory bowel disease. Dig Dis Sci. 2013;58(10):2949–54.

    Article  PubMed  Google Scholar 

  92. Wang J, Prenner J, Wang W, Sakuraba A, Hyman N, Dalal S, et al. Risk factors and treatment outcomes of peristomal pyoderma gangrenosum in patients with inflammatory bowel disease. Aliment Pharmacol Ther. 2020;51:1365–72.

    Article  PubMed  CAS  Google Scholar 

  93. Phillips FM, Verstockt B, Sebastian S, Ribaldone DG, Vavricka S, Katsanos K, et al. Inflammatory cutaneous lesions in inflammatory bowel disease treated with Vedolizumab or Ustekinumab: an ECCO CONFER multicentre case series. J Crohns Colitis. 2020;14:1488–93.

    Article  PubMed  Google Scholar 

  94. Kochar B, Herfarth N, Mamie C, Navarini AA, Scharl M, Herfarth HH. Tofacitinib for the treatment of pyoderma gangrenosum. Clin Gastroenterol Hepatol. 2019;17(5):991–3.

    Article  PubMed  Google Scholar 

  95. Troncoso LL, Biancardi AL, de Moraes HV, Zaltman CJR. Ophthalmic manifestations in patients with inflammatory bowel disease: a review. World J Gastroenterol. 2017;23(32):5836–48.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Leibowitz HHRA, Lindsey C, Rosenthal AL. Fluorometholone acetate: clinical evaluation in the treatment of external ocular inflammation. Ann Ophthalmol. 1984;16(12):1110–5.

    PubMed  CAS  Google Scholar 

  97. Browning JD, Szczepaniak LS, Dobbins R, Nuremberg P, Horton JD, Cohen JC, et al. Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology. 2004;40(6):1387–95.

    Article  PubMed  Google Scholar 

  98. Levy-Clarke G, Jabs DA, Read RW, Rosenbaum JT, Vitale A, Van Gelder RN. Expert panel recommendations for the use of anti-tumor necrosis factor biologic agents in patients with ocular inflammatory disorders. Ophthalmology. 2014;121(3):785-96 e3.

    Article  PubMed  Google Scholar 

  99. Jaffe GJ, Dick AD, Brezin AP, Nguyen QD, Thorne JE, Kestelyn P, et al. Adalimumab in patients with active noninfectious uveitis. The New England journal of medicine. 2016;375(10):932–43.

    Article  PubMed  CAS  Google Scholar 

  100. Chateau T, Angioi K, Peyrin-Biroulet L. Two cases of successful ustekinumab treatment for non-infectious uveitis associated with Crohn’s disease. J Crohns Colitis. 2020;14:571.

    Article  PubMed  Google Scholar 

  101. Hommes DW, Erkelens W, Ponsioen C, Stokkers P, Rauws E, van der Spek M, et al. A double-blind, placebo-controlled, randomized study of infliximab in primary sclerosing cholangitis. J Clin Gastroenterol. 2008;42(5):522–6.

    Article  PubMed  CAS  Google Scholar 

  102. Tse CS, Loftus EV Jr, Raffals LE, Gossard AA, Lightner AL. Effects of vedolizumab, adalimumab and infliximab on biliary inflammation in individuals with primary sclerosing cholangitis and inflammatory bowel disease. Aliment Pharmacol Ther. 2018;48(2):190–5.

    Article  PubMed  CAS  Google Scholar 

  103. Hedin CRH, Sado G, Ndegwa N, Lytvyak E, Mason A, Montano-Loza A, et al. Effects of tumor necrosis factor antagonists in patients with primary sclerosing cholangitis. Clin Gastroenterol Hepatol. 2020;18(10):2295-304e2.

    Article  PubMed  CAS  Google Scholar 

  104. Aabakken L, Karlsen TH, Albert J, Arvanitakis M, Chazouilleres O, Dumonceau JM, et al. Role of endoscopy in primary sclerosing cholangitis: European Society of Gastrointestinal Endoscopy (ESGE) and European Association for the Study of the Liver (EASL) Clinical Guideline. Endoscopy. 2017;49(6):588–608.

    Article  PubMed  Google Scholar 

  105. Feagan BG, Sandborn WJ, Colombel JF, O’Byrne S, Khalid JM, Kempf C, et al. Incidence of arthritis/arthralgia in inflammatory bowel disease with long-term vedolizumab treatment: post hoc analyses of the GEMINI trials. J Crohns Colitis. 2019;13(1):50–7.

    Article  PubMed  Google Scholar 

  106. Macaluso FS, Orlando R, Fries W, Scolaro M, Magnano A, Pluchino D, et al. The real-world effectiveness of vedolizumab on intestinal and articular outcomes in inflammatory bowel diseases. Dig Liver Dis. 2018;50(7):675–81.

    Article  PubMed  CAS  Google Scholar 

  107. Dubinsky MC, Cross RK, Sandborn WJ, Long M, Song X, Shi N, et al. Extraintestinal manifestations in vedolizumab and anti-TNF-treated patients with inflammatory bowel disease. Inflamm Bowel Dis. 2018;24(9):1876–82.

    Article  PubMed  Google Scholar 

  108. Cai T, Lin TC, Bond A, Huang J, Kane-Wanger G, Cagan A, et al. The association between arthralgia and vedolizumab using natural language processing. Inflamm Bowel Dis. 2018;24(10):2242–6.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Dupré A, Collins M, Nocturne G, Carbonnel F, Mariette X, Seror R. Articular manifestations in patients with inflammatory bowel disease treated with vedolizumab. Rheumatology (Oxford). 2020;59:3275–83.

    Article  CAS  Google Scholar 

  110. Tadbiri S, Peyrin-Biroulet L, Serrero M, Filippi J, Pariente B, Roblin X, et al. Impact of vedolizumab therapy on extra-intestinal manifestations in patients with inflammatory bowel disease: a multicentre cohort study nested in the OBSERV-IBD cohort. Aliment Pharmacol Ther. 2018;47(4):485–93.

    Article  PubMed  CAS  Google Scholar 

  111. Tamanini S, Fredi M, Crisafulli F, Lazzaroni MG, Tincani A, Franceschini F. Letter to editor: new onset/recurrence of inflammatory arthralgia/spondyloarthritis in patients treated with vedolizumab for intestinal bowel disease. Clin Rheumatol. 2019;38(2):609–10.

    Article  PubMed  Google Scholar 

  112. Dubash S, Marianayagam T, Tinazzi I, Al-Araimi T, Pagnoux C, Weizman AV, et al. Emergence of severe spondyloarthropathy-related entheseal pathology following successful vedolizumab therapy for inflammatory bowel disease. Rheumatology (Oxford). 2019;58(6):963–8.

    Article  CAS  Google Scholar 

  113. Varkas G, Thevissen K, De Brabanter G, Van Praet L, Czul-Gurdian F, Cypers H, et al. An induction or flare of arthritis and/or sacroiliitis by vedolizumab in inflammatory bowel disease: a case series. Ann Rheum Dis. 2017;76(5):878–81.

    Article  PubMed  CAS  Google Scholar 

  114. Fleisher M, Marsal J, Lee SD, Frado LE, Parian A, Korelitz BI, et al. Effects of vedolizumab therapy on extraintestinal manifestations in inflammatory bowel disease. Dig Dis Sci. 2018;63(4):825–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Diaz LI, Keihanian T, Schwartz I, Kim SB, Calmet F, Quintero MA, et al. Vedolizumab-induced de novo extraintestinal manifestations. Gastroenterol Hepatol. 2020;16(2):75–81.

    Google Scholar 

  116. Caron B, Peyrin-Biroulet L, Pariente B, Bouhnik Y, Seksik P, Bouguen G, et al. Vedolizumab therapy is ineffective for primary sclerosing cholangitis in patients with inflammatory bowel disease: a GETAID Multicentre Cohort Study. J Crohn’s Colitis. 2019;13(10):1239–47.

    Article  Google Scholar 

  117. Christensen B, Micic D, Gibson PR, Yarur A, Bellaguarda E, Corsello P, et al. Vedolizumab in patients with concurrent primary sclerosing cholangitis and inflammatory bowel disease does not improve liver biochemistry but is safe and effective for the bowel disease. Aliment Pharmacol Ther. 2018;47(6):753–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Lynch KD, Chapman RW, Keshav S, Montano-Loza AJ, Mason AL, Kremer AE, et al. Effects of vedolizumab in patients with primary sclerosing cholangitis and inflammatory bowel diseases. Clin Gastroenterol Hepatol. 2020;18(1):179-87e6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Stanich PP, Bjornsson E, Gossard AA, Enders F, Jorgensen R, Lindor KD. Alkaline phosphatase normalization is associated with better prognosis in primary sclerosing cholangitis. Dig Liver Dis. 2011;43(4):309–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Lindor KD, Kowdley KV, Luketic VA, Harrison ME, McCashland T, Befeler AS, et al. High-dose ursodeoxycholic acid for the treatment of primary sclerosing cholangitis. Hepatology. 2009;50(3):808–14.

    Article  PubMed  CAS  Google Scholar 

  121. Alivernini S, Pugliese D, Tolusso B, Felice C, Gremese E, Armuzzi A. Comment on: emergence of severe spondyloarthropathy-related entheseal pathology following successful vedolizumab therapy for inflammatory bowel disease. Rheumatology (Oxford). 2019;58(6):1113–5.

    Article  Google Scholar 

  122. Fiorino G, Danese S, Pariente B, Allez M. Paradoxical immune-mediated inflammation in inflammatory bowel disease patients receiving anti-TNF-alpha agents. Autoimmun Rev. 2014;13(1):15–9.

    Article  PubMed  CAS  Google Scholar 

  123. Colombel JF, Sands BE, Rutgeerts P, Sandborn W, Danese S, D’Haens G, et al. The safety of vedolizumab for ulcerative colitis and Crohn’s disease. Gut. 2017;66(5):839–51.

    Article  PubMed  CAS  Google Scholar 

  124. de Krijger M, Wildenberg ME, de Jonge WJ, Ponsioen CY. Return to sender: lymphocyte trafficking mechanisms as contributors to primary sclerosing cholangitis. J Hepatol. 2019;71(3):603–15.

    Article  PubMed  CAS  Google Scholar 

  125. Vavricka SR, Galvan JA, Dawson H, Soltermann A, Biedermann L, Scharl M, et al. Expression patterns of TNFalpha, MAdCAM1, and STAT3 in intestinal and skin manifestations of inflammatory bowel disease. J Crohns Colitis. 2018;12(3):347–54.

    Article  PubMed  Google Scholar 

  126. Lissner D, Glauben R, Allers K, Sonnenberg E, Loddenkemper C, Schneider T, et al. Pulmonary manifestation of Crohn’s disease developed under treatment with vedolizumab. Am J Gastroenterol. 2018;113(1):146–8.

    Article  PubMed  Google Scholar 

  127. Rudwaleit M, van der Heijde D, Landewe R, Listing J, Akkoc N, Brandt J, et al. The development of assessment of SpondyloArthritis international Society classification criteria for axial spondyloarthritis (part II): validation and final selection. Ann Rheum Dis. 2009;68(6):777–83.

    Article  PubMed  CAS  Google Scholar 

  128. van der Heijde D, Lie E, Kvien TK, Sieper J, Van den Bosch F, Listing J, et al. ASDAS, a highly discriminatory ASAS-endorsed disease activity score in patients with ankylosing spondylitis. Ann Rheum Dis. 2009;68(12):1811–8.

    Article  PubMed  Google Scholar 

  129. Ponsioen CY, Chapman RW, Chazouilleres O, Hirschfield GM, Karlsen TH, Lohse AW, et al. Surrogate endpoints for clinical trials in primary sclerosing cholangitis: review and results from an International PSC Study Group consensus process. Hepatology. 2016;63(4):1357–67.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian G. Feagan.

Ethics declarations

Funding

No sources of funding were used to conduct this study or prepare this manuscript.

Conflicts of interest

JH has received speaker’s fees from Biogen, Janssen, and Takeda. CM has received consulting fees from AbbVie, AVIR Pharma Inc, Janssen, Takeda, Pfizer, Roche, and Alimentiv (formerly Robarts Clinical Trials Inc.); speaker's fees from AbbVie, Janssen, Takeda, and Pfizer; and research support from the Canadian IBD Research Consortium and Pfizer. NVC has received research grants from R-Biopharm; grants and personal fees from Takeda and UCB; and personal fees from Alimentiv, Inc. (formerly Robarts Clinical Trials, Inc.), Celltrion, and Prometheus. These activities were all outside of the submitted work. RK has received consulting fees from AbbVie, Janssen, Takeda, Roche, Pendopharm, Lilly, Encycle, Shire, Alimentiv (formerly Robarts Clinical Trials Inc.), Pfizer, Inomar, and Merck. VJ has received consulting fees from AbbVie, Eli Lilly, GlaxoSmithKline, Arena Pharmaceuticals, Genetech, Pendopharm, Sandoz, Merck, Takeda, Janssen, Alimentiv (formerly Robarts Clinical Trials Inc.), Topivert, and Celltrion and speaker’s fees from Takeda, Janssen, Shire, Ferring, AbbVie, and Pfizer. BGF has received grant/research support from AbbVie Inc., Amgen Inc., AstraZeneca/MedImmune Ltd., Atlantic Pharmaceuticals Ltd., Boehringer Ingelheim, Celgene Corporation, Celltech, Genentech Inc/Hoffmann-La Roche Ltd., Gilead Sciences Inc., GlaxoSmithKline (GSK), Janssen Research & Development LLC., Pfizer Inc., Receptos Inc./Celgene International, Sanofi, Santarus Inc., Takeda Development Center Americas Inc., Tillotts Pharma AG, and UCB; consulting fees from Abbott/AbbVie, Akebia Therapeutics, Allergan, Amgen, Applied Molecular Transport Inc., Aptevo Therapeutics, AstraZeneca, Atlantic Pharma, Avir Pharma, Biogen Idec, BioMx Israel, Boehringer Ingelheim, Bristol Myers Squibb, Calypso Biotech, Celgene, Elan/Biogen, EnGene, Ferring Pharma, Roche/Genentech, Galapagos, GiCare Pharma, Gilead, Gossamer Pharma, GSK, Inception IBD Inc, JnJ/Janssen, Kyowa Kakko Kirin Co Ltd., Lexicon, Lilly, Lycera BioTech, Merck, Mesoblast Pharma, Millennium, Nestle, Nextbiotix, Novo Nordisk, Pfizer, Prometheus Therapeutics and Diagnostics, Progenity, Protagonist, Receptos, Salix Pharma, Shire, Sienna Biologics, Sigmoid Pharma, Sterna Biologicals, Synergy Pharma Inc., Takeda, Teva Pharma, TiGenix, Tillotts, UCB Pharma, Vertex Pharma, Vivelix Pharma, VHsquared Ltd., and Zyngenia; speakers bureau fees from Abbott/AbbVie, JnJ/Janssen, Lilly, Takeda, Tillotts, and UCB Pharma; is a scientific advisory board member for Abbott/AbbVie, Allergan, Amgen, AstraZeneca, Atlantic Pharma, Avaxia Biologics Inc., Boehringer Ingelheim, Bristol Myers Squibb, Celgene, Centocor Inc., Elan/Biogen, Galapagos, Genentech/Roche, JnJ/Janssen, Merck, Nestle, Novartis, Novonordisk, Pfizer, Prometheus Laboratories, Protagonist, Salix Pharma, Sterna Biologicals, Takeda, Teva, TiGenix, Tillotts Pharma AG, and UCB Pharma; and is the Senior Scientific Officer of Alimentiv Inc. (formerly Robarts Clinical Trials Inc.).

Availability of data and material:

Not applicable.

Ethics approval

Not applicable.

Consent

Not applicable.

Author contributions

All authors contributed to the drafting of the work or revising it critically for important intellectual content.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanzel, J., Ma, C., Casteele, N.V. et al. Vedolizumab and Extraintestinal Manifestations in Inflammatory Bowel Disease. Drugs 81, 333–347 (2021). https://doi.org/10.1007/s40265-020-01460-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-020-01460-3

Navigation