Targeting the PI3K/AKT/mTOR Pathway in Hormone-Positive Breast Cancer

Abstract

Approximately 70% of invasive breast cancers have some degree of dependence on the estrogen hormone for cell proliferation and growth. These tumors have estrogen and/or progesterone receptors (ER/PR+), generally referred to as hormone receptor positive (HR+) tumors, as indicated by the presence of positive staining and varying intensity levels of estrogen and/or progesterone receptors on immunohistochemistry. Therapies that inhibit ER signaling pathways, such as aromatase inhibitors (letrozole, anastrozole, exemestane), selective ER modulators (tamoxifen), and ER down-regulators (fulvestrant), are the mainstays of treatment for hormone-receptor-positive breast cancers. However, de novo or acquired resistance to ER targeted therapies is present in many tumors, leading to disease progression. The PI3K/AKT/mTOR pathway is implicated in sustaining endocrine resistance and has become the target of many new drugs for ER+ breast cancer. This article reviews the function of the phosphoinositide 3-kinase (PI3K)/AKT/mTOR pathway and the various classes of PI3K pathway inhibitors that have been developed to disrupt this pathway signaling for the treatment of hormone-receptor-positive breast cancer.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. 1.

    Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet. 2006;7(8):606–19. https://doi.org/10.1038/nrg1879(in eng).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Zhao L, Vogt PK. Class I PI3K in oncogenic cellular transformation. Oncogene. 2008;27(41):5486–96. https://doi.org/10.1038/onc.2008.244(in eng).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Engelman JA. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer. 2009;9(8):550–62. https://doi.org/10.1038/nrc2664(in eng).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Mayer IA, Arteaga CL. The PI3K/AKT pathway as a target for cancer treatment. Annu Rev Med. 2016;67:11–28. https://doi.org/10.1146/annurev-med-062913-051343(in eng).

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012;149(2):274–93. https://doi.org/10.1016/j.cell.2012.03.017(in eng).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Hernandez-Aya LF, Gonzalez-Angulo AM. Targeting the phosphatidylinositol 3-kinase signaling pathway in breast cancer. The Oncologist. 2011;16(4):404–14. https://doi.org/10.1634/theoncologist.2010-0402(in eng).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Network CGA. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70. https://doi.org/10.1038/nature11412(in eng).

    CAS  Article  Google Scholar 

  8. 8.

    Ciriello G, Gatza ML, Beck AH, et al. Comprehensive molecular portraits of invasive lobular breast cancer. Cell. 2015;163(2):506–19. https://doi.org/10.1016/j.cell.2015.09.033(in eng).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Samuels Y, Velculescu VE. Oncogenic mutations of PIK3CA in human cancers. Cell Cycle. 2004;3(10):1221–4. https://doi.org/10.4161/cc.3.10.1164(in eng).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Huang CH, Mandelker D, Schmidt-Kittler O, et al. The structure of a human p110alpha/p85alpha complex elucidates the effects of oncogenic PI3Kalpha mutations. Science. 2007;318(5857):1744–8. https://doi.org/10.1126/science.1150799(in eng).

    CAS  Article  Google Scholar 

  11. 11.

    Burke JE, Perisic O, Masson GR, Vadas O, Williams RL. Oncogenic mutations mimic and enhance dynamic events in the natural activation of phosphoinositide 3-kinase p110α (PIK3CA). Proc Natl Acad Sci USA. 2012;109(38):15259–64. https://doi.org/10.1073/pnas.1205508109(in eng).

    Article  PubMed  Google Scholar 

  12. 12.

    Zhao JJ, Liu Z, Wang L, Shin E, Loda MF, Roberts TM. The oncogenic properties of mutant p110alpha and p110beta phosphatidylinositol 3-kinases in human mammary epithelial cells. Proc Natl Acad Sci USA. 2005;102(51):18443–8. https://doi.org/10.1073/pnas.0508988102(in eng).

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Isakoff SJ, Engelman JA, Irie HY, et al. Breast cancer-associated PIK3CA mutations are oncogenic in mammary epithelial cells. Cancer Res. 2005;65(23):10992–1000. https://doi.org/10.1158/0008-5472.can-05-2612(in eng).

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Miller TW, Hennessy BT, González-Angulo AM, et al. Hyperactivation of phosphatidylinositol-3 kinase promotes escape from hormone dependence in estrogen receptor-positive human breast cancer. J Clin Invest. 2010;120(7):2406–13. https://doi.org/10.1172/jci41680(in eng).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Sanchez CG, Ma CX, Crowder RJ, et al. Preclinical modeling of combined phosphatidylinositol-3-kinase inhibition with endocrine therapy for estrogen receptor-positive breast cancer. Breast Cancer Res. 2011;13(2):R21. https://doi.org/10.1186/bcr2833(in eng).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    deGraffenried LA, Friedrichs WE, Russell DH, et al. Inhibition of mTOR activity restores tamoxifen response in breast cancer cells with aberrant Akt activity. Clin Cancer Res. 2004;10(23):8059–67. https://doi.org/10.1158/1078-0432.ccr-04-0035(in eng).

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Ellis MJ, Lin L, Crowder R, et al. Phosphatidyl-inositol-3-kinase alpha catalytic subunit mutation and response to neoadjuvant endocrine therapy for estrogen receptor positive breast cancer. Breast Cancer Res Treat. 2010;119(2):379–90. https://doi.org/10.1007/s10549-009-0575-y(in eng).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Miller TW, Balko JM, Arteaga CL. Phosphatidylinositol 3-kinase and antiestrogen resistance in breast cancer. J Clin Oncol. 2011;29(33):4452–61. https://doi.org/10.1200/jco.2010.34.4879(in eng).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Crowder RJ, Phommaly C, Tao Y, et al. PIK3CA and PIK3CB inhibition produce synthetic lethality when combined with estrogen deprivation in estrogen receptor-positive breast cancer. Cancer Res. 2009;69(9):3955–62. https://doi.org/10.1158/0008-5472.can-08-4450(in eng).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Fox EM, Kuba MG, Miller TW, Davies BR, Arteaga CL. Autocrine IGF-I/insulin receptor axis compensates for inhibition of AKT in ER-positive breast cancer cells with resistance to estrogen deprivation. Breast Cancer Res. 2013;15(4):R55. https://doi.org/10.1186/bcr3449(in eng).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Creighton CJ, Fu X, Hennessy BT, et al. Proteomic and transcriptomic profiling reveals a link between the PI3K pathway and lower estrogen-receptor (ER) levels and activity in ER + breast cancer. Breast Cancer Res. 2010;12(3):R40. https://doi.org/10.1186/bcr2594(in eng).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Bosch A, Li Z, Bergamaschi A, et al. PI3K inhibition results in enhanced estrogen receptor function and dependence in hormone receptor-positive breast cancer. Sci Transl Med. 2015;7(283):283ra51. https://doi.org/10.1126/scitranslmed.aaa4442(in eng).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Zhang QX, Borg A, Wolf DM, Oesterreich S, Fuqua SA. An estrogen receptor mutant with strong hormone-independent activity from a metastatic breast cancer. Cancer Res. 1997;57(7):1244–9 (in eng).

    CAS  PubMed  Google Scholar 

  24. 24.

    Gelsomino L, Gu G, Rechoum Y, et al. ESR1 mutations affect anti-proliferative responses to tamoxifen through enhanced cross-talk with IGF signaling. Breast Cancer Res Treat. 2016;157(2):253–65. https://doi.org/10.1007/s10549-016-3829-5(in eng).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Toy W, Shen Y, Won H, et al. ESR1 ligand-binding domain mutations in hormone-resistant breast cancer. Nat Genet. 2013;45(12):1439–45. https://doi.org/10.1038/ng.2822(in eng).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Jeselsohn R, Bergholz JS, Pun M, et al. Allele-specific chromatin recruitment and therapeutic vulnerabilities of ESR1 activating mutations. Cancer Cell. 2018;33(2):173-186.e5. https://doi.org/10.1016/j.ccell.2018.01.004(in eng).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Gu G, Rechoum Y, Gelsomino L, et al. The Y537S ESR1 mutation is a dominant driver of distant ER‐positive breast cancer metastasis. In: Abstract presented at: San Antonio Breast Cancer Symposium 2016; December 6‐10, 2016; San Antonio, TX.

  28. 28.

    Wander SA, Hennessy BT, Slingerland JM. Next-generation mTOR inhibitors in clinical oncology: how pathway complexity informs therapeutic strategy. J Clin Investig. 2011;121(4):1231–41. https://doi.org/10.1172/jci44145(in eng).

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Baselga J, Campone M, Piccart M, et al. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med. 2012;366(6):520–9. https://doi.org/10.1056/nejmoa1109653(in eng).

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Bachelot T, Bourgier C, Cropet C, et al. Randomized phase II trial of everolimus in combination with tamoxifen in patients with hormone receptor-positive, human epidermal growth factor receptor 2-negative metastatic breast cancer with prior exposure to aromatase inhibitors: a GINECO study. J Clin Oncol. 2012;30(22):2718–24. https://doi.org/10.1200/jco.2011.39.0708(in eng).

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Kornblum N, Zhao F, Manola J, et al. Randomized phase II trial of fulvestrant plus everolimus or placebo in postmenopausal women with hormone receptor-positive, human epidermal growth factor receptor 2-negative metastatic breast cancer resistant to aromatase inhibitor therapy: results of PrE0102. J Clin Oncol. 2018;36(16):1556–63. https://doi.org/10.1200/jco.2017.76.9331(in eng).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Burris HA, Kurkjian CD, Hart L, et al. TAK-228 (formerly MLN0128), an investigational dual TORC1/2 inhibitor plus paclitaxel, with/without trastuzumab, in patients with advanced solid malignancies. Cancer Chemother Pharmacol. 2017;80(2):261–73. https://doi.org/10.1007/s00280-017-3343-4(in eng).

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Gökmen-Polar Y, Liu Y, Toroni RA, et al. Investigational drug MLN0128, a novel TORC1/2 inhibitor, demonstrates potent oral antitumor activity in human breast cancer xenograft models. Breast Cancer Res Treat. 2012;136(3):673–82. https://doi.org/10.1007/s10549-012-2298-8(in eng).

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Guichard SM, Curwen J, Bihani T, et al. AZD2014, an Inhibitor of mTORC1 and mTORC2, is highly effective in ER + breast cancer when administered using intermittent or continuous schedules. Mol Cancer Ther. 2015;14(11):2508–18. https://doi.org/10.1158/1535-7163.mct-15-0365(in eng).

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Wagle N, Grabiner BC, Van Allen EM, et al. Response and acquired resistance to everolimus in anaplastic thyroid cancer. N Engl J Med. 2014;371(15):1426–33. https://doi.org/10.1056/nejmoa1403352(in eng).

    Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Rodrik-Outmezguine VS, Okaniwa M, Yao Z, et al. Overcoming mTOR resistance mutations with a new-generation mTOR inhibitor. Nature. 2016;534(7606):272–6. https://doi.org/10.1038/nature17963(in eng).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Akinleye A, Avvaru P, Furqan M, Song Y, Liu D. Phosphatidylinositol 3-kinase (PI3K) inhibitors as cancer therapeutics. J Hematol Oncol. 2013;6(1):88. https://doi.org/10.1186/1756-8722-6-88(in eng).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Baselga J, Im S-A, Iwata H, et al. Buparlisib plus fulvestrant versus placebo plus fulvestrant in postmenopausal, hormone receptor-positive, HER2-negative, advanced breast cancer (BELLE-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2017;18(7):904–16. https://doi.org/10.1016/s1470-2045(17)30376-5(in eng).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Di Leo A, Johnston S, Lee KS, et al. Buparlisib plus fulvestrant in postmenopausal women with hormone-receptor-positive, HER2-negative, advanced breast cancer progressing on or after mTOR inhibition (BELLE-3): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2018;19(1):87–100. https://doi.org/10.1016/s1470-2045(17)30688-5(in eng).

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Campone M, Im S-A, Iwata H, et al. Buparlisib plus fulvestrant versus placebo plus fulvestrant for postmenopausal, hormone receptor-positive, human epidermal growth factor receptor 2-negative, advanced breast cancer: Overall survival results from BELLE-2. Eur J Cancer (Oxford, England: 1990). 2018;103:147–54. https://doi.org/10.1016/j.ejca.2018.08.002(in eng).

    CAS  Article  Google Scholar 

  41. 41.

    Krop IE, Mayer IA, Ganju V, et al. Pictilisib for oestrogen receptor-positive, aromatase inhibitor-resistant, advanced or metastatic breast cancer (FERGI): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol. 2016;17(6):811–21. https://doi.org/10.1016/s1470-2045(16)00106-6(in eng).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Janku F, Yap TA, Meric-Bernstam F. Targeting the PI3K pathway in cancer: are we making headway? Nat Rev Clin Oncol. 2018;15(5):273–91. https://doi.org/10.1038/nrclinonc.2018.28(in eng).

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Jones RH, Casbard A, Carucci M, et al. Fulvestrant plus capivasertib versus placebo after relapse or progression on an aromatase inhibitor in metastatic, oestrogen receptor-positive breast cancer (FAKTION): a multicentre, randomised, controlled, phase 2 trial. Lancet Oncol. 2020;21(3):345–57. https://doi.org/10.1016/s1470-2045(19)30817-4(in eng).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Carpten JD, Faber AL, Horn C, et al. A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature. 2007;448(7152):439–44. https://doi.org/10.1038/nature05933(in eng).

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Smyth LM, Tamura K, Oliveira M, et al. Capivasertib, an AKT kinase inhibitor, as monotherapy or in combination with fulvestrant in patients with. Clin Cancer Res. 2020. https://doi.org/10.1158/1078-0432.ccr-19-3953(in eng).

    Article  PubMed  Google Scholar 

  46. 46.

    Tarantelli C, Gaudio E, Arribas AJ, et al. PQR309 Is a novel dual PI3K/mTOR inhibitor with preclinical antitumor activity in lymphomas as a single agent and in combination therapy. Clin Cancer Res. 2018;24(1):120–9. https://doi.org/10.1158/1078-0432.ccr-17-1041(in eng).

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Del Campo JM, Birrer M, Davis C, et al. A randomized phase II non-comparative study of PF-04691502 and gedatolisib (PF-05212384) in patients with recurrent endometrial cancer. Gynecol Oncol. 2016;142(1):62–9. https://doi.org/10.1016/j.ygyno.2016.04.019(in eng).

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Brown JR, Hamadani M, Hayslip J, et al. Voxtalisib (XL765) in patients with relapsed or refractory non-Hodgkin lymphoma or chronic lymphocytic leukaemia: an open-label, phase 2 trial. Lancet Haematol. 2018;5(4):e170–80. https://doi.org/10.1016/s2352-3026(18)30030-9(in eng).

    Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Krause G, Hassenrück F, Hallek M. Copanlisib for treatment of B-cell malignancies: the development of a PI3K inhibitor with considerable differences to idelalisib. Drug Des Dev Ther. 2018;12:2577–90. https://doi.org/10.2147/dddt.s142406(in eng).

    CAS  Article  Google Scholar 

  50. 50.

    Utermark T, Rao T, Cheng H, et al. The p110α and p110β isoforms of PI3K play divergent roles in mammary gland development and tumorigenesis. Genes Dev. 2012;26(14):1573–86. https://doi.org/10.1101/gad.191973.112(in eng).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Zhao JJ, Cheng H, Jia S, et al. The p110alpha isoform of PI3K is essential for proper growth factor signaling and oncogenic transformation. Proc Natl Acad Sci USA. 2006;103(44):16296–300. https://doi.org/10.1073/pnas.0607899103(in eng).

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Mayer IA, Abramson VG, Formisano L, et al. A phase Ib study of alpelisib (BYL719), a PI3Kα-specific inhibitor, with letrozole in ER +/HER2- metastatic breast cancer. Clin Cancer Res. 2017;23(1):26–34. https://doi.org/10.1158/1078-0432.ccr-16-0134(in eng).

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Juric D, Janku F, Rodón J, et al. Alpelisib plus fulvestrant in PIK3CA-Altered and PIK3CA-wild-type estrogen receptor-positive advanced breast cancer: a phase 1b clinical trial. JAMA Oncol. 2019;5(2):e184475. https://doi.org/10.1001/jamaoncol.2018.4475(in eng).

    Article  PubMed  Google Scholar 

  54. 54.

    André F, Ciruelos E, Rubovszky G, et al. Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer. N Engl J Med. 2019;380(20):1929–40. https://doi.org/10.1056/nejmoa1813904(in eng).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Finn RS, Martin M, Rugo HS, et al. Palbociclib and letrozole in advanced breast cancer. N Engl J Med. 2016;375(20):1925–36. https://doi.org/10.1056/nejmoa1607303(in eng).

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Hortobagyi GN, Stemmer SM, Burris HA, et al. Updated results from MONALEESA-2, a phase III trial of first-line ribociclib plus letrozole versus placebo plus letrozole in hormone receptor-positive, HER2-negative advanced breast cancer. Ann Oncol. 2018;29(7):1541–7. https://doi.org/10.1093/annonc/mdy155(in eng).

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Goetz MP, Toi M, Campone M, et al. MONARCH 3: abemaciclib as initial therapy for advanced breast cancer. J Clin Oncol. 2017;35(32):3638–46. https://doi.org/10.1200/jco.2017.75.6155(in eng).

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Turner NC, Ro J, André F, et al. Palbociclib in hormone-receptor-positive advanced breast cancer. N Engl J Med. 2015;373(3):209–19. https://doi.org/10.1056/nejmoa1505270(in eng).

    CAS  Article  PubMed  Google Scholar 

  59. 59.

    Cristofanilli M, Turner NC, Bondarenko I, et al. Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): final analysis of the multicentre, double-blind, phase 3 randomised controlled trial. Lancet Oncol. 2016;17(4):425–39. https://doi.org/10.1016/s1470-2045(15)00613-0(in eng).

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    Sledge GW, Toi M, Neven P, et al. MONARCH 2: abemaciclib in combination with fulvestrant in women with HR +/HER2- advanced breast cancer who had progressed while receiving endocrine therapy. J Clin Oncol. 2017;35(25):2875–84. https://doi.org/10.1200/jco.2017.73.7585(in eng).

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Mayer IA, Prat A, Egle D, et al. A phase II randomized study of neoadjuvant letrozole plus alpelisib for hormone receptor-positive, human epidermal growth factor receptor 2-negative breast cancer (NEO-ORB). Clin Cancer Res. 2019;25(10):2975–87. https://doi.org/10.1158/1078-0432.ccr-18-3160(in eng).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Rugo HS, Bianchi GV, Chia SKL, Turner NC. BYLieve: A phase II study of alpelisib (ALP) with fulvestrant (FUL) or letrozole (LET) for treatment of PIK3CA mutant, hormone receptor-positive (HR +), human epidermal growth factor receptor 2-negative (HER2–) advanced breast cancer (aBC) progressing on/after cyclin-dependent kinase 4/6 inhibitor (CDK4/6i) therapy. J Clin Oncol. 2018;36(15).

  63. 63.

    Rugo HS, Flerebours F, Ciruelos E, et al. Alpelisib (ALP)+ Fulvestrant (FUL) in patients (pts) with PIK3CA-mutated (mut) hormone receptor-positive (HR +), human epidermal growth factor receptor 2-negative (HER2-) advanced breast cancer (ABC) previously treated with cyclin-dependent kinase 4/6 inhibitor (CDKi)+ aromatase inhibitor (AI): BYLieve study results. In: Presented at: 2020 ASCO Virtual Scientific Program; May 29-31, 2020. Abstract 1006.

  64. 64.

    Ndubaku CO, Heffron TP, Staben ST, et al. Discovery of 2-{3-[2-(1-isopropyl-3-methyl-1H-1,2-4-triazol-5-yl)-5,6-dihydrobenzo[f]imidazo[1,2-d][1,4]oxazepin-9-yl]-1H-pyrazol-1-yl}-2-methylpropanamide (GDC-0032): a β-sparing phosphoinositide 3-kinase inhibitor with high unbound exposure and robust in vivo antitumor activity. J Med Chem. 2013;56(11):4597–610. https://doi.org/10.1021/jm4003632(in eng).

    CAS  Article  PubMed  Google Scholar 

  65. 65.

    Dickler MN, Saura C, Richards DA, et al. Phase II study of taselisib (GDC-0032) in combination with fulvestrant in patients with HER2-negative, hormone receptor-positive advanced breast cancer. Clin Cancer Res. 2018;24(18):4380–7. https://doi.org/10.1158/1078-0432.ccr-18-0613(in eng).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Baselga J, Dent S, Cortes J. Phase III study of taselisib (GDC-0032) + fulvestrant (FULV) v FULV in patients (pts) with estrogen receptor (ER)-positive, PIK3CA-mutant (MUT), locally advanced or metastatic breast cancer (MBC): primary analysis from SANDPIPER. J Clin Oncol. 2018. https://doi.org/10.1200/jco.2018.36.18_suppl.lba1006.

    Article  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Saura C, Hlauschek D, Oliveira M, et al. Neoadjuvant letrozole plus taselisib versus letrozole plus placebo in postmenopausal women with oestrogen receptor-positive, HER2-negative, early-stage breast cancer (LORELEI): a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol. 2019;20(9):1226–38. https://doi.org/10.1016/s1470-2045(19)30334-1(in eng).

    CAS  Article  PubMed  Google Scholar 

  68. 68.

    Chia S, Gandhi S, Joy AA, et al. Novel agents and associated toxicities of inhibitors of the pi3k/Akt/mtor pathway for the treatment of breast cancer. Curr Oncol. 2015;22(1):33–48. https://doi.org/10.3747/co.22.2393.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Esposito A, Viale G, Curigliano G. Safety, tolerability, and management of toxic effects of phosphatidylinositol 3-kinase inhibitor treatment in patients with cancer: a review. JAMA Oncol. 2019. https://doi.org/10.1001/jamaoncol.2019.0034(in eng).

    Article  PubMed  Google Scholar 

  70. 70.

    Piqray (apelisib) [package insert]. East Hanover, NJ. Novartis Pharmaceuticals Corporation; 2019.

  71. 71.

    Brian, I Greenwell MD. PI3K inhibitors: understanding toxicity mechanisms and management. Cancer Netw. 2017. (in en).

  72. 72.

    Lindström LS, Karlsson E, Wilking UM, et al. Clinically used breast cancer markers such as estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 are unstable throughout tumor progression. J Clin Oncol. 2012;30(21):2601–8. 

    Article  Google Scholar 

  73. 73.

    Criscitiello C, André F, Thompson AM, et al. Biopsy confirmation of metastatic sites in breast cancer patients: clinical impact and future perspectives. Breast Cancer Res. 2014;16(2):205. https://doi.org/10.1186/bcr3630(In eng).

    Article  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Dustin D, Gu G, Fuqua SAW. ESR1 mutations in breast cancer. Cancer. 2019;125(21):3714–28. https://doi.org/10.1002/cncr.32345(in eng).

    Article  PubMed  Google Scholar 

  75. 75.

    Harrod A, Fulton J, Nguyen VTM, et al. Genomic modelling of the ESR1 Y537S mutation for evaluating function and new therapeutic approaches for metastatic breast cancer. Oncogene. 2017;36(16):2286–96. https://doi.org/10.1038/onc.2016.382(in eng).

    CAS  Article  PubMed  Google Scholar 

  76. 76.

    Robson M, Im SA, Senkus E, et al. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N Engl J Med. 2017;377(6):523–33. https://doi.org/10.1056/nejmoa1706450(in eng).

    CAS  Article  PubMed  Google Scholar 

  77. 77.

    Litton JK, Rugo HS, Ettl J, et al. Talazoparib in patients with advanced breast cancer and a germline BRCA mutation. N Engl J Med. 2018;379(8):753–63. https://doi.org/10.1056/nejmoa1802905(in eng).

    CAS  Article  PubMed  Google Scholar 

  78. 78.

    National Comprehensive Cancer Network. Breast Cancer (Version4.2020). https://www.nccn.org/professionals/physician_gls/pdf/breast.pdf. Accessed 15 May 2020.

  79. 79.

    Fribbens C, O’Leary B, Kilburn L, et al. Plasma ESR1 mutations and the treatment of estrogen receptor-positive advanced breast cancer. J Clin Oncol. 2016;34(25):2961–8. https://doi.org/10.1200/jco.2016.67.3061(in eng).

    CAS  Article  PubMed  Google Scholar 

  80. 80.

    Johnston SR, Kilburn LS, Ellis P, et al. Fulvestrant plus anastrozole or placebo versus exemestane alone after progression on non-steroidal aromatase inhibitors in postmenopausal patients with hormone-receptor-positive locally advanced or metastatic breast cancer (SoFEA): a composite, multicentre, phase 3 randomised trial. Lancet Oncol. 2013;14(10):989–98. https://doi.org/10.1016/s1470-2045(13)70322-x(in eng).

    CAS  Article  PubMed  Google Scholar 

  81. 81.

    Bidard FC, Callens C, Dalenc F, et al: Prognostic impact of ESR1 mutations in ER+ HER2–MBC patients with prior treatment with first-line AI and palbociclib: an exploratory analysis of the PADA-1 trial. In: ASCO20 Virtual Scientific Program. Abstract 1010

  82. 82.

    therascreen PIK3CA RGQ PCR Kit [PMA]. Hilden, Germany. QUIAGEN GMBH. U.S. Food and Drug Administration website. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpma/pma.cfm?id=P190001. Revised May 2020. Accessed 16 May 2020.

  83. 83.

    FoundationOne CDx. Cambridge, MA. Foundation Medicine, Inc. U.S. Food and Drug Administration website. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpma/pma.cfm?id=p170019. Revised May 2020. Accessed 16 May 2020.

  84. 84.

    Chavez-Macgregor M, Barlow W, Pusztai L, et al. Phase III randomized, placebo-controlled clinical trial evaluating the use of adjuvant endocrine therapy ± one year of everolimus in patients with high-risk, hormone receptor- (HR) positive and HER2-negative breast cancer: SWOG/NRG/Alliance S1207 (NCT01674140). In: J of Clin Oncol 33:5 s (suppl; abstr TPS637); American Society of Clinical Oncology Annual Meeting (May 29-June 2, 2015, Chicago, IL), poster session.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ingrid A. Mayer.

Ethics declarations

Funding

No external funding was used in preparation of this article.

Conflicts of interest

Ingrid Mayer receives institutional research funding from Novartis, Genentech, and Pfizer and receives Advisory Board compensation from Novartis, Genentech, Lilly, Astra-Zeneca, GSK, Immunomedics, Macrogenics, and Seattle-Genetics. Sara Nunnery has declared no conflicts of interest that might be relevant to the contents of this article.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Author contributions

Not applicable.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nunnery, S.E., Mayer, I.A. Targeting the PI3K/AKT/mTOR Pathway in Hormone-Positive Breast Cancer. Drugs (2020). https://doi.org/10.1007/s40265-020-01394-w

Download citation