Skip to main content

New Treatment Strategies for Metastatic Pancreatic Ductal Adenocarcinoma

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is typically diagnosed at an advanced stage, with systemic therapy being the mainstay of treatment. Survival continues to be limited, typically less than 1 year. The PDAC microenvironment is characterized by a paucity of malignant epithelial cells, abundant stroma with predominantly immunosuppressive T cells and myelosuppressive-type macrophages (M2), and hypovascularity. The current treatment options for metastatic PDAC are modified (m)FOLFIRINOX /FOLFIRINOX or nab-paclitaxel and gemcitabine in patients with good performance status (PS) (ECOG 0-1/KPS 70-100%) and gemcitabine with or without a second agent for those with ECOG PS 2-3. New therapies are emerging, and the current guidelines endorse both germline and somatic testing in PDAC to evaluate actionable findings. Important themes related to new therapeutic approaches include DNA damage repair strategies, immunotherapy, targeting the stroma, and cancer-cell metabolism. Targeted therapy alone (outside small genomically defined subsets) or in combination with standard cytotoxic therapy, thus far, has proven disappointing in PDAC; however, novel therapies are evolving with increased integration of genomic profiling along with a better understanding of the tumor microenvironment and immunology. A small but important sub-group of patients have some of these agents available in the clinics for use. Olaparib was recently approved by the US Food and Drug Administration for maintenance therapy in germline BRCA1/2 mutated PDAC following demonstration of survival benefit in a phase 3 trial. Pembrolizumab is approved for patients with defects in mismatch repair/microsatellite instability. PDAC with wild-type KRAS represents a unique subgroup who have enrichment of potentially targetable oncogenic drivers. Small-molecule inhibitors including ERBB inhibitors (e.g., afatinib, MCLA-128), TRK inhibitors (e.g., larotrectinib, entrectinib), ALK/ROS inhibitor (e.g., crizotinib), and BRAF/MEK inhibitors are in development. In a small subset of patients with the KRASG12C mutation, a KRASG12C inhibitor, AMG510, and other agents are being investigated. Major efforts are underway to effectively target the tumor microenvironment and to integrate immunotherapy into the treatment of PDAC, and although thus far the impact has been modest to ineffective, nonetheless, there is optimism that some of the challenges will be overcome.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Facts & Figures 2020. American Cancer Society Atlanta, GA. 2020.

  2. 2.

    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7–34. https://doi.org/10.3322/caac.21551.

    Article  PubMed  Google Scholar 

  3. 3.

    Ansari D, Althini C, Ohlsson H, Andersson R. Early-onset pancreatic cancer: a population-based study using the SEER registry. Langenbeck's Arch Surg. 2019;404(5):565–71. https://doi.org/10.1007/s00423-019-01810-0.

    Article  Google Scholar 

  4. 4.

    Ntala C, Debernardi S, Feakins RM, Crnogorac-Jurcevic T. Demographic, clinical, and pathological features of early onset pancreatic cancer patients. BMC Gastroenterol. 2018;18(1):139. https://doi.org/10.1186/s12876-018-0866-z.

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Piciucchi M, Capurso G, Valente R, Larghi A, Archibugi L, Signoretti M et al. Early onset pancreatic cancer: risk factors, presentation and outcome. Pancreatology. 2015;15(2):151–5. https://doi.org/10.1016/j.pan.2015.01.013.

  6. 6.

    Tingstedt B, Weitkamper C, Andersson R. Early onset pancreatic cancer: a controlled trial. Ann Gastroenterol. 2011;24(3):206–12.

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Anna M, Varghese IS, Ritu RS, Marinela C, Joanne FC, Winston W, Zsofia KS, Erin ES-M, Christine AI-D, David PK, Wungki P, Kenneth HY, Eileen MReilly. Young-onset pancreas cancer (PC) in patients less than or equal to 50 years old at Memorial Sloan Kettering (MSK): Descriptors, genomics, and outcomes. J Clin Oncol. 2020;38.

  8. 8.

    Facts & Figures 2014. American Cancer Society Atlanta, GA. 2014.

  9. 9.

    National Cancer Institute. Cancer Stat Facts: Pancreatic Cancer. Surveillance, Epidemiology and End Results Program. 2019.

  10. 10.

    O’Reilly EM, Surinach A, Wu Z, Cockrum P. Real-world patterns of care among patients with metastatic pancreatic cancer (mPC). J Clin Oncol. 2020;38(4_suppl):666.

    Google Scholar 

  11. 11.

    Vogelstein B, Kinzler KW. The path to cancer—three strikes and you're out. 2015;373(20):1895–8. https://doi.org/10.1056/NEJMp1508811.

  12. 12.

    Klein WM, Hruban RH, Klein-Szanto AJ, Wilentz RE. Direct correlation between proliferative activity and dysplasia in pancreatic intraepithelial neoplasia (PanIN): additional evidence for a recently proposed model of progression. Modern Pathol. 2002;15(4):441–7. https://doi.org/10.1038/modpathol.3880544.

  13. 13.

    Yachida S, Jones S, Bozic I, Antal T, Leary R, Fu B, et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature. 2010;467(7319):1114–7. https://doi.org/10.1038/nature09515.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Makohon-Moore A, Iacobuzio-Donahue CA. Pancreatic cancer biology and genetics from an evolutionary perspective. Nat Rev Cancer. 2016;16(9):553–65. https://doi.org/10.1038/nrc.2016.66.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Wartenberg M, Cibin S, Zlobec I, Vassella E, Eppenberger-Castori S, Terracciano L, et al. Integrated genomic and immunophenotypic classification of pancreatic cancer reveals three distinct subtypes with prognostic/predictive significance. Clin Cancer Res. 2018;24(18):4444–54. https://doi.org/10.1158/1078-0432.Ccr-17-3401.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Biankin AV, Waddell N, Kassahn KS, Gingras MC, Muthuswamy LB, Johns AL, et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature. 2012;491(7424):399–405. https://doi.org/10.1038/nature11547.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Yachida S, White CM, Naito Y, Zhong Y, Brosnan JA, Macgregor-Das AM, et al. Clinical significance of the genetic landscape of pancreatic cancer and implications for identification of potential long-term survivors. Clin Cancer Res. 2012;18(22):6339–477. https://doi.org/10.1158/1078-0432.Ccr-12-1215.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Lowery MA, Jordan EJ, Basturk O, Ptashkin RN, Zehir A, Berger MF, et al. Real-time genomic profiling of pancreatic ductal adenocarcinoma: potential actionability and correlation with clinical phenotype. Clin Cancer Res. 2017;23(20):6094–100. https://doi.org/10.1158/1078-0432.Ccr-17-0899.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Waddell N, Pajic M, Patch AM, Chang DK, Kassahn KS, Bailey P, et al. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature. 2015;518(7540):495–501. https://doi.org/10.1038/nature14169.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Lito P, Solomon M, Li LS, Hansen R, Rosen N. Allele-specific inhibitors inactivate mutant KRAS G12C by a trapping mechanism. Science (New York, NY). 2016;351(6273):604–8. https://doi.org/10.1126/science.aad6204.

    CAS  Article  Google Scholar 

  21. 21.

    Roberts NJ, Jiao Y, Yu J, Kopelovich L, Petersen GM, Bondy ML, et al. ATM mutations in patients with hereditary pancreatic cancer. Cancer Discov. 2012;2(1):41–6. https://doi.org/10.1158/2159-8290.Cd-11-0194.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Stromnes IM, DelGiorno KE, Greenberg PD, Hingorani SR. Stromal reengineering to treat pancreas cancer. Carcinogenesis. 2014;35(7):1451–60. https://doi.org/10.1093/carcin/bgu115.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Vonderheide RH, Bayne LJ. Inflammatory networks and immune surveillance of pancreatic carcinoma. Curr Opin Immunol. 2013;25(2):200–5. https://doi.org/10.1016/j.coi.2013.01.006.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Moffitt RA, Marayati R, Flate EL, Volmar KE, Loeza SG, Hoadley KA, et al. Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma. Nat Genet. 2015;47(10):1168–78. https://doi.org/10.1038/ng.3398.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Collisson EA, Sadanandam A, Olson P, Gibb WJ, Truitt M, Gu S, et al. Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nat Med. 2011;17(4):500–3. https://doi.org/10.1038/nm.2344.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Biankin AV, Maitra A. Subtyping pancreatic cancer. Cancer Cell. 2015;28(4):411–3. https://doi.org/10.1016/j.ccell.2015.09.020.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Sohal DPS, Kennedy EB, Khorana A, Copur MS, Crane CH, Garrido-Laguna I, et al. Metastatic pancreatic cancer: ASCO. Clin Practice Guidel Update. 2018;36(24):2545–56. https://doi.org/10.1200/jco.2018.78.9636.

    Article  Google Scholar 

  28. 28.

    Conroy T, Desseigne F, Ychou M, Bouche O, Guimbaud R, Becouarn Y, et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med. 2011;364(19):1817–25. https://doi.org/10.1056/NEJMoa1011923.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med. 2013;369(18):1691–703. https://doi.org/10.1056/NEJMoa1304369.

    CAS  Article  Google Scholar 

  30. 30.

    Kang J, Hwang I, Yoo C, Kim KP, Jeong JH, Chang HM, et al. Nab-paclitaxel plus gemcitabine versus FOLFIRINOX as the first-line chemotherapy for patients with metastatic pancreatic cancer: retrospective analysis. Invest New Drugs. 2018;36(4):732–41. https://doi.org/10.1007/s10637-018-0598-5.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Nakazawa J, Otsuka T, Shimokawa M, Koga F, Ueda Y, Otsu S et al. A multicenter retrospective study of gemcitabine plus nabpaclitaxel or FOLFIRINOX in metastatic pancreatic cancer: NAPOLEON study. Ann Oncol. 2019;30 (Supplement 4):aa17–aa8.

  32. 32.

    Pusceddu S, Ghidini M, Torchio M, Corti F, Tomasello G, Niger M, et al. Comparative effectiveness of gemcitabine plus nab-paclitaxel and FOLFIRINOX in the first-line setting of metastatic pancreatic cancer: a systematic review and meta-analysis. Cancers. 2019;11:4. https://doi.org/10.3390/cancers11040484.

    CAS  Article  Google Scholar 

  33. 33.

    Nakazawa J, Otsuka T, Shimokawa M, Koga F, Ueda Y, Otsu S et al. P-065A multicenter retrospective study of gemcitabine plus nab-paclitaxel or FOLFIRINOX in metastatic pancreatic cancer: NAPOLEON study. Ann Oncol. 2019;30(Supplement_4). https://doi.org/10.1093/annonc/mdz155.064.

  34. 34.

    Ramanathan RK, McDonough SL, Philip PA, Hingorani SR, Lacy J, Kortmansky JS, et al. Phase IB/II randomized study of FOLFIRINOX plus pegylated recombinant human hyaluronidase versus FOLFIRINOX alone in patients with metastatic pancreatic adenocarcinoma: SWOG S1313. J Clin Oncol. 2019;37(13):1062–9. https://doi.org/10.1200/jco.18.01295.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Das A, Dean A. Modified FOLFIRINOX as a second-line treatment in pancreatic adenocarcinoma following gemcitabine plus nab-paclitaxel failure in patients with performance status two or less. Ann Oncol. 2019;30 (Supplement 4):aa83-aa4.

  36. 36.

    Ko AH, Tempero MA, Shan YS, Su WC, Lin YL, Dito E, et al. A multinational phase 2 study of nanoliposomal irinotecan sucrosofate (PEP02, MM-398) for patients with gemcitabine-refractory metastatic pancreatic cancer. Br J Cancer. 2013;109(4):920–5. https://doi.org/10.1038/bjc.2013.408.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Wang-Gillam A, Li CP, Bodoky G, Dean A, Shan YS, Jameson G, et al. Nanoliposomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer after previous gemcitabine-based therapy (NAPOLI-1): a global, randomised, open-label, phase 3 trial. Lancet (Lond, Engl). 2016;387(10018):545–57. https://doi.org/10.1016/s0140-6736(15)00986-1.

    CAS  Article  Google Scholar 

  38. 38.

    Sohal DPS, Kennedy EB, Khorana A, Copur MS, Crane CH, Garrido-Laguna I, et al. Metastatic pancreatic cancer: ASCO clinical practice guideline update. J Clin Oncol. 2018;36(24):2545–56.

    Article  Google Scholar 

  39. 39.

    Marabelle A, Le DT, Ascierto PA, Di Giacomo AM, De Jesus-Acosta A, Delord JP, et al. Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: results from the phase II KEYNOTE-158 study. J Clin Oncol. 2020;38(1):1–10. https://doi.org/10.1200/jco.19.02105.

    Article  PubMed  Google Scholar 

  40. 40.

    Tempero MA. NCCN guidelines updates: pancreatic cancer. J Natl Compr Cancer Network. 2019;17(55):603–5. https://doi.org/10.6004/jnccn.2019.5007.

    Article  Google Scholar 

  41. 41.

    Dahan L, Phelip JM, Malicot KL, Williet N, Desrame J, Volet J et al. FOLFIRINOX until progression, FOLFIRINOX with maintenance treatment, or sequential treatment with gemcitabine and FOLFIRI.3 for first-line treatment of metastatic pancreatic cancer: a randomized phase II trial (PRODIGE 35-PANOPTIMOX). 2018;36(15_suppl):4000. https://doi.org/10.1200/JCO.2018.36.15_suppl.4000.

  42. 42.

    Petrioli R, Torre P, Pesola G, Paganini G, Paolelli L, Miano ST et al. Gemcitabine plus nab-paclitaxel followed by maintenance treatment with gemcitabine alone as first-line treatment for older adults with locally advanced or metastatic pancreatic cancer. J Geriatric Oncol. 2019. https://doi.org/10.1016/j.jgo.2019.08.008.

    Article  Google Scholar 

  43. 43.

    Golan T, Hammel P, Reni M, Van Cutsem E, Macarulla T, Hall MJ, et al. Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer. N Engl J Med. 2019;381(4):317–27.

    CAS  Article  Google Scholar 

  44. 44.

    Bachet JB, Hammel P, Desrame J, Meurisse A, Chibaudel B, Andre T, et al. Nab-paclitaxel plus either gemcitabine or simplified leucovorin and fluorouracil as first-line therapy for metastatic pancreatic adenocarcinoma (AFUGEM GERCOR): a non-comparative, multicentre, open-label, randomised phase 2 trial. Lancet Gastroenterol Hepatol. 2017;2(5):337–46. https://doi.org/10.1016/s2468-1253(17)30046-8.

    Article  PubMed  Google Scholar 

  45. 45.

    Charton E, Bachet JB, Hammel P, Desrame J, Chibaudel B, Cohen R, et al. Impact on health-related quality of life deterioration-free survival of a first-line therapy combining nab-paclitaxel plus either gemcitabine or simplified leucovorin and fluorouracil for patients with metastatic pancreatic cancer: results of the randomized phase II AFUGEM GERCOR clinical trial. Cancer Med. 2019;8(11):5079–88.

    CAS  Article  Google Scholar 

  46. 46.

    Wainberg Z, Boland P, Lieu C, Dayyani F, Macarulla T, Zhang B et al. SO-005A phase 1/2, open-label, dose-expansion study of liposomal irinotecan (nal-IRI) plus 5-fluorouracil/leucovorin (5-FU/LV) and oxaliplatin (OX) in patients with previously untreated metastatic pancreatic cancer. Ann Oncol. 2019;30(Supplement_4). https://doi.org/10.1093/annonc/mdz157.004.

  47. 47.

    Jameson GS, Borazanci E, Babiker HM, Poplin E, Niewiarowska AA, Gordon MS, et al. Response rate following albumin-bound paclitaxel plus gemcitabine plus cisplatin treatment among patients with advanced pancreatic cancer: a phase 1b/2 pilot clinical trial. JAMA Oncol. 2019. https://doi.org/10.1001/jamaoncol.2019.3394.

    Article  PubMed  Google Scholar 

  48. 48.

    Reni M, Zanon S, Peretti U, Chiaravalli M, Barone D, Pircher C, et al. Nab-paclitaxel plus gemcitabine with or without capecitabine and cisplatin in metastatic pancreatic adenocarcinoma (PACT-19): a randomised phase 2 trial. Lancet Gastroenterol Hepatol. 2018;3(10):691–7. https://doi.org/10.1016/s2468-1253(18)30196-1.

    Article  PubMed  Google Scholar 

  49. 49.

    Macchini M, Chiaravalli M, Zanon S, Peretti U, Mazza E, Gianni L, et al. Chemotherapy in elderly patients with pancreatic cancer: efficacy, feasibility and future perspectives. Cancer Treat Rev. 2019;72:1–6. https://doi.org/10.1016/j.ctrv.2018.10.013.

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Martin JL, Sidhu S, Benhayoun N, Dedonno M, Brenner WS. Dosing modifications to increase tolerability of gemcitabine and nab-paclitaxel in treatment of pancreatic cancer in the elderly. J Clin Oncol Conf. 2019;37:4.

  51. 51.

    Petrillo A, Pappalardo A, Calabrese F, Tirino G, Pompella L, Ventriglia J, et al. First line nab-paclitaxel plus gemcitabine in elderly metastatic pancreatic patients: a good choice beyond age. J Gastrointestinal Oncol. 2019;10(5):910–7.

    Article  Google Scholar 

  52. 52.

    Michalaki V, Poydorou A, Frangulidis G, Vezakis A, Karvouni E, Papadimitriou C. Gemcitabine/nabpaclitaxel efficacy in elderly patients with metastatic or locally advanced pancreatic adenocarcinoma. Ann Oncol. 2018;29(Supplement 5):v14.

    Google Scholar 

  53. 53.

    Ventriglia J, Laterza MM, Savastano B, Petrillo A, Tirino G, Pompella L, et al. Safety and efficacy of gemcitabine/nabpaclitaxel in elderly patients with metastatic or locally advanced pancreatic adenocarcinoma: a retrospective analysis. Ann Oncol. 2017;28(Supplement 5):v259.

    Google Scholar 

  54. 54.

    Li D, Capanu M, Yu KH, Lowery MA, Kelsen DP, O'Reilly EM. Treatment, outcomes, and clinical trial participation in elderly patients with metastatic pancreas adenocarcinoma. Clin Colorectal Cancer. 2015;14(4):269–76.e1. https://doi.org/10.1016/j.clcc.2015.05.005.

    Article  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Aldoss IT, Tashi T, Gonsalves W, Kalaiah RK, Fang X, Silberstein P, et al. Role of chemotherapy in the very elderly patients with metastatic pancreatic cancer—a veterans affairs cancer registry analysis. J Geriatric Oncol. 2011;2(3):209–14. https://doi.org/10.1016/j.jgo.2011.02.003.

    Article  Google Scholar 

  56. 56.

    Macarulla T, Pazo-Cid R, Guillén-Ponce C, López R, Vera R, Reboredo M, et al. Phase I/II trial to evaluate the efficacy and safety of nanoparticle albumin-bound paclitaxel in combination with gemcitabine in patients with pancreatic cancer and an ECOG performance status of 2. J Clin Oncol. 2019;37(3):230–8. https://doi.org/10.1200/jco.18.00089.

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Betge J, Chi-Kern J, Schulte N, Belle S, Gutting T, Burgermeister E et al. A multicenter phase 4 geriatric assessment directed trial to evaluate gemcitabine +/- nab-paclitaxel in elderly pancreatic cancer patients (GrantPax). BMC Cancer. 2018;18 (1) (no pagination)(747).

  58. 58.

    Vasiliki M, Andreas P, Antonios V, Georgios F, Theodosios T, Christos P. Gemcitabine plus capecitabine in elderly patients with advanced pancreatic cancer. Ann Oncol. 2017;28 (Supplement 3):iii76.

  59. 59.

    Singh RR, Goldberg J, Varghese AM, Yu KH, Park W, O'Reilly EM. Genomic profiling in pancreatic ductal adenocarcinoma and a pathway towards therapy individualization: a scoping review. Cancer Treat Rev. 2019;75:27–38. https://doi.org/10.1016/j.ctrv.2019.03.003.

    Article  PubMed  Google Scholar 

  60. 60.

    Ko AH, Bekaii-Saab T, Van Ziffle J, Mirzoeva OM, Joseph NM, Talasaz A, et al. A multicenter open-label phase II clinical trial of combined MEK plus EGFR inhibition for chemotherapy-refractory. Adv Pancreatic Adenocarcinoma. 2016;22(1):61–8. https://doi.org/10.1158/1078-0432.CCR-15-0979.

    CAS  Article  Google Scholar 

  61. 61.

    Chung V, McDonough S, Philip PA, Cardin D, Wang-Gillam A, Hui L, et al. Effect of selumetinib and MK-2206 vs oxaliplatin and fluorouracil in patients with metastatic pancreatic cancer after prior therapy: SWOG S1115 study randomized clinical trial. JAMA Oncol. 2017;3(4):516–22. https://doi.org/10.1001/jamaoncol.2016.5383.

    Article  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Golan T, Khvalevsky EZ, Hubert A, Gabai RM, Hen N, Segal A, et al. RNAi therapy targeting KRAS in combination with chemotherapy for locally advanced pancreatic cancer patients. Oncotarget. 2015;6(27):24560–70. https://doi.org/10.18632/oncotarget.4183.

    Article  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Canon J, Rex K, Saiki AY, Mohr C, Cooke K, Bagal D, et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature. 2019;575(7781):217–23. https://doi.org/10.1038/s41586-019-1694-1.

    CAS  Article  PubMed  Google Scholar 

  64. 64.

    Fakih M, O'Neil B, Price TJ, Falchook GS, Desai J, Kuo J et al. Phase 1 study evaluating the safety, tolerability, pharmacokinetics (PK), and efficacy of AMG 510, a novel small molecule KRASG12C inhibitor. Adv Solid Tumors. 2019;37(15_suppl):3003. https://doi.org/10.1200/JCO.2019.37.15_suppl.3003.

  65. 65.

    Hallin J, Engstrom LD, Hargis L, Calinisan A, Aranda R, Briere DM, et al. The KRAS(G12C) inhibitor MRTX849 provides insight toward therapeutic susceptibility of KRAS-mutant cancers in mouse models and patients. Cancer Discov. 2020;10(1):54–71. https://doi.org/10.1158/2159-8290.Cd-19-1167.

    Article  PubMed  Google Scholar 

  66. 66.

    Brauswetter D, Gurbi B, Varga A, Varkondi E, Schwab R, Banhegyi G, et al. Molecular subtype specific efficacy of MEK inhibitors in pancreatic cancers. PLoS ONE. 2017;12(9):e0185687. https://doi.org/10.1371/journal.pone.0185687.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Forbes SA, Beare D, Gunasekaran P, Leung K, Bindal N, Boutselakis H et al. COSMIC: exploring the world's knowledge of somatic mutations in human cancer. Nucleic Acids Res. 2015;43(Database issue):D805–D11. https://doi.org/10.1093/nar/gku1075.

  68. 68.

    Zhou L, Baba Y, Kitano Y, Miyake K, Zhang X, Yamamura K, et al. KRAS, BRAF, and PIK3CA mutations, and patient prognosis in 126 pancreatic cancers: pyrosequencing technology and literature review. Med Oncol (Northwood, Lond, Engl). 2016;33(4):32. https://doi.org/10.1007/s12032-016-0745-9.

    CAS  Article  Google Scholar 

  69. 69.

    Boeck S, Jung A, Laubender RP, Neumann J, Egg R, Goritschan C, et al. EGFR pathway biomarkers in erlotinib-treated patients with advanced pancreatic cancer: translational results from the randomised, crossover phase 3 trial AIO-PK0104. Br J Cancer. 2013;108(2):469–76. https://doi.org/10.1038/bjc.2012.495.

    CAS  Article  PubMed  Google Scholar 

  70. 70.

    Heining C, Horak P, Uhrig S, Codo PL, Klink B, Hutter B, et al. NRG1 fusions in KRAS wild-type pancreatic cancer. Cancer Discov. 2018;8(9):1087–95. https://doi.org/10.1158/2159-8290.Cd-18-0036.

    CAS  Article  PubMed  Google Scholar 

  71. 71.

    Jones MR, Williamson LM, Topham JT, Lee MKC, Goytain A, Ho J, et al. NRG1 gene fusions are recurrent, clinically actionable gene rearrangements in KRAS wild-type pancreatic ductal adenocarcinoma. Clin Cancer Res. 2019;25(15):4674–81. https://doi.org/10.1158/1078-0432.Ccr-19-0191.

    Article  PubMed  Google Scholar 

  72. 72.

    Alison M, Schram EMOR, Romel S, Ryma B, Sara S, Thrusha C, Jean T, Jim F, David M, Ernesto W, Marc L, David MH, Andres LS, Alexander ED. Clinical proof-of-concept for MCLA-128, a bispecific HER2/3 antibody therapy, in NRG1 fusion-positive cancers. In: AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeuticsl; 2019.

  73. 73.

    Nevala-Plagemann C, Hidalgo M, Garrido-Laguna I. From state-of-the-art treatments to novel therapies for advanced-stage pancreatic cancer. Nature Rev Clin Oncol. 2019. https://doi.org/10.1038/s41571-019-0281-6.

    Article  Google Scholar 

  74. 74.

    Pishvaian MJ, Rolfo CD, Liu SV, Multani PS, Maneval EC, Garrido-Laguna I. Clinical benefit of entrectinib for patients with metastatic pancreatic cancer who harbor NTRK and ROS1 fusions. 2018;36(4_suppl):521. https://doi.org/10.1200/JCO.2018.36.4_suppl.521.

  75. 75.

    Drilon A, Laetsch TW, Kummar S, DuBois SG, Lassen UN, Demetri GD, et al. Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N Engl J Med. 2018;378(8):731–9. https://doi.org/10.1056/NEJMoa1714448.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  76. 76.

    O'Reilly EM, Hechtman JF. Tumour response to TRK inhibition in a patient with pancreatic adenocarcinoma harbouring an NTRK gene fusion. Ann Oncol. 2019;30(Supplement_8):viii36-viii40. https://doi.org/10.1093/annonc/mdz385.

  77. 77.

    Schultheis B, Reuter D, Ebert MP, Siveke J, Kerkhoff A, Berdel WE, et al. Gemcitabine combined with the monoclonal antibody nimotuzumab is an active first-line regimen in KRAS wildtype patients with locally advanced or metastatic pancreatic cancer: a multicenter, randomized phase IIb study. Ann Oncol. 2017;28(10):2429–35. https://doi.org/10.1093/annonc/mdx343.

    CAS  Article  PubMed  Google Scholar 

  78. 78.

    Aatur DS, Siraj MA, Jill L, Andrew H, Khanh N, Jamie K, et al. Identification of targetable ALK rearrangements in pancreatic ductal adenocarcinoma. J Natl Compr Cancer Netw. 2017;15(5):555–62. https://doi.org/10.6004/jnccn.2017.0058.

    Article  Google Scholar 

  79. 79.

    Singhi AAS, Greenbowe J, Ross JS, Nguyen K, Nikiforova M, et al. A clinicopathologic study of ALK rearrangements in pancreatic ductal adenocarcinoma. Lab Invest. 2016;96:448A–A44949.

    Google Scholar 

  80. 80.

    Tuli R, Lo S, Koo J, Pishvaian M, Bender RJ, Petricoin E, et al. Anaplastic lymphoma kinase rearrangement and response to crizotinib in pancreatic ductal adenocarcinoma. JCO Precision Oncol. 2017;1:1–5. https://doi.org/10.1200/PO.17.00016.

    Article  Google Scholar 

  81. 81.

    Foster SA, Whalen DM, Özen A, Wongchenko MJ, Yin J, Yen I, et al. Activation mechanism of oncogenic deletion mutations in BRAF, EGFR, and HER2. Cancer Cell. 2016;29(4):477–93. https://doi.org/10.1016/j.ccell.2016.02.010.

    CAS  Article  PubMed  Google Scholar 

  82. 82.

    Cancer Genome Atlas Research Network. Integrated genomic characterization of pancreatic ductal adenocarcinoma. Cancer Cell. 2017;32(2):185–203.e13. https://doi.org/10.1016/j.ccell.2017.07.007.

    CAS  Article  Google Scholar 

  83. 83.

    Guan M, Bender RJ, Pishvaian MJ, Halverson DC, Tuli R, Klempner SJ et al. Molecular and clinical characterization of BRAF mutations in pancreatic ductal adenocarcinomas (PDACs). J Clin Oncol. 2018;36(4_suppl):214. doi:https://doi.org/10.1200/JCO.2018.36.4_suppl.214.

  84. 84.

    Ross KC, Andrews AJ, Marion CD, Yen TJ, Bhattacharjee V. Identification of the serine biosynthesis pathway as a critical component of BRAF inhibitor resistance of melanoma, pancreatic, and non-small cell lung cancer cells. Mol Cancer Ther. 2017;16(8):1596–609. https://doi.org/10.1158/1535-7163.Mct-16-0798.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Wrzeszczynski KO, Rahman S, Frank MO, Arora K, Shah M, Geiger H et al. Identification of targetable BRAF DeltaN486_P490 variant by whole-genome sequencing leading to dabrafenib-induced remission of a BRAF-mutant pancreatic adenocarcinoma. Cold Spring Harbor molecular Case Stud. 2019;5(6). doi:https://doi.org/10.1101/mcs.a004424.

  86. 86.

    Aguirre AJ, Nowak JA, Camarda ND, Moffitt RA, Ghazani AA, Hazar-Rethinam M, et al. Real-time genomic characterization of advanced pancreatic cancer to enable precision medicine. Cancer Discov. 2018;8(9):1096–111. https://doi.org/10.1158/2159-8290.Cd-18-0275.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Bryant KL, Stalnecker CA, Zeitouni D, Klomp JE, Peng S, Tikunov AP, et al. Combination of ERK and autophagy inhibition as a treatment approach for pancreatic cancer. Nat Med. 2019;25(4):628–40. https://doi.org/10.1038/s41591-019-0368-8.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Karasic TB, O'Hara MH, Loaiza-Bonilla A, Reiss KA, Teitelbaum UR, Borazanci E, et al. Effect of gemcitabine and nab-paclitaxel with or without hydroxychloroquine on patients with advanced pancreatic cancer: a phase 2 randomized clinical trial. JAMA Oncol. 2019;5(7):993–8.

    Article  Google Scholar 

  89. 89.

    Wolpin BM, Rubinson DA, Wang X, Chan JA, Cleary JM, Enzinger PC, et al. Phase II and pharmacodynamic study of autophagy inhibition using hydroxychloroquine in patients with metastatic pancreatic adenocarcinoma. Oncologist. 2014;19(6):637–8. https://doi.org/10.1634/theoncologist.2014-0086.

    Article  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Kinsey CG, Camolotto SA, Boespflug AM, Guillen KP, Foth M, Truong A, et al. Protective autophagy elicited by RAF–%3eMEK–%3eERK inhibition suggests a treatment strategy for RAS-driven cancers. Nat Med. 2019;25(4):620–7. https://doi.org/10.1038/s41591-019-0367-9.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Friedenson B. BRCA1 and BRCA2 pathways and the risk of cancers other than breast or ovarian. Med Gen Med. 2005;7(2):60.

    Google Scholar 

  92. 92.

    Lynch HT, Deters CA, Snyder CL, Lynch JF, Villeneuve P, Silberstein J, et al. BRCA1 and pancreatic cancer: pedigree findings and their causal relationships. Cancer Genet Cytogenet. 2005;158(2):119–25. https://doi.org/10.1016/j.cancergencyto.2004.01.032.

    CAS  Article  PubMed  Google Scholar 

  93. 93.

    O'Reilly EM, Lee JW, Lowery MA, Capanu M, Stadler ZK, Moore MJ, et al. Phase 1 trial evaluating cisplatin, gemcitabine, and veliparib in 2 patient cohorts: germline BRCA mutation carriers and wild-type BRCA pancreatic ductal adenocarcinoma. Cancer. 2018;124(7):1374–82. https://doi.org/10.1002/cncr.31218.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  94. 94.

    O'Reilly EM, Lee JW, Zalupski M, Capanu M, Park J, Golan T et al. Randomized, Multicenter, Phase II trial of gemcitabine and cisplatin with or without veliparib in patients with pancreas adenocarcinoma and a germline BRCA/PALB2 mutation. J Clin Oncol. 2020:Jco1902931. https://doi.org/10.1200/jco.19.02931.

  95. 95.

    Golan T, Kanji ZS, Epelbaum R, Devaud N, Dagan E, Holter S, et al. Overall survival and clinical characteristics of pancreatic cancer in BRCA mutation carriers. Br J Cancer. 2014;111(6):1132–8. https://doi.org/10.1038/bjc.2014.418.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  96. 96.

    Kondo T, Kanai M, Kou T, Sakuma T, Mochizuki H, Kamada M, et al. Impact of BRCAness on the efficacy of oxaliplatin-based chemotherapy in patients with unresectable pancreatic cancer. J Clin Oncol. 2017;35(4):250. https://doi.org/10.1200/JCO.2017.35.4_suppl.250.

    Article  Google Scholar 

  97. 97.

    Wattenberg MM, Asch D, Yu S, O'Dwyer PJ, Domchek SM, Nathanson KL, et al. Platinum response characteristics of patients with pancreatic ductal adenocarcinoma and a germline BRCA1, BRCA2 or PALB2 mutation. Br J Cancer. 2019. https://doi.org/10.1038/s41416-019-0582-7.

    Article  PubMed  Google Scholar 

  98. 98.

    Hammel P, Kindler HL, Reni M, Cutsem EV, Macarulla T, Hall MJ, et al. Health-related quality of life in patients with a germline BRCA mutation and metastatic pancreatic cancer receiving maintenance olaparib. Ann Oncol. 2019;2019:28.

    Google Scholar 

  99. 99.

    Lowery MA, Kelsen DP, Capanu M, Smith SC, Lee JW, Stadler ZK et al. Phase II trial of veliparib in patients with previously treated BRCA-mutated pancreas ductal adenocarcinoma. European journal of cancer (Oxford, England : 1990). 2018;89:19–26. https://doi.org/10.1016/j.ejca.2017.11.004.

  100. 100.

    Shroff RT, Hendifar A, McWilliams RR, Geva R, Epelbaum R, Rolfe L et al. Rucaparib monotherapy in patients with pancreatic cancer and a known deleterious BRCA mutation. JCO Precis Oncol. 2018. https://doi.org/10.1200/po.17.00316.

  101. 101.

    Binder KAR, Mick R, O'Hara M, Teitelbaum U, Karasic T, Schneider C et al. Abstract CT234: A Phase II, single arm study of maintenance rucaparib in patients with platinum-sensitive advanced pancreatic cancer and a pathogenic germline or somatic mutation in %3cem%3eBRCA1, BRCA2%3c/em%3e or %3cem%3ePALB2%3c/em%3e. 2019;79(13 Supplement):CT234-CT. https://doi.org/10.1158/1538-7445.AM2019-CT234.

  102. 102.

    Heeke AL, Pishvaian MJ, Lynce F, Xiu J, Brody JR, Chen WJ et al. Prevalence of homologous recombination-related gene mutations across multiple cancer types. JCO Precis Oncol. 2018. https://doi.org/10.1200/po.17.00286.

  103. 103.

    Pishvaian MJ, Bender RJ, Halverson D, Rahib L, Hendifar AE, Mikhail S, et al. Molecular profiling of patients with pancreatic cancer: initial results from the know your tumor initiative. Clin Cancer Res. 2018;24(20):5018–27. https://doi.org/10.1158/1078-0432.Ccr-18-0531.

    CAS  Article  PubMed  Google Scholar 

  104. 104.

    Hu ZI, Shia J, Stadler ZK, Varghese AM, Capanu M, Salo-Mullen E, et al. Evaluating mismatch repair deficiency in pancreatic adenocarcinoma: challenges and recommendations. Clin Cancer Res. 2018;24(6):1326–36. https://doi.org/10.1158/1078-0432.Ccr-17-3099.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  105. 105.

    Latham A, Srinivasan P, Kemel Y, Shia J, Bandlamudi C, Mandelker D, et al. Microsatellite instability is associated with the presence of lynch syndrome pan-cancer. J Clin Oncol. 2019;37(4):286–95. https://doi.org/10.1200/JCO.18.00283.

    CAS  Article  PubMed  Google Scholar 

  106. 106.

    Cavalieri CC, Swanson E, Whisenant JR, Weis JR, Gilcrease GW, Stenehjem DD et al. Pembroliuzmab in gastrointestinal (GI) malignancies with defective DNA mismatch repair (dMMR): a single institution experience. 2017;35(4_suppl):792. https://doi.org/10.1200/JCO.2017.35.4_suppl.792.

  107. 107.

    Humphris JL, Patch AM, Nones K, Bailey PJ, Johns AL, McKay S, et al. Hypermutation in pancreatic cancer. Gastroenterology. 2017;152(1):68–74.e2. https://doi.org/10.1053/j.gastro.2016.09.060.

    CAS  Article  PubMed  Google Scholar 

  108. 108.

    Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science (New York, NY). 2017;357(6349):409–13. https://doi.org/10.1126/science.aan6733.

    CAS  Article  Google Scholar 

  109. 109.

    Lupinacci RM, Goloudina A, Buhard O, Bachet JB, Marechal R, Demetter P, et al. Prevalence of microsatellite instability in intraductal papillary mucinous neoplasms of the pancreas. Gastroenterology. 2018;154(4):1061–5. https://doi.org/10.1053/j.gastro.2017.11.009.

    CAS  Article  PubMed  Google Scholar 

  110. 110.

    Boland CR, Thibodeau SN, Hamilton SR, Sidransky D, Eshleman JR, Burt RW, et al. A national cancer institute workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Can Res. 1998;58(22):5248–57.

    CAS  Google Scholar 

  111. 111.

    Ott PA, Bang YJ, Piha-Paul SA, Razak ARA, Bennouna J, Soria JC, et al. T-Cell-inflamed gene-expression profile, programmed death ligand 1 expression, and tumor mutational burden predict efficacy in patients treated with pembrolizumab across 20 cancers: KEYNOTE-028. J Clin Oncol. 2019;37(4):318–27. https://doi.org/10.1200/jco.2018.78.2276.

    Article  PubMed  PubMed Central  Google Scholar 

  112. 112.

    O'Reilly EM, Oh DY, Dhani N, Renouf DJ, Lee MA, Sun W, et al. Durvalumab with or without tremelimumab for patients with metastatic pancreatic ductal adenocarcinoma: a phase 2 randomized clinical trial. JAMA Oncol. 2019. https://doi.org/10.1001/jamaoncol.2019.1588.

    Article  PubMed  Google Scholar 

  113. 113.

    Kamath SD, Kalyan A, Kircher S, Nimeiri H, Fought AJ, Benson A 3rd, et al. Ipilimumab and gemcitabine for advanced pancreatic cancer: a phase Ib study. Oncologist. 2019. https://doi.org/10.1634/theoncologist.2019-0473.

    Article  PubMed  PubMed Central  Google Scholar 

  114. 114.

    Le DT, Lutz E, Uram JN, Sugar EA, Onners B, Solt S, et al. Evaluation of ipilimumab in combination with allogeneic pancreatic tumor cells transfected with a GM-CSF gene in previously treated pancreatic cancer. J Immunother. 2013;36(7):382–9. https://doi.org/10.1097/CJI.0b013e31829fb7a2.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  115. 115.

    Royal RE, Levy C, Turner K, Mathur A, Hughes M, Kammula US, et al. Phase 2 trial of single agent Ipilimumab (anti-CTLA-4) for locally advanced or metastatic pancreatic adenocarcinoma. J Immunother. 2010;33(8):828–33. https://doi.org/10.1097/CJI.0b013e3181eec14c.

    CAS  Article  PubMed  Google Scholar 

  116. 116.

    Weiss GJ, Blaydorn L, Beck J, Bornemann-Kolatzki K, Urnovitz H, Schutz E, et al. Phase Ib/II study of gemcitabine, nab-paclitaxel, and pembrolizumab in metastatic pancreatic adenocarcinoma. Invest New Drugs. 2018;36(1):96–102. https://doi.org/10.1007/s10637-017-0525-1.

    CAS  Article  PubMed  Google Scholar 

  117. 117.

    Stromnes IM, Brockenbrough JS, Izeradjene K, Carlson MA, Cuevas C, Simmons RM, et al. Targeted depletion of an MDSC subset unmasks pancreatic ductal adenocarcinoma to adaptive immunity. Gut. 2014;63(11):1769–81. https://doi.org/10.1136/gutjnl-2013-306271.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  118. 118.

    Zhang Y, Velez-Delgado A, Mathew E, Li D, Mendez FM, Flannagan K, et al. Myeloid cells are required for PD-1/PD-L1 checkpoint activation and the establishment of an immunosuppressive environment in pancreatic cancer. Gut. 2017;66(1):124–36. https://doi.org/10.1136/gutjnl-2016-312078.

    CAS  Article  PubMed  Google Scholar 

  119. 119.

    Eriksson E, Moreno R, Milenova I, Liljenfeldt L, Dieterich LC, Christiansson L, et al. Activation of myeloid and endothelial cells by CD40L gene therapy supports T-cell expansion and migration into the tumor microenvironment. Gene Ther. 2017;24(2):92–103. https://doi.org/10.1038/gt.2016.80.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  120. 120.

    Sanborn RE, Gabrail NY, Bhardwaj N, Gordon MS, O'Hara M, Khalil D et al. Abstract LB-194: first-in-human phase I study of the CD40 agonist mAb CDX-1140 and in combination with CDX-301 (rhFLT3L) in patients with advanced cancers: Interim results. Cancer Res. 2019;79(13 Supplement):LB-194-LB. https://doi.org/10.1158/1538-7445.AM2019-LB-194.

  121. 121.

    O'Hara MH, O'Reilly EM, Rosemarie M, Varadhachary G, Wainberg ZA, Ko A et al. Abstract CT004: A Phase Ib study of CD40 agonistic monoclonal antibody APX005M together with gemcitabine (Gem) and nab-paclitaxel (NP) with or without nivolumab (Nivo) in untreated metastatic ductal pancreatic adenocarcinoma (PDAC) patients. Cancer Res. 2019;79(13 Supplement):CT004-CT. https://doi.org/10.1158/1538-7445.AM2019-CT004.

  122. 122.

    Mahalingam D, Wilkinson G, Eng KH, Fields P, Raber P, Moseley JL, et al. Pembrolizumab in combination with the oncolytic virus pelareorep and chemotherapy in patients with advanced pancreatic adenocarcinoma: a phase 1b study. Clin Cancer Res. 2019. https://doi.org/10.1158/1078-0432.Ccr-19-2078.

    Article  PubMed  Google Scholar 

  123. 123.

    Le DT, Wang-Gillam A, Picozzi V, Greten TF, Crocenzi T, Springett G, et al. Safety and survival with GVAX pancreas prime and Listeria Monocytogenes-expressing mesothelin (CRS-207) boost vaccines for metastatic pancreatic cancer. J Clin Oncol. 2015;33(12):1325–33. https://doi.org/10.1200/jco.2014.57.4244.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  124. 124.

    Le DT, Picozzi VJ, Ko AH, Wainberg ZA, Kindler H, Wang-Gillam A, et al. Results from a phase IIb, randomized, multicenter study of GVAX pancreas and CRS-207 compared with chemotherapy in adults with previously treated metastatic pancreatic adenocarcinoma (ECLIPSE study). Clin Cancer Res. 2019;25(18):5493–502.

    Article  Google Scholar 

  125. 125.

    Tempero MOD, Macarulla T, et al. Ibrutinib in combination with nab-paclitaxel and gemcitabine as first-line treatment for patients with metastatic pancreatic adenocarcinoma: results from the phase 3 RESOLVE study. In: ESMO 21st World Congress on Gastrointestinal Cancer. 2019:002.

  126. 126.

    Hingorani SR, Zheng L, Bullock AJ, Seery TE, Harris WP, Sigal DS, et al. HALO 202: randomized phase II study of PEGPH20 plus nab-paclitaxel/gemcitabine versus nab-paclitaxel/gemcitabine in patients with untreated, metastatic pancreatic ductal adenocarcinoma. J Clinical Oncol. 2018;36(4):359–66. https://doi.org/10.1200/jco.2017.74.9564.

    CAS  Article  Google Scholar 

  127. 127.

    Margaret A, Tempero EVC, Darren S, Do-Youn O, Nicola F, Teresa M, Erika H, Pascal H, Andrew EH, Susan EB, Chung-Pin L, Christelle De La F, Volker H, Anthony M, Nathan B, Laura L, Vaibhav S, Lei Z, Jill L, Andrea JB. HALO 109–301: a randomized, double-blind, placebo-controlled, phase 3 study of pegvorhyaluronidase alfa (PEGPH20) + nab-paclitaxel/gemcitabine (AG) in patients (pts) with previously untreated hyaluronan (HA)-high metastatic pancreatic ductal adenocarcinoma (mPDA). J Clin Oncol. 2020;38:638.

  128. 128.

    Sherman MH, Yu RT, Engle DD, Ding N, Atkins AR, Tiriac H, et al. Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy. Cell. 2014;159(1):80–93. https://doi.org/10.1016/j.cell.2014.08.007.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  129. 129.

    Schwartz GG, Eads D, Naczki C, Northrup S, Chen T, Koumenis C. 19-nor-1 alpha,25-dihydroxyvitamin D2 (paricalcitol) inhibits the proliferation of human pancreatic cancer cells in vitro and in vivo. Cancer Biol Ther. 2008;7(3):430–6. https://doi.org/10.4161/cbt.7.3.5418.

    CAS  Article  PubMed  Google Scholar 

  130. 130.

    Aikawa T, Gunn J, Spong SM, Klaus SJ, Korc M. Connective tissue growth factor-specific antibody attenuates tumor growth, metastasis, and angiogenesis in an orthotopic mouse model of pancreatic cancer. Mol Cancer Ther. 2006;5(5):1108–16. https://doi.org/10.1158/1535-7163.Mct-05-0516.

    CAS  Article  PubMed  Google Scholar 

  131. 131.

    Picozzi VJ, Pishvaian MJ, Mody K, Winter JM, Glaspy JA, Larson T et al. Effect of anti-CTGF human recombinant monoclonal antibody pamrevlumab on resectability and resection rate when combined with gemcitabine/nab-paclitaxel in phase 1/2 clinical study for the treatment of locally advanced pancreatic cancer patients. J Clin Oncol. 2018;36(15_suppl):4016. https://doi.org/10.1200/JCO.2018.36.15_suppl.4016.

  132. 132.

    Kindler HL, Niedzwiecki D, Hollis D, Sutherland S, Schrag D, Hurwitz H, et al. Gemcitabine plus bevacizumab compared with gemcitabine plus placebo in patients with advanced pancreatic cancer: phase III trial of the Cancer and Leukemia Group B (CALGB 80303). J Clin Oncol. 2010;28(22):3617–22. https://doi.org/10.1200/jco.2010.28.1386.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  133. 133.

    Sahai V, Saif MW, Kalyan A, Philip PA, Rocha-Lima CM, Ocean A, et al. A Phase I/II open-label multicenter single-arm study of fablox (metronomic 5-fluorouracil plus nab-paclitaxel, bevacizumab, leucovorin, and oxaliplatin) in patients with metastatic pancreatic cancer. J Pancreatic Cancer. 2019;5(1):35–42.

    Article  Google Scholar 

  134. 134.

    Isacoff WH, Reber HA, Bedford R, Hoos W, Rahib L, Upfill-Brown A, et al. Low-dose continuous 5-fluorouracil combined with leucovorin, nab-paclitaxel, oxaliplatin, and bevacizumab for patients with advanced pancreatic cancer: a retrospective analysis. Targeted Oncol. 2018;13(4):461–8. https://doi.org/10.1007/s11523-018-0572-3.

    Article  Google Scholar 

  135. 135.

    Ray-Coquard I, Pautier P, Pignata S, Perol D, Gonzalez-Martin A, Berger R, et al. Olaparib plus bevacizumab as first-line maintenance in ovarian cancer. N Engl J Med. 2019;381(25):2416–28. https://doi.org/10.1056/NEJMoa1911361.

    CAS  Article  PubMed  Google Scholar 

  136. 136.

    Zachar Z, Marecek J, Maturo C, Gupta S, Stuart SD, Howell K, et al. Non-redox-active lipoate derivates disrupt cancer cell mitochondrial metabolism and are potent anticancer agents in vivo. J Mol Med (Berlin, Germany). 2011;89(11):1137–48. https://doi.org/10.1007/s00109-011-0785-8.

    CAS  Article  Google Scholar 

  137. 137.

    Alistar A, Morris BB, Desnoyer R, Klepin HD, Hosseinzadeh K, Clark C, et al. Safety and tolerability of the first-in-class agent CPI-613 in combination with modified FOLFIRINOX in patients with metastatic pancreatic cancer: a single-centre, open-label, dose-escalation, phase 1 trial. Lancet Oncol. 2017;18(6):770–8. https://doi.org/10.1016/s1470-2045(17)30314-5.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  138. 138.

    Shah MA, Yu P, Narain N, Sarangarajan R, Kiebish M, Vishnudas V et al. Abstract CT315: phase I study of BPM 31510 (ubidecarenone) in patients with advanced solid tumors. Cancer Res. 2015;75(15):CT315. https://doi.org/10.1158/1538-7445.AM2015-CT315.

  139. 139.

    Niewiarowska AA, Lucius DM, Sarangarajan R, Narain NR, Ramanathan R, Ritch P, et al. A phase II clinical investigation of BPM31510-IV (ubidecarenone) in patients with advanced pancreatic cancer. Ann Oncol. 2018;29(Supplement 8):270.

    Article  Google Scholar 

  140. 140.

    Lowery MA, Yu KH, Kelsen DP, Harding JJ, Bomalaski JS, Glassman DC, et al. A phase 1/1B trial of ADI-PEG 20 plus nab-paclitaxel and gemcitabine in patients with advanced pancreatic adenocarcinoma. Cancer. 2017;123(23):4556–655. https://doi.org/10.1002/cncr.30897.

    CAS  Article  PubMed  Google Scholar 

  141. 141.

    Hammel P, Fabienne P, Mineur L, Metges JP, Andre T, De La Fouchardiere C, et al. Erythrocyte-encapsulated asparaginase (eryaspase) combined with chemotherapy in second-line treatment of advanced pancreatic cancer: An open-label, randomized Phase IIb trial. Eur J Cancer (Oxf, Engl). 2020;124:91–101. https://doi.org/10.1016/j.ejca.2019.10.020.

    CAS  Article  Google Scholar 

  142. 142.

    Bachet J-B, Gay F, Maréchal R, Galais M-P, Adenis A, MsC DS, et al. Asparagine Synthetase expression and phase I study with L-asparaginase encapsulated in red blood cells in patients with pancreatic adenocarcinoma. Pancreas. 2015;44(7):1141–7. https://doi.org/10.1097/mpa.0000000000000394.

    CAS  Article  PubMed  Google Scholar 

  143. 143.

    Mahipal A, Tella SH, Kommalapati A, Goyal G, Soares H, Neuger A, et al. Phase 1 trial of enzalutamide in combination with gemcitabine and nab-paclitaxel for the treatment of advanced pancreatic cancer. Invest New Drugs. 2019;37(3):473–81. https://doi.org/10.1007/s10637-018-0676-8.

    CAS  Article  PubMed  Google Scholar 

  144. 144.

    Pelzer U, Bendell JC, Womack MS, Bahary N, Macarulla T, Borazanci EH, et al. A phase Ib study evaluating olaratumab in combination with nab-paclitaxel and gemcitabine in first-line treatment of metastatic pancreatic cancer. J Clin Oncol Conf. 2019;37:4.

    Google Scholar 

  145. 145.

    Ludwig KF, Du W, Sorrelle NB, Wnuk-Lipinska K, Topalovski M, Toombs JE, et al. Small-molecule inhibition of Axl targets tumor immune suppression and enhances chemotherapy in pancreatic cancer. Can Res. 2018;78(1):246–55. https://doi.org/10.1158/0008-5472.Can-17-1973.

    CAS  Article  Google Scholar 

  146. 146.

    Beg MS, Lowy AM, O'Dwyer PJ, Jameson GS, Borazanci EH, Patel H, et al. A randomized clinical trial of chemotherapy with gemcitabine/cisplatin/nabpaclitaxel with or without the AXL inhibitor bemcentinib (BGB324) for patients with advanced pancreatic cancer. J Clin Oncol Conf. 2019;37:4.

    Google Scholar 

  147. 147.

    Vijayan D, Young A, Teng MWL, Smyth MJ. Targeting immunosuppressive adenosine in cancer. Nat Rev Cancer. 2017;17(12):709–24. https://doi.org/10.1038/nrc.2017.86.

    CAS  Article  PubMed  Google Scholar 

  148. 148.

    Epstein AS, Soff GA, Capanu M, Crosbie C, Shah MA, Kelsen DP, et al. Analysis of incidence and clinical outcomes in patients with thromboembolic events and invasive exocrine pancreatic cancer. Cancer. 2012;118(12):3053–61. https://doi.org/10.1002/cncr.26600.

    Article  PubMed  Google Scholar 

  149. 149.

    Menapace LA, Peterson DR, Berry A, Sousou T, Khorana AA. Symptomatic and incidental thromboembolism are both associated with mortality in pancreatic cancer. Thromb Haemost. 2011;106(2):371–8. https://doi.org/10.1160/th10-12-0789.

    CAS  Article  PubMed  Google Scholar 

  150. 150.

    Kakkar AK, Lemoine NR, Scully MF, Tebbutt S, Williamson RCN. Tissue factor expression correlates with histological grade in human pancreatic cancer. Br J Surg. 1995;82(8):1101–4. https://doi.org/10.1002/bjs.1800820831.

    CAS  Article  PubMed  Google Scholar 

  151. 151.

    Thaler J, Ay C, Mackman N, Bertina RM, Kaider A, Marosi C, et al. Microparticle-associated tissue factor activity, venous thromboembolism and mortality in pancreatic, gastric, colorectal and brain cancer patients. J Thrombosis Haemostasis. 2012;10(7):1363–70. https://doi.org/10.1111/j.1538-7836.2012.04754.x.

    CAS  Article  Google Scholar 

  152. 152.

    Khorana AA, Ahrendt SA, Ryan CK, Francis CW, Hruban RH, Hu YC, et al. Tissue factor expression, angiogenesis, and thrombosis in pancreatic cancer. Clin Cancer Res. 2007;13(10):2870–5. https://doi.org/10.1158/1078-0432.Ccr-06-2351.

    CAS  Article  PubMed  Google Scholar 

  153. 153.

    Stark K, Schubert I, Joshi U, Kilani B, Hoseinpour P, Thakur M, et al. Distinct pathogenesis of pancreatic cancer microvesicle-associated venous thrombosis identifies new antithrombotic targets in vivo. Arterioscler Thromb Vasc Biol. 2018;38(4):772–86. https://doi.org/10.1161/atvbaha.117.310262.

    CAS  Article  PubMed  Google Scholar 

  154. 154.

    Khorana AA, Soff GA, Kakkar AK, Vadhan-Raj S, Riess H, Wun T, et al. Rivaroxaban for thromboprophylaxis in high-risk ambulatory patients with cancer. N Engl J Med. 2019;380(8):720–8. https://doi.org/10.1056/NEJMoa1814630.

    CAS  Article  PubMed  Google Scholar 

  155. 155.

    Vadhan-Raj S, McNamara MG, Venerito M, Riess H, Reilly EM, Overman MJ, et al. Rivaroxaban thromboprohylaxis in ambulatory patients with pancreatic cancer: Results from a prespecified subgroup analysis of the CASSINI study. J Clin Oncol. 2019;37(15):4016. https://doi.org/10.1200/JCO.2019.37.15_suppl.4016.

    Article  Google Scholar 

  156. 156.

    Yu KH, Mantha S, Tjan C, Kaufmann ES, Brenner R, Lowery MA, et al. Pilot study of gemcitabine, nab-paclitaxel, PEGPH20, and rivaroxaban for advanced pancreatic adenocarcinoma: an interim analysis. J Clin Oncol. 2018;36(4):405. https://doi.org/10.1200/JCO.2018.36.4_suppl.405.

    Article  Google Scholar 

  157. 157.

    Key NS, Khorana AA, Kuderer NM, Bohlke K, Lee AYY, Arcelus JI, et al. Venous thromboembolism prophylaxis and treatment in patients with cancer: ASCO clinical practice guideline update. J Clin Oncol. 2019. https://doi.org/10.1200/jco.19.01461.

    Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eileen M. O’Reilly.

Ethics declarations

Funding

David M. Rubenstein Center for Pancreatic Cancer Research; Cancer Center Support Grant P30 CA 008748.

Conflict of interest

Ritu Raj Singh declares no conflicts of interest that might be relevant to the contents of this article. Eileen M. O’Reilly: Research funding to MSK: Genentech, Roche, Celgene/BMS, MabVax Therapeutics, ActaBiologica, AstraZeneca, Silenseed; Consulting/Advisory: BioLineRx, Targovax, Celgene, Polaris, Sobi, Merck, Ipsen; Data Safety Monitoring Boards: CytomX Therapeutics, Rafael.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Singh, R.R., O’Reilly, E.M. New Treatment Strategies for Metastatic Pancreatic Ductal Adenocarcinoma. Drugs 80, 647–669 (2020). https://doi.org/10.1007/s40265-020-01304-0

Download citation