Skip to main content

New and Emerging Therapies for Alopecia Areata

Abstract

Alopecia areata (AA) is an autoimmune condition that affects up to 2% of the general population. Currently available treatment options for AA are of limited efficacy and can be associated with adverse effects. The advancement in understanding of the genetic and molecular mechanisms of AA has led to the development of novel treatment options, with the Janus kinase (JAK) inhibitor class of drugs at the forefront of ongoing clinical trials. Platelet-rich plasma, fecal transplants, and cytokine-targeted therapy with ustekinumab and dupilumab have also been shown to regrow hair in patients with AA in individual case reports or small studies. Several other novel therapies have preliminary data or are being tested in clinical trials.

This is a preview of subscription content, access via your institution.

References

  1. Villasante Fricke AC, Miteva M. Epidemiology and burden of alopecia areata: a systematic review. Clin Cosmet Investig Dermatol. 2015;8:397–403. https://doi.org/10.2147/CCID.S53985.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Guttman-Yassky E, Ungar B, Noda S, Suprun M, Shroff A, Dutt R, et al. Extensive alopecia areata is reversed by IL-12/IL-23p40 cytokine antagonism. J Allergy Clin Immunol. 2016;137(1):301–4. https://doi.org/10.1016/j.jaci.2015.11.001.

    Article  CAS  PubMed  Google Scholar 

  3. Uchida H, Kamata M, Watanabe A, Agematsu A, Nagata M, Fukaya S, et al. Dupilumab improved alopecia areata in a patient with atopic dermatitis: a case report. Acta Derm Venereol. 2019;99(7):675–6. https://doi.org/10.2340/00015555-3183.

    Article  PubMed  Google Scholar 

  4. Paus R, Ito N, Takigawa M, Ito T. The hair follicle and immune privilege. J Investig Dermatol Symp Proc. 2003;8(2):188–94. https://doi.org/10.1046/j.1087-0024.2003.00807.x.

    Article  PubMed  Google Scholar 

  5. Ito T, Tokura Y. The role of cytokines and chemokines in the T-cell-mediated autoimmune process in alopecia areata. Exp Dermatol. 2014;23(11):787–91. https://doi.org/10.1111/exd.12489.

    Article  CAS  PubMed  Google Scholar 

  6. Messenger AG, Slater DN, Bleehen SS. Alopecia areata: alterations in the hair growth cycle and correlation with the follicular pathology. Br J Dermatol. 1986;114(3):337–47. https://doi.org/10.1111/j.1365-2133.1986.tb02825.x.

    Article  CAS  PubMed  Google Scholar 

  7. de Medeiros AAK, Speeckaert R, Desmet E, Van Gele M, De Schepper S, Lambert J. JAK3 as an emerging target for topical treatment of inflammatory skin diseases. PLoS One. 2016;11(10):e0164080. https://doi.org/10.1371/journal.pone.0164080.

    Article  CAS  Google Scholar 

  8. Zhang X, Zhao Y, Ye Y, Li S, Qi S, Yang Y, et al. Lesional infiltration of mast cells, Langerhans cells, T cells and local cytokine profiles in alopecia areata. Arch Dermatol Res. 2015;307(4):319–31. https://doi.org/10.1007/s00403-015-1539-1.

    Article  CAS  PubMed  Google Scholar 

  9. Kubeyinje EP. Intralesional triamcinolone acetonide in alopecia areata amongst 62 Saudi Arabs. East Afr Med J. 1994;71(10):674–5.

    CAS  PubMed  Google Scholar 

  10. Kumaresan M. Intralesional steroids for alopecia areata. Int J Trichology. 2010;2(1):63–5. https://doi.org/10.4103/0974-7753.66920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tosti A, Piraccini BM, Pazzaglia M, Vincenzi C. Clobetasol propionate 0.05% under occlusion in the treatment of alopecia totalis/universalis. J Am Acad Dermatol. 2003;49(1):96–8. https://doi.org/10.1067/mjd.2003.423.

    Article  PubMed  Google Scholar 

  12. Ait Ourhroui M, Hassam B, Khoudri I. Treatment of alopecia areata with prednisone in a once-monthly oral pulse [in French]. Ann Dermatol Venereol. 2010;137(8–9):514–8. https://doi.org/10.1016/j.annder.2010.06.002.

    Article  CAS  PubMed  Google Scholar 

  13. Rokhsar CK, Shupack JL, Vafai JJ, Washenik K. Efficacy of topical sensitizers in the treatment of alopecia areata. J Am Acad Dermatol. 1998;39(5 Pt 1):751–61.

    Article  CAS  Google Scholar 

  14. Chiang KS, Mesinkovska NA, Piliang MP, Bergfeld WF. Clinical efficacy of diphenylcyclopropenone in alopecia areata: retrospective data analysis of 50 patients. J Investig Dermatol Symp Proc. 2015;17(2):50–5. https://doi.org/10.1038/jidsymp.2015.28.

    Article  CAS  PubMed  Google Scholar 

  15. Nasimi M, Ghandi N, Abedini R, Mirshamsi A, Shakoei S, Seirafi H. Efficacy and safety of anthralin in combination with diphenylcyclopropenone in the treatment of alopecia areata: a retrospective case series. Arch Dermatol Res. 2019;311(8):607–13. https://doi.org/10.1007/s00403-019-01940-x.

    Article  CAS  PubMed  Google Scholar 

  16. Tang L, Cao L, Sundberg JP, Lui H, Shapiro J. Restoration of hair growth in mice with an alopecia areata-like disease using topical anthralin. Exp Dermatol. 2004;13(1):5–10. https://doi.org/10.1111/j.0906-6705.2004.00098.x.

    Article  CAS  PubMed  Google Scholar 

  17. Fenton DA, Wilkinson JD. Topical minoxidil in the treatment of alopecia areata. Br Med J (Clin Res Ed). 1983;287(6398):1015–7. https://doi.org/10.1136/bmj.287.6398.1015.

    Article  CAS  Google Scholar 

  18. Messenger AG, Rundegren J. Minoxidil: mechanisms of action on hair growth. Br J Dermatol. 2004;150(2):186–94.

    Article  CAS  Google Scholar 

  19. Phan K, Ramachandran V, Sebaratnam DF. Methotrexate for alopecia areata: a systematic review and meta-analysis. J Am Acad Dermatol. 2019;80(1):120–127e2. https://doi.org/10.1016/j.jaad.2018.06.064.

    Article  CAS  PubMed  Google Scholar 

  20. Acikgoz G, Caliskan E, Tunca M, Yeniay Y, Akar A. The effect of oral cyclosporine in the treatment of severe alopecia areata. Cutan Ocul Toxicol. 2014;33(3):247–52. https://doi.org/10.3109/15569527.2013.839997.

    Article  CAS  PubMed  Google Scholar 

  21. Gupta AK, Ellis CN, Cooper KD, Nickoloff BJ, Ho VC, Chan LS, et al. Oral cyclosporine for the treatment of alopecia areata. A clinical and immunohistochemical analysis. J Am Acad Dermatol. 1990;22(2 Pt 1):242–50. https://doi.org/10.1016/0190-9622(90)70032-d.

    Article  CAS  PubMed  Google Scholar 

  22. Lai VWY, Chen G, Gin D, Sinclair R. Cyclosporine for moderate-to-severe alopecia areata: a double-blind, randomized, placebo-controlled clinical trial of efficacy and safety. J Am Acad Dermatol. 2019;81(3):694–701. https://doi.org/10.1016/j.jaad.2019.04.053.

    Article  CAS  PubMed  Google Scholar 

  23. Nissen CV, Wulf HC. Hydroxychloroquine is ineffective in treatment of alopecia totalis and extensive alopecia areata: a case series of 8 patients. JAAD Case Rep. 2016;2(2):117–8. https://doi.org/10.1016/j.jdcr.2016.01.005.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Stephan F, Habre M, Tomb R. Successful treatment of alopecia totalis with hydroxychloroquine: report of 2 cases. J Am Acad Dermatol. 2013;68(6):1048–9. https://doi.org/10.1016/j.jaad.2013.02.011.

    Article  PubMed  Google Scholar 

  25. Mitchell AJ, Douglass MC. Topical photochemotherapy for alopecia areata. J Am Acad Dermatol. 1985;12(4):644–9. https://doi.org/10.1016/s0190-9622(85)70088-6.

    Article  CAS  PubMed  Google Scholar 

  26. Stern RS, Nichols KT, Vakeva LH. Malignant melanoma in patients treated for psoriasis with methoxsalen (psoralen) and ultraviolet A radiation (PUVA). The PUVA follow-up study. N Engl J Med. 1997;336(15):1041–5. https://doi.org/10.1056/NEJM199704103361501.

    Article  CAS  PubMed  Google Scholar 

  27. Gupta AK, Carviel JL. Meta-analysis of 308-nm excimer laser therapy for alopecia areata. J Dermatolog Treat. 2019. https://doi.org/10.1080/09546634.2019.1687819.

    Article  PubMed  Google Scholar 

  28. Novak Z, Bonis B, Baltas E, Ocsovszki I, Ignacz F, Dobozy A, et al. Xenon chloride ultraviolet B laser is more effective in treating psoriasis and in inducing T cell apoptosis than narrow-band ultraviolet B. J Photochem Photobiol B. 2002;67(1):32–8. https://doi.org/10.1016/s1011-1344(02)00280-4.

    Article  CAS  PubMed  Google Scholar 

  29. Fernandes KP, Souza NH, Mesquita-Ferrari RA, Silva Dde F, Rocha LA, Alves AN, et al. Photobiomodulation with 660-nm and 780-nm laser on activated J774 macrophage-like cells: effect on M1 inflammatory markers. J Photochem Photobiol B. 2015;153:344–51. https://doi.org/10.1016/j.jphotobiol.2015.10.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee S, Lee WS. Management of alopecia areata: updates and algorithmic approach. J Dermatol. 2017;44(11):1199–211. https://doi.org/10.1111/1346-8138.13933.

    Article  PubMed  Google Scholar 

  31. Wiseman MC, Shapiro J, MacDonald N, Lui H. Predictive model for immunotherapy of alopecia areata with diphencyprone. Arch Dermatol. 2001;137(8):1063–8.

    CAS  PubMed  Google Scholar 

  32. Jabbari A, Dai Z, Xing L. Targeting of JAK3 prevents onset of murine alopecia areata. Immunology I: adaptive immunity abstracts. J Invest Dermatol. 2012;132:S97–107.

    Article  Google Scholar 

  33. Schwartz DM, Bonelli M, Gadina M, O’Shea JJ. Type I/II cytokines, JAKs, and new strategies for treating autoimmune diseases. Nat Rev Rheumatol. 2016;12(1):25–36. https://doi.org/10.1038/nrrheum.2015.167.

    Article  CAS  PubMed  Google Scholar 

  34. Haikarainen ATVT, Raivola J, Silvennoinen O. Selective JAKinibs: prospects in inflammatory and autoimmune diseases. BioDrugs. 2019;33(1):15–32. https://doi.org/10.1007/s40259-019-00333-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. FDA. Drug approval package: olumiant (baricitinib). 2018. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/207924Orig1s000Lbl.pdf. Accessed 20 Jul 2019.

  36. Tofacitinib highlights of prescribing information. 2018. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/203214s018lbl.pdf. Accessed 20 Jul 2019.

  37. Ruxolitinib highlights of prescribing information. 2019. https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/202192s017lbl.pdf. Accessed 20 Jul 2019.

  38. Xing L, Dai Z, Jabbari A, Cerise JE, Higgins CA, Gong W, et al. Alopecia areata is driven by cytotoxic T lymphocytes and is reversed by JAK inhibition. Nat Med. 2014;20(9):1043–9. https://doi.org/10.1038/nm.3645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Harel S, Higgins CA, Cerise JE, Dai Z, Chen JC, Clynes R, et al. Pharmacologic inhibition of JAK-STAT signaling promotes hair growth. Sci Adv. 2015;1(9):e1500973. https://doi.org/10.1126/sciadv.1500973.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Turksen K, Kupper T, Degenstein L, Williams I, Fuchs E. Interleukin 6: insights to its function in skin by overexpression in transgenic mice. Proc Natl Acad Sci USA. 1992;89(11):5068–72. https://doi.org/10.1073/pnas.89.11.5068.

    Article  CAS  PubMed  Google Scholar 

  41. Kwack MH, Ahn JS, Kim MK, Kim JC, Sung YK. Dihydrotestosterone-inducible IL-6 inhibits elongation of human hair shafts by suppressing matrix cell proliferation and promotes regression of hair follicles in mice. J Invest Dermatol. 2012;132(1):43–9. https://doi.org/10.1038/jid.2011.274.

    Article  CAS  PubMed  Google Scholar 

  42. Yu M, Kissling S, Freyschmidt-Paul P, Hoffmann R, Shapiro J, McElwee KJ. Interleukin-6 cytokine family member oncostatin M is a hair-follicle-expressed factor with hair growth inhibitory properties. Exp Dermatol. 2008;17(1):12–9. https://doi.org/10.1111/j.1600-0625.2007.00643.x.

    Article  CAS  PubMed  Google Scholar 

  43. O’Shea JJ, Kontzias A, Yamaoka K, Tanaka Y, Laurence A. Janus kinase inhibitors in autoimmune diseases. Ann Rheum Dis. 2013;72(Suppl 2):ii111–5. https://doi.org/10.1136/annrheumdis-2012-202576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Triyangkulsri K, Suchonwanit P. Role of janus kinase inhibitors in the treatment of alopecia areata. Drug Des Devel Ther. 2018;12:2323–35. https://doi.org/10.2147/DDDT.S172638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fridman JS, Scherle PA, Collins R, Burn TC, Li Y, Li J, et al. Selective inhibition of JAK1 and JAK2 is efficacious in rodent models of arthritis: preclinical characterization of INCB028050. J Immunol. 2010;184(9):5298–307. https://doi.org/10.4049/jimmunol.0902819.

    Article  CAS  PubMed  Google Scholar 

  46. Jabbari A, Dai Z, Xing L, Cerise JE, Ramot Y, Berkun Y, et al. Reversal of alopecia areata following treatment with the JAK1/2 inhibitor baricitinib. EBioMedicine. 2015;2(4):351–5. https://doi.org/10.1016/j.ebiom.2015.02.015.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Quintas-Cardama A, Vaddi K, Liu P, Manshouri T, Li J, Scherle PA, et al. Preclinical characterization of the selective JAK1/2 inhibitor INCB018424: therapeutic implications for the treatment of myeloproliferative neoplasms. Blood. 2010;115(15):3109–17. https://doi.org/10.1182/blood-2009-04-214957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Punwani N, Scherle P, Flores R, Shi J, Liang J, Yeleswaram S, et al. Preliminary clinical activity of a topical JAK1/2 inhibitor in the treatment of psoriasis. J Am Acad Dermatol. 2012;67(4):658–64. https://doi.org/10.1016/j.jaad.2011.12.018.

    Article  CAS  PubMed  Google Scholar 

  49. Meyer DM, Jesson MI, Li X, Elrick MM, Funckes-Shippy CL, Warner JD, et al. Anti-inflammatory activity and neutrophil reductions mediated by the JAK1/JAK3 inhibitor, CP-690,550, in rat adjuvant-induced arthritis. J Inflamm (Lond). 2010;7:41. https://doi.org/10.1186/1476-9255-7-41.

    Article  CAS  Google Scholar 

  50. Ghoreschi K, Jesson MI, Li X, Lee JL, Ghosh S, Alsup JW, et al. Modulation of innate and adaptive immune responses by tofacitinib (CP-690,550). J Immunol. 2011;186(7):4234–43. https://doi.org/10.4049/jimmunol.1003668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Meephansan J, Thummakriengkrai J, Ponnikorn S, Yingmema W, Deenonpoe R, Suchonwanit P. Efficacy of topical tofacitinib in promoting hair growth in non-scarring alopecia: possible mechanism via VEGF induction. Arch Dermatol Res. 2017;309(9):729–38. https://doi.org/10.1007/s00403-017-1777-5.

    Article  CAS  PubMed  Google Scholar 

  52. Phan K, Sebaratnam DF. JAK inhibitors for alopecia areata: a systematic review and meta-analysis. J Eur Acad Dermatol Venereol. 2019;33(5):850–6. https://doi.org/10.1111/jdv.15489.

    Article  CAS  PubMed  Google Scholar 

  53. Olsen EA, Hordinsky MK, Price VH, Roberts JL, Shapiro J, Canfield D, et al. Alopecia areata investigational assessment guidelines–part II. National Alopecia Areata Foundation. J Am Acad Dermatol. 2004;51(3):440–7. https://doi.org/10.1016/j.jaad.2003.09.032.

    Article  PubMed  Google Scholar 

  54. Aclaris Therapeutics announces phase 2 clinical trial of ATI-502 topical in patients with alopecia areata did not meet endpoints. Aclaris Therapeutics. 2019. https://investor.aclaristx.com/news-releases/news-release-details/aclaris-therapeutics-announces-phase-2-clinical-trial-ati-502. Accessed 2 Feb 2020.

  55. Kennedy Crispin M, Ko JM, Craiglow BG, Li S, Shankar G, Urban JR, et al. Safety and efficacy of the JAK inhibitor tofacitinib citrate in patients with alopecia areata. JCI Insight. 2016;1(15):e89776. https://doi.org/10.1172/jci.insight.89776.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Mackay-Wiggan J, Jabbari A, Nguyen N, Cerise JE, Clark C, Ulerio G, et al. Oral ruxolitinib induces hair regrowth in patients with moderate-to-severe alopecia areata. JCI Insight. 2016;1(15):e89790. https://doi.org/10.1172/jci.insight.89790.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Craiglow BG, Liu LY, King BA. Tofacitinib for the treatment of alopecia areata and variants in adolescents. J Am Acad Dermatol. 2017;76(1):29–32. https://doi.org/10.1016/j.jaad.2016.09.006.

    Article  CAS  PubMed  Google Scholar 

  58. Liu LY, Craiglow BG, Dai F, King BA. Tofacitinib for the treatment of severe alopecia areata and variants: a study of 90 patients. J Am Acad Dermatol. 2017;76(1):22–8. https://doi.org/10.1016/j.jaad.2016.09.007.

    Article  CAS  PubMed  Google Scholar 

  59. Ibrahim O, Bayart CB, Hogan S, Piliang M, Bergfeld WF. Treatment of alopecia areata with tofacitinib. JAMA Dermatol. 2017;153(6):600–2. https://doi.org/10.1001/jamadermatol.2017.0001.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Park HS, Kim MW, Lee JS, Yoon HS, Huh CH, Kwon O, et al. Oral tofacitinib monotherapy in Korean patients with refractory moderate-to-severe alopecia areata: a case series. J Am Acad Dermatol. 2017;77(5):978–80. https://doi.org/10.1016/j.jaad.2017.06.027.

    Article  PubMed  Google Scholar 

  61. Liu LY, Craiglow BG, King BA. Tofacitinib 2% ointment, a topical Janus kinase inhibitor, for the treatment of alopecia areata: a pilot study of 10 patients. J Am Acad Dermatol. 2018;78(2):403–404e1. https://doi.org/10.1016/j.jaad.2017.10.043.

    Article  CAS  PubMed  Google Scholar 

  62. Lee JS, Huh CH, Kwon O, Yoon HS, Cho S, Park HS. Nail involvement in patients with moderate-to-severe alopecia areata treated with oral tofacitinib. J Dermatolog Treat. 2018;29(8):819–22. https://doi.org/10.1080/09546634.2018.1466024.

    Article  CAS  PubMed  Google Scholar 

  63. Jabbari A, Sansaricq F, Cerise J, Chen JC, Bitterman A, Ulerio G, et al. An open-label pilot study to evaluate the efficacy of tofacitinib in moderate to severe patch-type alopecia areata, totalis, and universalis. J Invest Dermatol. 2018;138(7):1539–45. https://doi.org/10.1016/j.jid.2018.01.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bokhari L, Sinclair R. Treatment of alopecia universalis with topical Janus kinase inhibitors - a double blind, placebo, and active controlled pilot study. Int J Dermatol. 2018;57(12):1464–70. https://doi.org/10.1111/ijd.14192.

    Article  CAS  PubMed  Google Scholar 

  65. Almutairi N, Nour TM, Hussain NH. Janus kinase inhibitors for the treatment of severe alopecia areata: an open-label comparative study. Dermatology. 2019;235(2):130–6. https://doi.org/10.1159/000494613.

    Article  CAS  PubMed  Google Scholar 

  66. Papp KA, Krueger JG, Feldman SR, Langley RG, Thaci D, Torii H, et al. Tofacitinib, an oral Janus kinase inhibitor, for the treatment of chronic plaque psoriasis: long-term efficacy and safety results from 2 randomized phase-III studies and 1 open-label long-term extension study. J Am Acad Dermatol. 2016;74(5):841–50. https://doi.org/10.1016/j.jaad.2016.01.013.

    Article  CAS  PubMed  Google Scholar 

  67. Strober B, Buonanno M, Clark JD, Kawabata T, Tan H, Wolk R, et al. Effect of tofacitinib, a Janus kinase inhibitor, on haematological parameters during 12 weeks of psoriasis treatment. Br J Dermatol. 2013;169(5):992–9. https://doi.org/10.1111/bjd.12517.

    Article  CAS  PubMed  Google Scholar 

  68. Smolen JS, Genovese MC, Takeuchi T, Hyslop DL, Macias WL, Rooney T, et al. Safety profile of baricitinib in patients with active rheumatoid arthritis with over 2 years median time in treatment. J Rheumatol. 2019;46(1):7–18. https://doi.org/10.3899/jrheum.171361.

    Article  CAS  PubMed  Google Scholar 

  69. Winthrop KL, Park SH, Gul A, Cardiel MH, Gomez-Reino JJ, Tanaka Y, et al. Tuberculosis and other opportunistic infections in tofacitinib-treated patients with rheumatoid arthritis. Ann Rheum Dis. 2016;75(6):1133–8. https://doi.org/10.1136/annrheumdis-2015-207319.

    Article  CAS  PubMed  Google Scholar 

  70. Cohen SB, Tanaka Y, Mariette X, Curtis JR, Lee EB, Nash P, et al. Long-term safety of tofacitinib for the treatment of rheumatoid arthritis up to 8.5 years: integrated analysis of data from the global clinical trials. Ann Rheum Dis. 2017;76(7):1253–62. https://doi.org/10.1136/annrheumdis-2016-210457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331(6024):1565–70. https://doi.org/10.1126/science.1203486.

    Article  CAS  Google Scholar 

  72. Maneiro JR, Souto A, Gomez-Reino JJ. Risks of malignancies related to tofacitinib and biological drugs in rheumatoid arthritis: systematic review, meta-analysis, and network meta-analysis. Semin Arthritis Rheum. 2017;47(2):149–56. https://doi.org/10.1016/j.semarthrit.2017.02.007.

    Article  CAS  PubMed  Google Scholar 

  73. Curtis JR, Lee EB, Kaplan IV, Kwok K, Geier J, Benda B, et al. Tofacitinib, an oral Janus kinase inhibitor: analysis of malignancies across the rheumatoid arthritis clinical development programme. Ann Rheum Dis. 2016;75(5):831–41. https://doi.org/10.1136/annrheumdis-2014-205847.

    Article  CAS  PubMed  Google Scholar 

  74. Curtis JR, Lee EB, Martin G, Mariette X, Terry KK, Chen Y, et al. Analysis of non-melanoma skin cancer across the tofacitinib rheumatoid arthritis clinical programme. Clin Exp Rheumatol. 2017;35(4):614–22.

    PubMed  Google Scholar 

  75. Hamilton JD, Ungar B, Guttman-Yassky E. Drug evaluation review: dupilumab in atopic dermatitis. Immunotherapy. 2015;7(10):1043–58. https://doi.org/10.2217/imt.15.69.

    Article  CAS  PubMed  Google Scholar 

  76. Mohan GC, Silverberg JI. Association of vitiligo and alopecia areata with atopic dermatitis: a systematic review and meta-analysis. JAMA Dermatol. 2015;151(5):522–8. https://doi.org/10.1001/jamadermatol.2014.3324.

    Article  PubMed  Google Scholar 

  77. Suarez-Farinas M, Ungar B, Noda S, Shroff A, Mansouri Y, Fuentes-Duculan J, et al. Alopecia areata profiling shows TH1, TH2, and IL-23 cytokine activation without parallel TH17/TH22 skewing. J Allergy Clin Immunol. 2015;136(5):1277–87. https://doi.org/10.1016/j.jaci.2015.06.032.

    Article  CAS  PubMed  Google Scholar 

  78. Chung J, Slaught CL, Simpson EL. Alopecia areata in 2 patients treated with dupilumab: new onset and worsening. JAAD Case Rep. 2019;5(8):643–5. https://doi.org/10.1016/j.jdcr.2019.03.019.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Kanda N, Koto M, Hoashi T, Saeki H. Case of alopecia areata during dupilumab treatment for atopic dermatitis. J Dermatol. 2019. https://doi.org/10.1111/1346-8138.14880.

    Article  PubMed  Google Scholar 

  80. D’Ippolito D, Pisano M. Dupilumab (Dupixent): an interleukin-4 receptor antagonist for atopic dermatitis. P T. 2018;43(9):532–5.

    PubMed  PubMed Central  Google Scholar 

  81. Scherl EJ, Kumar S, Warren RU. Review of the safety and efficacy of ustekinumab. Therap Adv Gastroenterol. 2010;3(5):321–8. https://doi.org/10.1177/1756283X10374216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Aleisa A, Lim Y, Gordon S, Her MJ, Zancanaro P, Abudu M, et al. Response to ustekinumab in three pediatric patients with alopecia areata. Pediatr Dermatol. 2019;36(1):e44–5. https://doi.org/10.1111/pde.13699.

    Article  PubMed  Google Scholar 

  83. Moreland L, Bate G, Kirkpatrick P. Abatacept. Nat Rev Drug Discov. 2006;5(3):185–6. https://doi.org/10.1038/nrd1989.

    Article  CAS  PubMed  Google Scholar 

  84. Abatacept highlights of prescribing information. 2013. https://www.accessdata.fda.gov/drugsatfda_docs/label/2013/125118s171lbl.pdf. Accessed 20 Jul 2019.

  85. Carroll JM, McElwee KJLEK, Byrne MC, Sundberg JP. Gene array profiling and immunomodulation studies define a cell-mediated immune response underlying the pathogenesis of alopecia areata in a mouse model and humans. J Invest Dermatol. 2002;119(2):392–402. https://doi.org/10.1046/j.1523-1747.2002.01811.x.

    Article  CAS  PubMed  Google Scholar 

  86. Hervey PS, Keam SJ. Abatacept. BioDrugs. 2006;20(1):53–61. https://doi.org/10.2165/00063030-200620010-00004(discussion 2).

    Article  CAS  PubMed  Google Scholar 

  87. Trink A, Sorbellini E, Bezzola P, Rodella L, Rezzani R, Ramot Y, et al. A randomized, double-blind, placebo- and active-controlled, half-head study to evaluate the effects of platelet-rich plasma on alopecia areata. Br J Dermatol. 2013;169(3):690–4. https://doi.org/10.1111/bjd.12397.

    Article  CAS  PubMed  Google Scholar 

  88. Cole BJ, Seroyer ST, Filardo G, Bajaj S, Fortier LA. Platelet-rich plasma: where are we now and where are we going? Sports Health. 2010;2(3):203–10. https://doi.org/10.1177/1941738110366385.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Sundaram H, Mehta RC, Norine JA, Kircik L, Cook-Bolden FE, Atkin DH, et al. Topically applied physiologically balanced growth factors: a new paradigm of skin rejuvenation. J Drugs Dermatol. 2009;8(5 Suppl Skin Rejuenation):4–13.

    PubMed  Google Scholar 

  90. Hu MS, Borrelli MR, Lorenz HP, Longaker MT, Wan DC. Mesenchymal stromal cells and cutaneous wound healing: a comprehensive review of the background, role, and therapeutic potential. Stem Cells Int. 2018;2018:6901983. https://doi.org/10.1155/2018/6901983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Li ZJ, Choi HI, Choi DK, Sohn KC, Im M, Seo YJ, et al. Autologous platelet-rich plasma: a potential therapeutic tool for promoting hair growth. Dermatol Surg. 2012;38(7 Pt 1):1040–6. https://doi.org/10.1111/j.1524-4725.2012.02394.x.

    Article  CAS  PubMed  Google Scholar 

  92. El Taieb MA, Ibrahim H, Nada EA, Seif Al-Din M. Platelets rich plasma versus minoxidil 5% in treatment of alopecia areata: a trichoscopic evaluation. Dermatol Ther. 2017. https://doi.org/10.1111/dth.12437.

    Article  PubMed  Google Scholar 

  93. d’Ovidio R, Roberto M. Limited effectiveness of platelet-rich-plasma treatment on chronic severe alopecia areata [letter]. Hair Ther Transpl. 2014. https://doi.org/10.4172/2167-0951.1000116.

    Article  Google Scholar 

  94. Mikhaylov D, Pavel A, Yao C, Kimmel G, Nia J, Hashim P, et al. A randomized placebo-controlled single-center pilot study of the safety and efficacy of apremilast in subjects with moderate-to-severe alopecia areata. Arch Dermatol Res. 2019;311(1):29–36. https://doi.org/10.1007/s00403-018-1876-y.

    Article  CAS  PubMed  Google Scholar 

  95. Katikaneni R, Seymour AW, Gulati R, Ponnapakkam T, Gensure RC. Therapy for alopecia areata in mice by stimulating the hair cycle with parathyroid hormone agonists linked to a collagen-binding domain. J Investig Dermatol Symp Proc. 2015;17(2):13–5. https://doi.org/10.1038/jidsymp.2015.32.

    Article  CAS  PubMed  Google Scholar 

  96. Wang TT, Yang J, Zhang Y, Zhang M, Dubois S, Conlon KC, et al. IL-2 and IL-15 blockade by BNZ-1, an inhibitor of selective gamma-chain cytokines, decreases leukemic T-cell viability. Leukemia. 2019;33(5):1243–55. https://doi.org/10.1038/s41375-018-0290-y.

    Article  CAS  PubMed  Google Scholar 

  97. Ramachandran V, Cline A, Feldman SR, Strowd LC. Evaluating crisaborole as a treatment option for atopic dermatitis. Expert Opin Pharmacother. 2019;20(9):1057–63. https://doi.org/10.1080/14656566.2019.1604688.

    Article  CAS  PubMed  Google Scholar 

  98. Renert-Yuval Y, Guttman-Yassky E. The changing landscape of alopecia areata: the therapeutic paradigm. Adv Ther. 2017;34(7):1594–609. https://doi.org/10.1007/s12325-017-0542-7.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Inui S, Nakajima T, Toda N, Itami S. Fexofenadine hydrochloride enhances the efficacy of contact immunotherapy for extensive alopecia areata: retrospective analysis of 121 cases. J Dermatol. 2009;36(6):323–7. https://doi.org/10.1111/j.1346-8138.2009.00647.x.

    Article  CAS  PubMed  Google Scholar 

  100. Inui S, Nakajima T, Itami S. Two cases of alopecia areata responsive to fexofenadine. J Dermatol. 2007;34(12):852–4. https://doi.org/10.1111/j.1346-8138.2007.00401.x.

    Article  PubMed  Google Scholar 

  101. Nonomura Y, Otsuka A, Miyachi Y, Kabashima K. Case of intractable ophiasis type of alopecia areata presumably improved by fexofenadine. J Dermatol. 2012;39(12):1063–4. https://doi.org/10.1111/j.1346-8138.2012.01571.x.

    Article  PubMed  Google Scholar 

  102. Howard C, Do Young K. Use of lasers in the treatment of alopecia areata. Med Lasers Eng Basic Res Clini Appl. 2016;5(2):71–6.

    Google Scholar 

  103. Yoo KH, Kim MN, Kim BJ, Kim CW. Treatment of alopecia areata with fractional photothermolysis laser. Int J Dermatol. 2010;49(7):845–7. https://doi.org/10.1111/j.1365-4632.2009.04230.x.

    Article  PubMed  Google Scholar 

  104. Venten I, Hess N, Hirschmuller A, Altmeyer P, Brockmeyer N. Treatment of therapy-resistant alopecia areata with fumaric acid esters. Eur J Med Res. 2006;11(7):300–5.

    CAS  PubMed  Google Scholar 

  105. Niculescu L, Heppt MV, Varga R, Steckmeier S, Wolff H, Tietze JK. Retrospective analysis of the application of fumaric acid esters in 13 patients with alopecia areata. Eur J Dermatol. 2018;28(3):376–7. https://doi.org/10.1684/ejd.2018.3249.

    Article  PubMed  Google Scholar 

  106. Choi JW, Suh DW, Lew BL, Sim WY. Simvastatin/ezetimibe therapy for recalcitrant alopecia areata: an open prospective study of 14 patients. Ann Dermatol. 2017;29(6):755–60. https://doi.org/10.5021/ad.2017.29.6.755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Mach F. Immunosuppressive effects of statins. Atheroscler Suppl. 2002;3(1):17–20.

    Article  CAS  Google Scholar 

  108. Oh MS, Min YJ, Kwon JE, Cho EJ, Kim JE, Lee WS, et al. Effects of ezetimibe added to ongoing statin therapy on C-reactive protein levels in hypercholesterolemic patients. Korean Circ J. 2011;41(5):253–8. https://doi.org/10.4070/kcj.2011.41.5.253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lattouf C, Jimenez JJ, Tosti A, Miteva M, Wikramanayake TC, Kittles C, et al. Treatment of alopecia areata with simvastatin/ezetimibe. J Am Acad Dermatol. 2015;72(2):359–61. https://doi.org/10.1016/j.jaad.2014.11.006.

    Article  PubMed  Google Scholar 

  110. Popovic B, Breed J, Rees DG, Gardener MJ, Vinall LM, Kemp B, et al. Structural characterisation reveals mechanism of IL-13-neutralising monoclonal antibody tralokinumab as inhibition of binding to IL-13Ralpha1 and IL-13Ralpha2. J Mol Biol. 2017;429(2):208–19. https://doi.org/10.1016/j.jmb.2016.12.005.

    Article  CAS  PubMed  Google Scholar 

  111. Ruckert R, Brandt K, Hofmann U, Bulfone-Paus S, Paus R. IL-2-IgG2b fusion protein suppresses murine contact hypersensitivity in vivo. J Invest Dermatol. 2002;119(2):370–6. https://doi.org/10.1046/j.1523-1747.2002.01849.x.

    Article  CAS  PubMed  Google Scholar 

  112. Castela E, Le Duff F, Butori C, Ticchioni M, Hofman P, Bahadoran P, et al. Effects of low-dose recombinant interleukin 2 to promote T-regulatory cells in alopecia areata. JAMA Dermatol. 2014;150(7):748–51. https://doi.org/10.1001/jamadermatol.2014.504.

    Article  CAS  PubMed  Google Scholar 

  113. Kim JE, Oh JH, Woo YJ, Jung JH, Jeong KH, Kang H. Effects of mesenchymal stem cell therapy on alopecia areata in cellular and hair follicle organ culture models. Exp Dermatol. 2018. https://doi.org/10.1111/exd.13812.

    Article  PubMed  Google Scholar 

  114. Anderi R, Makdissy N, Azar A, Rizk F, Hamade A. Cellular therapy with human autologous adipose-derived adult cells of stromal vascular fraction for alopecia areata. Stem Cell Res Ther. 2018;9(1):141. https://doi.org/10.1186/s13287-018-0889-y.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Lin X, Meng X, Song Z. Vitamin D and alopecia areata: possible roles in pathogenesis and potential implications for therapy. Am J Transl Res. 2019;11(9):5285–300.

    PubMed  PubMed Central  Google Scholar 

  116. Tsai TY, Huang YC. Vitamin D deficiency in patients with alopecia areata: a systematic review and meta-analysis. J Am Acad Dermatol. 2018;78(1):207–9. https://doi.org/10.1016/j.jaad.2017.07.051.

    Article  PubMed  Google Scholar 

  117. Lim YY, Kim SY, Kim HM, Li KS, Kim MN, Park KC, et al. Potential relationship between the canonical Wnt signalling pathway and expression of the vitamin D receptor in alopecia. Clin Exp Dermatol. 2014;39(3):368–75. https://doi.org/10.1111/ced.12241.

    Article  CAS  PubMed  Google Scholar 

  118. Cerman AA, Solak SS, Altunay I, Kucukunal NA. Topical calcipotriol therapy for mild-to-moderate alopecia areata: a retrospective study. J Drugs Dermatol. 2015;14(6):616–20.

    CAS  PubMed  Google Scholar 

  119. Narang T, Daroach M, Kumaran MS. Efficacy and safety of topical calcipotriol in management of alopecia areata: a pilot study. Dermatol Ther. 2017. https://doi.org/10.1111/dth.12464.

    Article  PubMed  Google Scholar 

  120. De Luca F, Shoenfeld Y. The microbiome in autoimmune diseases. Clin Exp Immunol. 2019;195(1):74–85. https://doi.org/10.1111/cei.13158.

    Article  CAS  PubMed  Google Scholar 

  121. Pinto D, Sorbellini E, Marzani B, Rucco M, Giuliani G, Rinaldi F. Scalp bacterial shift in alopecia areata. PLoS One. 2019;14(4):e0215206. https://doi.org/10.1371/journal.pone.0215206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Borde A, Astrand A. Alopecia areata and the gut-the link opens up for novel therapeutic interventions. Expert Opin Ther Targets. 2018;22(6):503–11. https://doi.org/10.1080/14728222.2018.1481504.

    Article  PubMed  Google Scholar 

  123. Rebello D, Wang E, Yen E, Lio PA, Kelly CR. Hair growth in two alopecia patients after fecal microbiota transplant. ACG Case Rep J. 2017;4:107. https://doi.org/10.14309/crj.2017.107.

    Article  Google Scholar 

  124. FDA. Information pertaining to additional safety protections regarding use of fecal microbiota for transplantation—screening and testing of stool donors for multi-drug resistant organisms. 2019. https://www.fda.gov/vaccines-blood-biologics/safety-availability-biologics/information-pertaining-additional-safety-protections-regarding-use-fecal-microbiota-transplantation. Accessed 20 Jan 2019.

  125. Wang S, Xu M, Wang W, Cao X, Piao M, Khan S, et al. Systematic review: adverse events of fecal microbiota transplantation. PLoS One. 2016;11(8):e0161174. https://doi.org/10.1371/journal.pone.0161174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aunna Pourang.

Ethics declarations

Conflict of interest

Aunna Pourang MD and Natasha Atanaskova Mesinkovska MD, PhD have no conflicts of interest to disclose.

Funding

No funding was received for the preparation of this article.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourang, A., Mesinkovska, N.A. New and Emerging Therapies for Alopecia Areata. Drugs 80, 635–646 (2020). https://doi.org/10.1007/s40265-020-01293-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-020-01293-0