Skip to main content

Advertisement

Log in

A Review of Management Strategies for Nociceptive and Neuropathic Ocular Surface Pain

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Despite being a common presenting symptom to eye-care clinics, many ophthalmologists have difficulty diagnosing and managing ocular surface pain. The purpose of this review is to discuss potential causes of ocular surface pain, focusing on both nociceptive and neuropathic aetiologies. Specifically, we outline an approach to the diagnosis of ocular surface pain and focus on various management strategies, providing supporting evidence on the efficacy of various treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Morone NE, Weiner DK. Pain as the fifth vital sign: exposing the vital need for pain education. Clin Ther. 2013;35(11):1728–32. https://doi.org/10.1016/j.clinthera.2013.10.001.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kalangara JP, Galor A, Levitt RC, Covington DB, McManus KT, Sarantopoulos CD, et al. Characteristics of ocular pain complaints in patients with idiopathic dry eye symptoms. Eye Contact Lens. 2017;43(3):192–8. https://doi.org/10.1097/ICL.0000000000000249.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Galor A, Feuer W, Lee DJ, Florez H, Venincasa VD, Perez VL. Ocular surface parameters in older male veterans. Invest Ophthalmol Vis Sci. 2013;54(2):1426–33. https://doi.org/10.1167/iovs.12-10819.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Stapleton F, Alves M, Bunya VY, Jalbert I, Lekhanont K, Malet F, et al. TFOS DEWS II epidemiology report. Ocul Surf. 2017;15(3):334–65. https://doi.org/10.1016/j.jtos.2017.05.003.

    Article  PubMed  Google Scholar 

  5. IASP terminology. 2019. https://www.iasp-pain.org/Education/Content.aspx?ItemNumber=1698. Accessed January 2019.

  6. Galor A. Painful dry eye symptoms: a nerve problem or a tear problem? Ophthalmology. 2019;126(5):648–51. https://doi.org/10.1016/j.ophtha.2019.01.028.

    Article  PubMed  Google Scholar 

  7. Jacobs DS. Diagnosis and treatment of ocular pain: the ophthalmologist's perspective. Curr Ophthalmol Rep. 2017;5(4):271–5. https://doi.org/10.1007/s40135-017-0152-1.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Smith CH, Goldman RD. Topical nonsteroidal anti-inflammatory drugs for corneal abrasions in children. Can Fam Phys. 2012;58(7):748–9.

    Google Scholar 

  9. Belmonte C, Nichols JJ, Cox SM, Brock JA, Begley CG, Bereiter DA, et al. TFOS DEWS II pain and sensation report. Ocul Surf. 2017;15(3):404–37. https://doi.org/10.1016/j.jtos.2017.05.002.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dieckmann G, Goyal S, Hamrah P. neuropathic corneal pain: approaches for management. Ophthalmology. 2017;124(11S):S34–S47. https://doi.org/10.1016/j.ophtha.2017.08.004.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bedran EG, Pereira MV, Bernardes TF. Ectropion. Semin Ophthalmol. 2010;25(3):59–655. https://doi.org/10.3109/08820538.2010.488570.

    Article  PubMed  Google Scholar 

  12. Corredor-Osorio R, Tovilla-Pomar JL, Tovilla-Canales JL. Congenital upper eyelids ectropion in Down's syndrome. GMS Ophthalmol Cases. 2017;7:3. https://doi.org/10.3205/oc000054.

    Article  Google Scholar 

  13. Bergstrom R, Czyz CN. Ectropion lower eyelid reconstruction. In: StatPearls. Treasure Island: StatPearls Publishing; 2020.

    Google Scholar 

  14. Pereira MG, Rodrigues MA, Rodrigues SA. Eyelid entropion. Semin Ophthalmol. 2010;25(3):52–8. https://doi.org/10.3109/08820538.2010.488573.

    Article  PubMed  Google Scholar 

  15. Bergstrom R, Czyz CN. Entropion eyelid reconstruction. In: StatPearls. Treasure Island: StatPearls Publishing; 2020.

    Google Scholar 

  16. Ozgur O, Kaufman EJ. Ectropion. In: StatPearls. Treasure Island: StatPearls Publishing; 2020.

    Google Scholar 

  17. Frueh BR, Schoengarth LD. Evaluation and treatment of the patient with ectropion. Ophthalmology. 1982;89(9):1049–54. https://doi.org/10.1016/s0161-6420(82)34682-5.

    Article  CAS  PubMed  Google Scholar 

  18. Lin P, Kitaguchi Y, Mupas-Uy J, Sabundayo MS, Takahashi Y, Kakizaki H. Involutional lower eyelid entropion: causative factors and therapeutic management. Int Ophthalmol. 2019;39(8):1895–907. https://doi.org/10.1007/s10792-018-1004-1.

    Article  PubMed  Google Scholar 

  19. Beigi B, Kashkouli MB, Shaw A, Murthy R. Fornix fat prolapse as a sign for involutional entropion. Ophthalmology. 2008;115(9):1608–12. https://doi.org/10.1016/j.ophtha.2008.02.014.

    Article  PubMed  Google Scholar 

  20. Wang F, Garza LA, Kang S, Varani J, Orringer JS, Fisher GJ, et al. In vivo stimulation of de novo collagen production caused by cross-linked hyaluronic acid dermal filler injections in photodamaged human skin. Arch Dermatol. 2007;143(2):155–63. https://doi.org/10.1001/archderm.143.2.155.

    Article  CAS  PubMed  Google Scholar 

  21. Romero R, Sanchez-Orgaz M, Granados M, Arbizu A, Castano A, Romero A, et al. Use of hyaluronic acid gel in the management of cicatricial ectropion: results and complications. Orbit. 2013;32(6):362–5. https://doi.org/10.3109/01676830.2013.833250.

    Article  PubMed  Google Scholar 

  22. Fezza JP. Nonsurgical treatment of cicatricial ectropion with hyaluronic acid filler. Plast Reconstr Surg. 2008;121(3):1009–144. https://doi.org/10.1097/01.prs.0000299382.31856.d8.

    Article  CAS  PubMed  Google Scholar 

  23. Clarke JR, Spalton DJ. Treatment of senile entropion with botulinum toxin. Br J Ophthalmol. 1988;72(5):361–2. https://doi.org/10.1136/bjo.72.5.361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Osaki T, Osaki MH, Osaki TH. Temporary management of involutional entropion with octyl-2-cyanoacrylate liquid bandage application. Arq Bras Oftalmol. 2010;73(2):120–4.

    Article  Google Scholar 

  25. Ghafouri RH, Allard FD, Migliori ME, Freitag SK. Lower eyelid involutional ectropion repair with lateral tarsal strip and internal retractor reattachment with full-thickness eyelid sutures. Ophthalmic Plast Reconstr Surg. 2014;30(5):424–6. https://doi.org/10.1097/IOP.0000000000000218.

    Article  PubMed  Google Scholar 

  26. Scheepers MA, Singh R, Ng J, Zuercher D, Gibson A, Bunce C, et al. A randomised controlled trial comparing everting sutures with everting sutures and a lateral tarsal strip for involutional entropion. Ophthalmology. 2010;117(2):352–5. https://doi.org/10.1016/j.ophtha.2009.06.056.

    Article  PubMed  Google Scholar 

  27. Wright M, Bell D, Scott C, Leatherbarrow B. Everting suture correction of lower lid involutional entropion. Br J Ophthalmol. 1999;83(9):1060–3. https://doi.org/10.1136/bjo.83.9.1060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ho SF, Pherwani A, Elsherbiny SM, Reuser T. Lateral tarsal strip and quickert sutures for lower eyelid entropion. Ophthalmic Plast Reconstr Surg. 2005;21(5):345–8.

    Article  Google Scholar 

  29. Pereira MV, Gloria AL. Lagophthalmos. Semin Ophthalmol. 2010;25(3):72–8. https://doi.org/10.3109/08820538.2010.488578.

    Article  PubMed  Google Scholar 

  30. Oestreicher J, Mehta S. Complications of blepharoplasty: prevention and management. Plast Surg Int. 2012;2012:252368. https://doi.org/10.1155/2012/252368.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Latkany RL, Lock B, Speaker M. Nocturnal lagophthalmos: an overview and classification. Ocul Surf. 2006;4(1):44–53.

    Article  Google Scholar 

  32. Huon LK, Liu SY, Camacho M, Guilleminault C. The association between ophthalmologic diseases and obstructive sleep apnea: a systematic review and meta-analysis. Sleep Breath. 2016;20(4):1145–54. https://doi.org/10.1007/s11325-016-1358-4.

    Article  PubMed  Google Scholar 

  33. MacIntosh PW, Fay AM. Update on the ophthalmic management of facial paralysis. Surv Ophthalmol. 2019;64(1):79–89. https://doi.org/10.1016/j.survophthal.2018.06.001.

    Article  PubMed  Google Scholar 

  34. Siah WF, Nagendran S, Tan P, Ali Ahmad SM, Litwin AS, Malhotra R. Late outcomes of gold weights and platinum chains for upper eyelid loading. Br J Ophthalmol. 2018;102(2):164–8. https://doi.org/10.1136/bjophthalmol-2016-310089.

    Article  PubMed  Google Scholar 

  35. Trivedi D, McCalla M, Squires Z, Parulekar M. Use of cyanoacrylate glue for temporary tarsorrhaphy in children. Ophthalmic Plast Reconstr Surg. 2014;30(1):60–3. https://doi.org/10.1097/IOP.0000000000000011.

    Article  PubMed  Google Scholar 

  36. Rajak S, Rajak J, Selva D. Performing a tarsorrhaphy. Community Eye Health. 2015;28(89):10–1.

    PubMed  PubMed Central  Google Scholar 

  37. Segal KL, Elner SG, Elner VM. Technique and results of permanent medial tarsorrhaphy for complex eyelid malposition. Ophthalmic Plast Reconstr Surg. 2019;35(2):197–201. https://doi.org/10.1097/IOP.0000000000001282.

    Article  PubMed  Google Scholar 

  38. Vieira AC, Hofling-Lima AL, Mannis MJ. Ocular rosacea—a review. Arq Bras Oftalmol. 2012;75(5):363–9.

    Article  Google Scholar 

  39. Yamasaki K, Gallo RL. The molecular pathology of rosacea. J Dermatol Sci. 2009;55(2):77–81. https://doi.org/10.1016/j.jdermsci.2009.04.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhao YE, Wu LP, Peng Y, Cheng H. Retrospective analysis of the association between Demodex infestation and rosacea. Arch Dermatol. 2010;146(8):896–902. https://doi.org/10.1001/archdermatol.2010.196.

    Article  PubMed  Google Scholar 

  41. Lazaridou E, Giannopoulou C, Fotiadou C, Vakirlis E, Trigoni A, Ioannides D. The potential role of microorganisms in the development of rosacea. J Dtsch Dermatol Ges. 2011;9(1):21–5. https://doi.org/10.1111/j.1610-0387.2010.07513.x.

    Article  PubMed  Google Scholar 

  42. Ghanem VC, Mehra N, Wong S, Mannis MJ. The prevalence of ocular signs in acne rosacea: comparing patients from ophthalmology and dermatology clinics. Cornea. 2003;22(3):230–3.

    Article  Google Scholar 

  43. Browning DJ, Proia AD. Ocular rosacea. Surv Ophthalmol. 1986;31(3):145–58.

    Article  CAS  Google Scholar 

  44. Wilkin J, Dahl M, Detmar M, Drake L, Feinstein A, Odom R, et al. Standard classification of rosacea: report of the National Rosacea Society Expert Committee on the Classification and Staging of Rosacea. J Am Acad Dermatol. 2002;46(4):584–7.

    Article  Google Scholar 

  45. Gallo RL, Granstein RD, Kang S, Mannis M, Steinhoff M, Tan J, et al. Standard classification and pathophysiology of rosacea: the 2017 update by the National Rosacea Society Expert Committee. J Am Acad Dermatol. 2018;78(1):148–55. https://doi.org/10.1016/j.jaad.2017.08.037.

    Article  PubMed  Google Scholar 

  46. Quarterman MJ, Johnson DW, Abele DC, Lesher JL Jr., Hull DS, Davis LS. Ocular rosacea. Signs, symptoms, and tear studies before and after treatment with doxycycline. Arch Dermatol. 1997;133(1):49–54.

  47. Oltz M, Check J. Rosacea and its ocular manifestations. Optometry. 2011;82(2):92–103. https://doi.org/10.1016/j.optm.2010.01.015.

    Article  PubMed  Google Scholar 

  48. Gupta AK, Chaudhry MM. Rosacea and its management: an overview. J Eur Acad Dermatol Venereol. 2005;19(3):273–85. https://doi.org/10.1111/j.1468-3083.2005.01216.x.

    Article  CAS  PubMed  Google Scholar 

  49. Korb DR, Blackie CA. Meibomian gland therapeutic expression: quantifying the applied pressure and the limitation of resulting pain. Eye Contact Lens. 2011;37(5):298–301. https://doi.org/10.1097/ICL.0b013e31821bc7c5.

    Article  PubMed  Google Scholar 

  50. Greiner JV. A single LipiFlow(R) thermal pulsation system treatment improves meibomian gland function and reduces dry eye symptoms for 9 months. Curr Eye Res. 2012;37(4):272–8. https://doi.org/10.3109/02713683.2011.631721.

    Article  PubMed  Google Scholar 

  51. Murphy O, O'Dwyer V, Lloyd-McKernan A. The efficacy of tea tree face wash, 1, 2-Octanediol and microblepharoexfoliation in treating Demodex folliculorum blepharitis. Cont Lens Anterior Eye. 2018;41(1):77–82. https://doi.org/10.1016/j.clae.2017.10.012.

    Article  PubMed  Google Scholar 

  52. Arman A, Demirseren DD, Takmaz T. Treatment of ocular rosacea: comparative study of topical cyclosporine and oral doxycycline. Int J Ophthalmol. 2015;8(3):544–9. https://doi.org/10.3980/j.issn.2222-3959.2015.03.19.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Odom R, Dahl M, Dover J, Draelos Z, Drake L, Macsai M, et al. Standard management options for rosacea, part 2: options according to subtype. Cutis. 2009;84(2):97–104.

    PubMed  Google Scholar 

  54. Federici TJ. The non-antibiotic properties of tetracyclines: clinical potential in ophthalmic disease. Pharmacol Res. 2011;64(6):614–23. https://doi.org/10.1016/j.phrs.2011.06.013.

    Article  CAS  PubMed  Google Scholar 

  55. Sobrin L, Liu Z, Monroy DC, Solomon A, Selzer MG, Lokeshwar BL, et al. Regulation of MMP-9 activity in human tear fluid and corneal epithelial culture supernatant. Invest Ophthalmol Vis Sci. 2000;41(7):1703–9.

    CAS  PubMed  Google Scholar 

  56. Maatta M, Kari O, Tervahartiala T, Peltonen S, Kari M, Saari M, et al. Tear fluid levels of MMP-8 are elevated in ocular rosacea–treatment effect of oral doxycycline. Graefes Arch Clin Exp Ophthalmol. 2006;244(8):957–62. https://doi.org/10.1007/s00417-005-0212-3.

    Article  CAS  PubMed  Google Scholar 

  57. Sobolewska B, Doycheva D, Deuter C, Pfeffer I, Schaller M, Zierhut M. Treatment of ocular rosacea with once-daily low-dose doxycycline. Cornea. 2014;33(3):257–60. https://doi.org/10.1097/ICO.0000000000000051.

    Article  PubMed  Google Scholar 

  58. Valentin S, Morales A, Sanchez JL, Rivera A. Safety and efficacy of doxycycline in the treatment of rosacea. Clin Cosmet Investig Dermatol. 2009;2:129–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Greene JB, Jeng BH, Fintelmann RE, Margolis TP. Oral azithromycin for the treatment of meibomitis. JAMA Ophthalmol. 2014;132(1):121–2. https://doi.org/10.1001/jamaophthalmol.2013.5295.

    Article  PubMed  Google Scholar 

  60. Papageorgiou P, Clayton W, Norwood S, Chopra S, Rustin M. Treatment of rosacea with intense pulsed light: significant improvement and long-lasting results. Br J Dermatol. 2008;159(3):628–32. https://doi.org/10.1111/j.1365-2133.2008.08702.x.

    Article  CAS  PubMed  Google Scholar 

  61. Vora GK, Gupta PK. Intense pulsed light therapy for the treatment of evaporative dry eye disease. Curr Opin Ophthalmol. 2015;26(4):314–8. https://doi.org/10.1097/ICU.0000000000000166.

    Article  PubMed  Google Scholar 

  62. Liu Y, Chen D, Chen X, Kam WR, Hatton MP, Sullivan DA. Hypoxia: a breath of fresh air for the meibomian gland. Ocul Surf. 2019;17(2):310–7. https://doi.org/10.1016/j.jtos.2018.12.001.

    Article  PubMed  Google Scholar 

  63. Prieto VG, Sadick NS, Lloreta J, Nicholson J, Shea CR. Effects of intense pulsed light on sun-damaged human skin, routine, and ultrastructural analysis. Lasers Surg Med. 2002;30(2):82–5.

    Article  Google Scholar 

  64. Seo KY, Kang SM, Ha DY, Chin HS, Jung JW. Long-term effects of intense pulsed light treatment on the ocular surface in patients with rosacea-associated meibomian gland dysfunction. Cont Lens Anterior Eye. 2018;41(5):430–5. https://doi.org/10.1016/j.clae.2018.06.002.

    Article  PubMed  Google Scholar 

  65. Arita R, Fukuoka S, Morishige N. Therapeutic efficacy of intense pulsed light in patients with refractory meibomian gland dysfunction. Ocul Surf. 2019;17(1):104–10. https://doi.org/10.1016/j.jtos.2018.11.004.

    Article  PubMed  Google Scholar 

  66. Babilas P, Schreml S, Szeimies RM, Landthaler M. Intense pulsed light (IPL): a review. Lasers Surg Med. 2010;42(2):93–104. https://doi.org/10.1002/lsm.20877.

    Article  PubMed  Google Scholar 

  67. Luo X, Li J, Chen C, Tseng S, Liang L. Ocular demodicosis as a potential cause of ocular surface inflammation. Cornea. 2017;36(Suppl 1):S9–S14. https://doi.org/10.1097/ICO.0000000000001361.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Lacey N, Kavanagh K, Tseng SC. Under the lash: demodex mites in human diseases. Biochem (Lond). 2009;31(4):2–6.

    Google Scholar 

  69. Zeytun E, Karakurt Y. Prevalence and Load of Demodex folliculorum and Demodex brevis (Acari: Demodicidae) in patients with chronic blepharitis in the province of erzincan. Turk J Med Entomol. 2019;56(1):2–9. https://doi.org/10.1093/jme/tjy143.

    Article  CAS  Google Scholar 

  70. Rather PA, Hassan I. Human demodex mite: the versatile mite of dermatological importance. Indian J Dermatol. 2014;59(1):60–6. https://doi.org/10.4103/0019-5154.123498.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Kim JT, Lee SH, Chun YS, Kim JC. Tear cytokines and chemokines in patients with Demodex blepharitis. Cytokine. 2011;53(1):94–9. https://doi.org/10.1016/j.cyto.2010.08.009.

    Article  CAS  PubMed  Google Scholar 

  72. Fromstein SR, Harthan JS, Patel J, Opitz DL. Demodex blepharitis: clinical perspectives. Clin Optom (Auckl). 2018;10:57–63. https://doi.org/10.2147/OPTO.S142708.

    Article  Google Scholar 

  73. Nicholls SG, Oakley CL, Tan A, Vote BJ. Demodex species in human ocular disease: new clinicopathological aspects. Int Ophthalmol. 2017;37(1):303–12. https://doi.org/10.1007/s10792-016-0249-9.

    Article  PubMed  Google Scholar 

  74. Biernat MM, Rusiecka-Ziolkowska J, Piatkowska E, Helemejko I, Biernat P, Gosciniak G. Occurrence of Demodex species in patients with blepharitis and in healthy individuals: a 10-year observational study. Jpn J Ophthalmol. 2018;62(6):628–33. https://doi.org/10.1007/s10384-018-0624-3.

    Article  PubMed  Google Scholar 

  75. Gao YY, Di Pascuale MA, Elizondo A, Tseng SC. Clinical treatment of ocular demodecosis by lid scrub with tea tree oil. Cornea. 2007;26(2):136–43. https://doi.org/10.1097/01.ico.0000244870.62384.79.

    Article  PubMed  Google Scholar 

  76. Koo H, Kim TH, Kim KW, Wee SW, Chun YS, Kim JC. Ocular surface discomfort and Demodex: effect of tea tree oil eyelid scrub in Demodex blepharitis. J Korean Med Sci. 2012;27(12):1574–9. https://doi.org/10.3346/jkms.2012.27.12.1574.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Navel V, Mulliez A, Benoist d'Azy C, Baker JS, Malecaze J, Chiambaretta F, et al. Efficacy of treatments for Demodex blepharitis: a systematic review and meta-analysis. Ocul Surf. 2019. https://doi.org/10.1016/j.jtos.2019.06.004.

    Article  PubMed  Google Scholar 

  78. Li DQ, Meller D, Liu Y, Tseng SC. Overexpression of MMP-1 and MMP-3 by cultured conjunctivochalasis fibroblasts. Invest Ophthalmol Vis Sci. 2000;41(2):404–10.

    CAS  PubMed  Google Scholar 

  79. Meller D, Li DQ, Tseng SC. Regulation of collagenase, stromelysin, and gelatinase B in human conjunctival and conjunctivochalasis fibroblasts by interleukin-1beta and tumor necrosis factor-alpha. Invest Ophthalmol Vis Sci. 2000;41(10):2922–9.

    CAS  PubMed  Google Scholar 

  80. Meller D, Tseng SC. Conjunctivochalasis: literature review and possible pathophysiology. Surv Ophthalmol. 1998;43(3):225–32.

    Article  CAS  Google Scholar 

  81. Berry M, Pult H, Purslow C, Murphy PJ. Mucins and ocular signs in symptomatic and asymptomatic contact lens wear. Optom Vis Sci. 2008;85(10):E930–E938938. https://doi.org/10.1097/OPX.0b013e318188896b.

    Article  PubMed  Google Scholar 

  82. Pult H, Riede-Pult BH. Impact of conjunctival folds on central tear meniscus height. Invest Ophthalmol Vis Sci. 2015;56(3):1459–66. https://doi.org/10.1167/iovs.14-15908.

    Article  PubMed  Google Scholar 

  83. Chhadva P, Alexander A, McClellan AL, McManus KT, Seiden B, Galor A. The impact of conjunctivochalasis on dry eye symptoms and signs. Invest Ophthalmol Vis Sci. 2015;56(5):2867–71. https://doi.org/10.1167/iovs.14-16337.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Mimura T, Yamagami S, Usui T, Funatsu H, Mimura Y, Noma H, et al. Changes of conjunctivochalasis with age in a hospital-based study. Am J Ophthalmol. 2009;147(1):171–7 e1. https://doi.org/10.1016/j.ajo.2008.07.010.

    Article  PubMed  Google Scholar 

  85. Balci O. Clinical characteristics of patients with conjunctivochalasis. Clin Ophthalmol. 2014;8:1655–60. https://doi.org/10.2147/OPTH.S61851.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Nakasato S, Uemoto R, Mizuki N. Thermocautery for inferior conjunctivochalasis. Cornea. 2012;31(5):514–9. https://doi.org/10.1097/ICO.0b013e3181dc81d2.

    Article  PubMed  Google Scholar 

  87. Zhang XR, Zhang ZY, Hoffman MR. Electrocoagulative surgical procedure for treatment of conjunctivochalasis. Int Surg. 2012;97(1):90–3. https://doi.org/10.9738/CC59.1.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Malozhen SA, Trufanov SV, Krakhmaleva DA. Pterygium: etiology, pathogenesis, treatment. Vestn Oftalmol. 2017;133(5):76–83. https://doi.org/10.17116/oftalma2017133576-83.

    Article  CAS  PubMed  Google Scholar 

  89. Rezvan F, Khabazkhoob M, Hooshmand E, Yekta A, Saatchi M, Hashemi H. Prevalence and risk factors of pterygium: a systematic review and meta-analysis. Surv Ophthalmol. 2018;63(5):719–35. https://doi.org/10.1016/j.survophthal.2018.03.001.

    Article  PubMed  Google Scholar 

  90. Young AL, Cao D, Chu WK, Ng TK, Yip YWY, Jhanji V, et al. The evolving story of pterygium. Cornea. 2018;37(Suppl 1):S55–S57. https://doi.org/10.1097/ICO.0000000000001744.

    Article  PubMed  Google Scholar 

  91. Graue-Hernandez EO, Cordoba A, Jimenez-Corona A, Ramirez-Miranda A, Navas A, Serna-Ojeda JC, et al. practice patterns in the management of primary pterygium: a survey study. Cornea. 2019. https://doi.org/10.1097/ICO.0000000000002091.

    Article  PubMed  Google Scholar 

  92. Oellers P, Karp CL, Sheth A, Kao AA, Abdelaziz A, Matthews JL, et al. Prevalence, treatment, and outcomes of coexistent ocular surface squamous neoplasia and pterygium. Ophthalmology. 2013;120(3):445–50. https://doi.org/10.1016/j.ophtha.2012.08.010.

    Article  PubMed  Google Scholar 

  93. Frucht-Pery J, Siganos CS, Solomon A, Shvartzenberg T, Richard C, Trinquand C. Topical indomethacin solution versus dexamethasone solution for treatment of inflamed pterygium and pinguecula: a prospective randomised clinical study. Am J Ophthalmol. 1999;127(2):148–52. https://doi.org/10.1016/s0002-9394(98)00327-4.

    Article  CAS  PubMed  Google Scholar 

  94. Teng CC, Patel NN, Jacobson L. Effect of subconjunctival bevacizumab on primary pterygium. Cornea. 2009;28(4):468–70. https://doi.org/10.1097/ICO.0b013e31818d382d.

    Article  PubMed  Google Scholar 

  95. Qian LJ, Zhou GZ, Zhu SN, Sheng LL, Shen XF, Chen XH. Effect on the pain and tear film stability in patients after pterygium excision treated with intradermal needling. Zhongguo Zhen Jiu. 2019;39(3):267–70. https://doi.org/10.13703/j.0255-2930.2019.03.012.

    Article  PubMed  Google Scholar 

  96. Bron AJ, de Paiva CS, Chauhan SK, Bonini S, Gabison EE, Jain S, et al. TFOS DEWS II pathophysiology report. Ocul Surf. 2017;15(3):438–510. https://doi.org/10.1016/j.jtos.2017.05.011.

    Article  PubMed  Google Scholar 

  97. Nelson JD. Superior limbic keratoconjunctivitis (SLK). Eye (Lond). 1989;3(Pt 2):180–9. https://doi.org/10.1038/eye.1989.26.

    Article  Google Scholar 

  98. Theodore FH. Superior limbic keratoconjunctivitis. Eye Ear Nose Throat Mon. 1963;42:25–8.

    CAS  PubMed  Google Scholar 

  99. Yokoi N. Tear dynamics and dry eye. Nippon Ganka Gakkai Zasshi. 2004;108(5):275–6.

    PubMed  Google Scholar 

  100. Sharma A. Superior limbic keratoconjunctivitis causing chronic ocular irritation in a child. J AAPOS. 2013;17(3):338–9. https://doi.org/10.1016/j.jaapos.2013.02.007.

    Article  PubMed  Google Scholar 

  101. Mendoza-Adam GR-GA. Superior limbic keratoconjunctivitis (SLK) and its association to systemic diseases. Rev Mex Oft. 2013;87(2):93–9.

  102. Goto E, Shimmura S, Shimazaki J, Tsubota K. Treatment of superior limbic keratoconjunctivitis by application of autologous serum. Cornea. 2001;20(8):807–10.

    Article  CAS  Google Scholar 

  103. Tsubota K, Goto E, Fujita H, Ono M, Inoue H, Saito I, et al. Treatment of dry eye by autologous serum application in Sjogren's syndrome. Br J Ophthalmol. 1999;83(4):390–5. https://doi.org/10.1136/bjo.83.4.390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Shen YC, Wang CY, Tsai HY, Lee YF. Supratarsal triamcinolone injection in the treatment of superior limbic keratoconjunctivitis. Cornea. 2007;26(4):423–6. https://doi.org/10.1097/ICO.0b013e318030d230.

    Article  PubMed  Google Scholar 

  105. Sun YC, Hsiao CH, Chen WL, Wang IJ, Hou YC, Hu FR. Conjunctival resection combined with tenon layer excision and the involvement of mast cells in superior limbic keratoconjunctivitis. Am J Ophthalmol. 2008;145(3):445–52. https://doi.org/10.1016/j.ajo.2007.10.025.

    Article  PubMed  Google Scholar 

  106. Jadhav S, Jadhav A, Thopte S, Marathe S, Vhathakar P, Chivte P, et al. Sjogren's Syndrome: a case study. J Int Oral Health. 2015;7(3):72–4.

    PubMed  PubMed Central  Google Scholar 

  107. Belmonte C, Acosta MC, Merayo-Lloves J, Gallar J. What causes eye pain? Curr Ophthalmol Rep. 2015;3(2):111–21. https://doi.org/10.1007/s40135-015-0073-9.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Begley CG, Chalmers RL, Abetz L, Venkataraman K, Mertzanis P, Caffery BA, et al. The relationship between habitual patient-reported symptoms and clinical signs among patients with dry eye of varying severity. Invest Ophthalmol Vis Sci. 2003;44(11):4753–61.

    Article  Google Scholar 

  109. Shiboski CH, Shiboski SC, Seror R, Criswell LA, Labetoulle M, Lietman TM, et al. 2016 American College of Rheumatology/European League Against Rheumatism classification criteria for primary Sjogren's syndrome: a consensus and data-driven methodology involving three international patient cohorts. Ann Rheum Dis. 2017;76(1):9–16. https://doi.org/10.1136/annrheumdis-2016-210571.

    Article  PubMed  Google Scholar 

  110. Quartuccio L, Baldini C, Bartoloni E, Priori R, Carubbi F, Corazza L, et al. Anti-SSA/SSB-negative Sjogren's syndrome shows a lower prevalence of lymphoproliferative manifestations, and a lower risk of lymphoma evolution. Autoimmun Rev. 2015;14(11):1019–22. https://doi.org/10.1016/j.autrev.2015.07.002.

    Article  CAS  PubMed  Google Scholar 

  111. Beckman KA. Detection of early markers for Sjogren syndrome in dry eye patients. Cornea. 2014;33(12):1262–4. https://doi.org/10.1097/ICO.0000000000000278.

    Article  PubMed  Google Scholar 

  112. Senchyna M, Wax MB. Quantitative assessment of tear production: A review of methods and utility in dry eye drug discovery. J Ocul Biol Dis Infor. 2008;1(1):1–6. https://doi.org/10.1007/s12177-008-9006-2.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Zeev MS, Miller DD, Latkany R. Diagnosis of dry eye disease and emerging technologies. Clin Ophthalmol. 2014;8:581–90. https://doi.org/10.2147/OPTH.S45444.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Messmer EM, von Lindenfels V, Garbe A, Kampik A. Matrix metalloproteinase 9 testing in dry eye disease using a commercially available point-of-care immunoassay. Ophthalmology. 2016;123(11):2300–8. https://doi.org/10.1016/j.ophtha.2016.07.028.

    Article  PubMed  Google Scholar 

  115. He J, Ogawa Y, Mukai S, Saijo-Ban Y, Kamoi M, Uchino M, et al. In vivo confocal microscopy evaluation of ocular surface with graft-versus-host disease-related dry eye disease. Sci Rep. 2017;7(1):10720. https://doi.org/10.1038/s41598-017-10237-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Laflamme MY, Swieca R. A comparative study of two preservative-free tear substitutes in the management of severe dry eye. Can J Ophthalmol. 1988;23(4):174–6.

    CAS  PubMed  Google Scholar 

  117. Hessen M, Akpek EK. Dry eye: an inflammatory ocular disease. J Ophthalmic Vis Res. 2014;9(2):240–50.

    PubMed  PubMed Central  Google Scholar 

  118. Ong HS, Dart JK. Managing ocular surface disease: a common-sense approach. Community Eye Health. 2016;29(95):44–6.

    PubMed  PubMed Central  Google Scholar 

  119. Schultz C. Safety and efficacy of cyclosporine in the treatment of chronic dry eye. Ophthalmol Eye Dis. 2014;6:37–42. https://doi.org/10.4137/OED.S16067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Sacchetti M, Mantelli F, Lambiase A, Mastropasqua A, Merlo D, Bonini S. Systematic review of randomised clinical trials on topical ciclosporin A for the treatment of dry eye disease. Br J Ophthalmol. 2014;98(8):1016–22. https://doi.org/10.1136/bjophthalmol-2013-304072.

    Article  PubMed  Google Scholar 

  121. Stevenson D, Tauber J, Reis BL. Efficacy and safety of cyclosporin A ophthalmic emulsion in the treatment of moderate-to-severe dry eye disease: a dose-ranging, randomised trial. The Cyclosporin A Phase 2 Study Group. Ophthalmology. 2000;107(5):967–74. https://doi.org/10.1016/s0161-6420(00)00035-x.

    Article  CAS  PubMed  Google Scholar 

  122. Wirta DL, Torkildsen GL, Moreira HR, Lonsdale JD, Ciolino JB, Jentsch G, et al. A Clinical Phase II study to assess efficacy, safety, and tolerability of waterfree cyclosporine formulation for treatment of dry eye disease. Ophthalmology. 2019;126(6):792–800. https://doi.org/10.1016/j.ophtha.2019.01.024.

    Article  PubMed  Google Scholar 

  123. Byun YS, Rho CR, Cho K, Choi JA, Na KS, Joo CK. Cyclosporine 0.05% ophthalmic emulsion for dry eye in Korea: a prospective, multicenter, open-label, surveillance study. Korean J Ophthalmol. 2011;25(6):369–74. https://doi.org/10.3341/kjo.2011.25.6.369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kino T, Hatanaka H, Miyata S, Inamura N, Nishiyama M, Yajima T, et al. FK-506, a novel immunosuppressant isolated from a Streptomyces. II. Immunosuppressive effect of FK-506 in vitro. J Antibiot (Tokyo). 1987;40(9):1256–65.

    Article  CAS  Google Scholar 

  125. Holland EJ, Luchs J, Karpecki PM, Nichols KK, Jackson MA, Sall K, et al. Lifitegrast for the treatment of dry eye disease: results of a Phase III, randomised, double-masked, placebo-controlled trial (OPUS-3). Ophthalmology. 2017;124(1):53–60. https://doi.org/10.1016/j.ophtha.2016.09.025.

    Article  PubMed  Google Scholar 

  126. Anitua E, Muruzabal F, Tayebba A, Riestra A, Perez VL, Merayo-Lloves J, et al. Autologous serum and plasma rich in growth factors in ophthalmology: preclinical and clinical studies. Acta Ophthalmol. 2015;93(8):e605–e614614. https://doi.org/10.1111/aos.12710.

    Article  PubMed  Google Scholar 

  127. Sacchetti M, Lambiase A. Neurotrophic factors and corneal nerve regeneration. Neural Regen Res. 2017;12(8):1220–4. https://doi.org/10.4103/1673-5374.213534.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Kojima T, Higuchi A, Goto E, Matsumoto Y, Dogru M, Tsubota K. Autologous serum eye drops for the treatment of dry eye diseases. Cornea. 2008;27(Suppl 1):S25–30. https://doi.org/10.1097/ICO.0b013e31817f3a0e.

    Article  PubMed  Google Scholar 

  129. Soleimani M, Tabatabaei SA, Mahmoudzadeh R. Use of autologous serum tears for the treatment of ocular surface disease from patients with systemic autoimmune diseases. Am J Ophthalmol. 2019;199:261–2. https://doi.org/10.1016/j.ajo.2018.09.041.

    Article  PubMed  Google Scholar 

  130. Hussain M, Shtein RM, Sugar A, Soong HK, Woodward MA, DeLoss K, et al. Long-term use of autologous serum 50 % eye drops for the treatment of dry eye disease. Cornea. 2014;33(12):1245–51. https://doi.org/10.1097/ICO.0000000000000271.

    Article  PubMed  Google Scholar 

  131. Kojima T, Ishida R, Dogru M, Goto E, Matsumoto Y, Kaido M, et al. The effect of autologous serum eyedrops in the treatment of severe dry eye disease: a prospective randomised case-control study. Am J Ophthalmol. 2005;139(2):242–6. https://doi.org/10.1016/j.ajo.2004.08.040.

    Article  PubMed  Google Scholar 

  132. Beylerian M, Lazaro M, Magalon J, Veran J, Darque A, Grimaud F, et al. Autologous serum tears: long-term treatment in dry eye syndrome. J Fr Ophtalmol. 2018;41(3):246–54. https://doi.org/10.1016/j.jfo.2017.11.008.

    Article  CAS  PubMed  Google Scholar 

  133. Uva L, Miguel D, Pinheiro C, Antunes J, Cruz D, Ferreira J, et al. Mechanisms of action of topical corticosteroids in psoriasis. Int J Endocrinol. 2012;2012:561018. https://doi.org/10.1155/2012/561018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Marsh P, Pflugfelder SC. Topical nonpreserved methylprednisolone therapy for keratoconjunctivitis sicca in Sjogren syndrome. Ophthalmology. 1999;106(4):811–6. https://doi.org/10.1016/S0161-6420(99)90171-9.

    Article  CAS  PubMed  Google Scholar 

  135. Hori Y, Kageyama T, Sakamoto A, Shiba T, Nakamura M, Maeno T. Comparison of short-term effects of diquafosol and rebamipide on Mucin 5AC level on the rabbit ocular surface. J Ocul Pharmacol Ther. 2017;33(6):493–7. https://doi.org/10.1089/jop.2016.0092.

    Article  CAS  PubMed  Google Scholar 

  136. Sabeti S, Kheirkhah A, Yin J, Dana R. Management of meibomian gland dysfunction: a review. Surv Ophthalmol. 2019. https://doi.org/10.1016/j.survophthal.2019.08.007.

    Article  PubMed  Google Scholar 

  137. Backman H, Haghighat F. Indoor-air quality and ocular discomfort. J Am Optom Assoc. 1999;70(5):309–16.

    CAS  PubMed  Google Scholar 

  138. Abusharha AA, Pearce EI. The effect of low humidity on the human tear film. Cornea. 2013;32(4):429–34. https://doi.org/10.1097/ICO.0b013e31826671ab.

    Article  PubMed  Google Scholar 

  139. Abusharha AA, Pearce EI, Fagehi R. Effect of ambient temperature on the human tear film. Eye Contact Lens. 2016;42(5):308–12. https://doi.org/10.1097/ICL.0000000000000210.

    Article  PubMed  Google Scholar 

  140. Hwang SH, Choi YH, Paik HJ, Wee WR, Kim MK, Kim DH. Potential importance of ozone in the association between outdoor air pollution and dry eye disease in South Korea. JAMA Ophthalmol. 2016;134(5):503–10. https://doi.org/10.1001/jamaophthalmol.2016.0139.

    Article  PubMed  Google Scholar 

  141. McCulley JP, Aronowicz JD, Uchiyama E, Shine WE, Butovich IA. Correlations in a change in aqueous tear evaporation with a change in relative humidity and the impact. Am J Ophthalmol. 2006;141(4):758–60. https://doi.org/10.1016/j.ajo.2005.10.057.

    Article  PubMed  Google Scholar 

  142. Butovich IA, Arciniega JC, Wojtowicz JC. Meibomian lipid films and the impact of temperature. Invest Ophthalmol Vis Sci. 2010;51(11):5508–18. https://doi.org/10.1167/iovs.10-5419.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Geerling G, Baudouin C, Aragona P, Rolando M, Boboridis KG, Benitez-Del-Castillo JM, et al. Emerging strategies for the diagnosis and treatment of meibomian gland dysfunction: proceedings of the OCEAN group meeting. Ocul Surf. 2017;15(2):179–92. https://doi.org/10.1016/j.jtos.2017.01.006.

    Article  PubMed  Google Scholar 

  144. Bron AJ. Diagnosis of dry eye. Surv Ophthalmol. 2001;45(Suppl 2):S221–S22626.

    Article  Google Scholar 

  145. Hayirci E, Yagci A, Palamar M, Basoglu OK, Veral A. The effect of continuous positive airway pressure treatment for obstructive sleep apnea syndrome on the ocular surface. Cornea. 2012;31(6):604–8. https://doi.org/10.1097/ICO.0b013e31824a2040.

    Article  PubMed  Google Scholar 

  146. Hom MM, Nguyen AL, Bielory L. Allergic conjunctivitis and dry eye syndrome. Ann Allergy Asthma Immunol. 2012;108(3):163–6. https://doi.org/10.1016/j.anai.2012.01.006.

    Article  PubMed  Google Scholar 

  147. Korb DR, Blackie CA. Using goggles to increase periocular humidity and reduce dry eye symptoms. Eye Contact Lens. 2013;39(4):273–6. https://doi.org/10.1097/ICL.0b013e3182960ff9.

    Article  PubMed  Google Scholar 

  148. Jones L, Downie LE, Korb D, Benitez-Del-Castillo JM, Dana R, Deng SX, et al. TFOS DEWS II management and therapy report. Ocul Surf. 2017;15(3):575–628. https://doi.org/10.1016/j.jtos.2017.05.006.

    Article  PubMed  Google Scholar 

  149. Skalicky SE, Goldberg I, McCluskey P. Ocular surface disease and quality of life in patients with glaucoma. Am J Ophthalmol. 2012;153(1):1–9 e2. https://doi.org/10.1016/j.ajo.2011.05.033.

    Article  PubMed  Google Scholar 

  150. Coroi MC, Bungau S, Tit M. Preservatives from the eye drops and the ocular surface. Rom J Ophthalmol. 2015;59(1):2–5.

    PubMed  PubMed Central  Google Scholar 

  151. Reiter C, Wimmer S, Schultheiss A, Klink T, Grehn F, Geerling G. Corneal epitheliopathy following trabeculectomy with postoperative adjunctive 5-fluorouracil. Klin Monbl Augenheilkd. 2010;227(11):887–91. https://doi.org/10.1055/s-0029-1245456.

    Article  CAS  PubMed  Google Scholar 

  152. Pisella PJ, Pouliquen P, Baudouin C. Prevalence of ocular symptoms and signs with preserved and preservative free glaucoma medication. Br J Ophthalmol. 2002;86(4):418–23. https://doi.org/10.1136/bjo.86.4.418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Tirpack AR, Vanner E, Parrish JM, Galor A, Hua HU, Wellik SR. Dry eye symptoms and ocular pain in veterans with glaucoma. J Clin Med. 2019. https://doi.org/10.3390/jcm8071076.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Giannaccare G, Pellegrini M, Sebastiani S, Moscardelli F, Versura P, Campos EC. In vivo confocal microscopy morphometric analysis of corneal subbasal nerve plexus in dry eye disease using newly developed fully automated system. Graefes Arch Clin Exp Ophthalmol. 2019;257(3):583–9. https://doi.org/10.1007/s00417-018-04225-7.

    Article  CAS  PubMed  Google Scholar 

  155. Latremoliere A, Woolf CJ. Central sensitisation: a generator of pain hypersensitivity by central neural plasticity. J Pain. 2009;10(9):895–926. https://doi.org/10.1016/j.jpain.2009.06.012.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Michael C, Joachim S, Clifford JW. Neuropathic pain: a maladaptive response of the nervous system to damage. Annu Rev Neurosci. 2009;32(1):1–32. https://doi.org/10.1146/annurev.neuro.051508.135531.

    Article  CAS  Google Scholar 

  157. Rosenthal P, Borsook D. Ocular neuropathic pain. Br J Ophthalmol. 2016;100(1):128–34. https://doi.org/10.1136/bjophthalmol-2014-306280.

    Article  PubMed  Google Scholar 

  158. Tuominen IS, Konttinen YT, Vesaluoma MH, Moilanen JA, Helintö M, Tervo TM. Corneal innervation and morphology in primary Sjogren’s syndrome. Invest Ophthalmol Vis Sci. 2003;44(6):2545–9.

    Article  Google Scholar 

  159. Farhangi M, Diel RJ, Buse DC, Huang AM, Levitt RC, Sarantopoulos CD, et al. Individuals with migraine have a different dry eye symptom profile than individuals without migraine. Br J Ophthalmol. 2019. https://doi.org/10.1136/bjophthalmol-2018-313471.

    Article  PubMed  Google Scholar 

  160. Lee CJ, Felix ER, Levitt RC, Eddy C, Vanner EA, Feuer WJ, et al. Traumatic brain injury, dry eye and comorbid pain diagnoses in US veterans. Br J Ophthalmol. 2018;102(5):667–73. https://doi.org/10.1136/bjophthalmol-2017-310509.

    Article  PubMed  Google Scholar 

  161. Lee CJ, Levitt RC, Felix ER, Sarantopoulos CD, Galor A. Evidence that dry eye is a comorbid pain condition in a U.S. veteran population. Pain Rep. 2017;2(6):e629. https://doi.org/10.1097/PR9.0000000000000629.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Crane AM, Levitt RC, Felix ER, Sarantopoulos KD, McClellan AL, Galor A. Patients with more severe symptoms of neuropathic ocular pain report more frequent and severe chronic overlapping pain conditions and psychiatric disease. Br J Ophthalmol. 2017;101(2):227–31. https://doi.org/10.1136/bjophthalmol-2015-308214.

    Article  PubMed  Google Scholar 

  163. Goyal S, Hamrah P. Understanding neuropathic corneal pain-gaps and current therapeutic approaches. Semin Ophthalmol. 2016;31(1–2):59–70. https://doi.org/10.3109/08820538.2015.1114853.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Crane AM, Feuer W, Felix ER, Levitt RC, McClellan AL, Sarantopoulos KD, et al. Evidence of central sensitisation in those with dry eye symptoms and neuropathic-like ocular pain complaints: incomplete response to topical anaesthesia and generalised heightened sensitivity to evoked pain. Br J Ophthalmol. 2017;101(9):1238–43. https://doi.org/10.1136/bjophthalmol-2016-309658.

    Article  PubMed  Google Scholar 

  165. Sivanesan E, Levitt RC, Sarantopoulos CD, Patin D, Galor A. Noninvasive electrical stimulation for the treatment of chronic ocular pain and photophobia. Neuromodulation Technol Neural Interface. 2018;21(8):727–34. https://doi.org/10.1111/ner.12742.

    Article  Google Scholar 

  166. Ong ES, Felix ER, Levitt RC, Feuer WJ, Sarantopoulos CD, Galor A. Epidemiology of discordance between symptoms and signs of dry eye. Br J Ophthalmol. 2018;102(5):674–9. https://doi.org/10.1136/bjophthalmol-2017-310633.

    Article  PubMed  Google Scholar 

  167. Farhangi M, Feuer W, Galor A, Bouhassira D, Levitt RC, Sarantopoulos CD, et al. Modification of the Neuropathic Pain Symptom Inventory for use in eye pain (NPSI-Eye). Pain. 2019;160(7):1541–50. https://doi.org/10.1097/j.pain.0000000000001552.

    Article  PubMed  Google Scholar 

  168. Qazi Y, Hurwitz S, Khan S, Jurkunas UV, Dana R, Hamrah P. Validity and Reliability of a Novel Ocular Pain Assessment Survey (OPAS) in quantifying and monitoring corneal and ocular surface pain. Ophthalmology. 2016;123(7):1458–68. https://doi.org/10.1016/j.ophtha.2016.03.006.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Spierer O, Felix ER, McClellan AL, Parel JM, Gonzalez A, Feuer WJ, et al. Corneal mechanical thresholds negatively associate with dry eye and ocular pain symptoms. Invest Ophthalmol Vis Sci. 2016;57(2):617–25. https://doi.org/10.1167/iovs.15-18133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Aggarwal S, Kheirkhah A, Cavalcanti BM, Cruzat A, Colon C, Brown E, et al. Autologous serum tears for treatment of photoallodynia in patients with corneal neuropathy: efficacy and evaluation with in vivo confocal microscopy. Ocul Surf. 2015;13(3):250–62. https://doi.org/10.1016/j.jtos.2015.01.005.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Galor A, Moein H-R, Lee C, Rodriguez A, Felix ER, Sarantopoulos KD, et al. Neuropathic pain and dry eye. Ocular Surf. 2018;16(1):31–44. https://doi.org/10.1016/j.jtos.2017.10.001.

    Article  Google Scholar 

  172. Joo MJ, Yuhan KR, Hyon JY, Lai H, Hose S, Sinha D, et al. The effect of nerve growth factor on corneal sensitivity after laser in situ keratomileusis. Arch Ophthalmol. 2004;122(9):1338–411. https://doi.org/10.1001/archopht.122.9.1338.

    Article  PubMed  Google Scholar 

  173. Morkin MI, Hamrah P. Efficacy of self-retained cryopreserved amniotic membrane for treatment of neuropathic corneal pain. Ocular Surf. 2018;16(1):132–8. https://doi.org/10.1016/j.jtos.2017.10.003.

    Article  Google Scholar 

  174. Stason WB, Razavi M, Jacobs DS, Shepard DS, Suaya JA, Johns L, et al. Clinical benefits of the boston ocular surface prosthesis. Am J Ophthalmol. 2010;149(1):54–61.e2. https://doi.org/10.1016/j.ajo.2009.07.037.

    Article  PubMed  Google Scholar 

  175. Gervasio KA, Godfrey KJ, Marlow ED, Lee MN, Lelli GJ Jr. Prosthetic REPLACEMENT of the ocular surface ecosystem (PROSE) versus standard of care for postsurgical lagophthalmos and exposure keratopathy: trends in visual outcomes. Ophthalmic Plast Reconstr Surg. 2018. https://doi.org/10.1097/IOP.0000000000001233.

    Article  Google Scholar 

  176. Harthan JS, Shorter E. Therapeutic uses of scleral contact lenses for ocular surface disease: patient selection and special considerations. Clin Optometry. 2018;10:65–74. https://doi.org/10.2147/OPTO.S144357.

    Article  Google Scholar 

  177. Romero-Rangel T, Stavrou P, Cotter J, Rosenthal P, Baltatzis S, Foster CS. Gas-permeable scleral contact lens therapy in ocular surface disease. Am J Ophthalmol. 2000;130(1):25–322. https://doi.org/10.1016/s0002-9394(00)00378-0.

    Article  CAS  PubMed  Google Scholar 

  178. Theophanous C, Jacobs DS, Hamrah P. Corneal neuralgia after LASIK. Optom Vis Sci. 2015;92(9):e233–e240240. https://doi.org/10.1097/OPX.0000000000000652.

    Article  PubMed  Google Scholar 

  179. Jensen TS, Madsen CS, Finnerup NB. Pharmacology and treatment of neuropathic pains. Curr Opin Neurol. 2009;22(5):467–74. https://doi.org/10.1097/WCO.0b013e3283311e13.

    Article  CAS  PubMed  Google Scholar 

  180. Attal N, Cruccu G, Haanpaa M, Hansson P, Jensen TS, Nurmikko T, et al. EFNS guidelines on pharmacological treatment of neuropathic pain. Eur J Neurol. 2006;13(11):1153–69. https://doi.org/10.1111/j.1468-1331.2006.01511.x.

    Article  CAS  PubMed  Google Scholar 

  181. Galor A, Moein HR, Lee C, Rodriguez A, Felix ER, Sarantopoulos KD, et al. Neuropathic pain and dry eye. Ocul Surf. 2018;16(1):31–44. https://doi.org/10.1016/j.jtos.2017.10.001.

    Article  PubMed  Google Scholar 

  182. Alkan H, Ardic F, Erdogan C, Sahin F, Sarsan A, Findikoglu G. Turkish version of the painDETECT questionnaire in the assessment of neuropathic pain: a validity and reliability study. Pain Med. 2013;14(12):1933–43. https://doi.org/10.1111/pme.12222.

    Article  PubMed  Google Scholar 

  183. Ongun N, Ongun GT. Is gabapentin effective in dry eye disease and neuropathic ocular pain? Acta Neurol Belg. 2019. https://doi.org/10.1007/s13760-019-01156-w.

    Article  PubMed  Google Scholar 

  184. Small LR, Galor A, Felix ER, Horn DB, Levitt RC, Sarantopoulos CD. Oral gabapentinoids and nerve blocks for the treatment of chronic ocular pain. Eye Contact Lens. 2019. https://doi.org/10.1097/ICL.0000000000000630.

    Article  PubMed  Google Scholar 

  185. Hayashida K, Eisenach JC. Multiplicative interactions to enhance gabapentin to treat neuropathic pain. Eur J Pharmacol. 2008;598(1–3):21–6. https://doi.org/10.1016/j.ejphar.2008.09.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Baron R, Binder A, Wasner G. Neuropathic pain: diagnosis, pathophysiological mechanisms, and treatment. Lancet Neurol. 2010;9(8):807–19. https://doi.org/10.1016/s1474-4422(10)70143-5.

    Article  PubMed  Google Scholar 

  187. Knadler MP, Lobo E, Chappell J, Bergstrom R. Duloxetine: clinical pharmacokinetics and drug interactions. Clin Pharmacokinet. 2011;50(5):281–94. https://doi.org/10.2165/11539240-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  188. Bates D, Schultheis BC, Hanes MC, Jolly SM, Chakravarthy KV, Deer TR, et al. A comprehensive algorithm for management of neuropathic pain. Pain Med. 2019;20(Suppl 1):S2–S12. https://doi.org/10.1093/pm/pnz075.

    Article  PubMed  PubMed Central  Google Scholar 

  189. Duehmke RM, Derry S, Wiffen PJ, Bell RF, Aldington D, Moore RA. Tramadol for neuropathic pain in adults. Cochrane Database Syst Rev. 2017;6:CD003726. https://doi.org/10.1002/14651858.CD003726.pub4.

    Article  PubMed  Google Scholar 

  190. Attal N, Cruccu G, Baron R, Haanpaa M, Hansson P, Jensen TS, et al. EFNS guidelines on the pharmacological treatment of neuropathic pain: 2010 revision. Eur J Neurol. 2010;17(9):1113–e88. https://doi.org/10.1111/j.1468-1331.2010.02999.x.

    Article  CAS  PubMed  Google Scholar 

  191. Max MB. Treatment of post-herpetic neuralgia: antidepressants. Ann Neurol. 1994;35(S1):S50–S3.

    Article  Google Scholar 

  192. Derry S, Wiffen PJ, Aldington D, Moore RA. Nortriptyline for neuropathic pain in adults. Cochrane Database Syst Rev. 2015;1(1):11209. https://doi.org/10.1002/14651858.CD011209.pub2.

    Article  Google Scholar 

  193. Watson CP, Evans RJ, Reed K, Merskey H, Goldsmith L, Warsh J. Amitriptyline versus placebo in postherpetic neuralgia. Neurology. 1982;32(6):671–3. https://doi.org/10.1212/wnl.32.6.671.

    Article  CAS  PubMed  Google Scholar 

  194. Graff-Radford SB, Shaw LR, Naliboff BN. Amitriptyline and fluphenazine in the treatment of postherpetic neuralgia. Clin J Pain. 2000;16(3):188–92.

    Article  CAS  Google Scholar 

  195. Watson CP, Vernich L, Chipman M, Reed K. Nortriptyline versus amitriptyline in postherpetic neuralgia: a randomised trial. Neurology. 1998;51(4):1166–71. https://doi.org/10.1212/wnl.51.4.1166.

    Article  CAS  PubMed  Google Scholar 

  196. Hansson P, Ekblom A. Transcutaneous electrical nerve stimulation (TENS) as compared to placebo TENS for the relief of acute oro-facial pain. Pain. 1983;15(1–4):157–65.

    Article  CAS  Google Scholar 

  197. Johnson MD, Burchiel KJ. Peripheral stimulation for treatment of trigeminal postherpetic neuralgia and trigeminal posttraumatic neuropathic pain: a pilot study. Neurosurgery. 2004;55(1):135–42.

    Article  Google Scholar 

  198. Ainsworth L, Budelier K, Clinesmith M, Fiedler A, Landstrom R, Leeper BJ, et al. Transcutaneous electrical nerve stimulation (TENS) reduces chronic hyperalgesia induced by muscle inflammation. Pain. 2006;120(1–2):182–7.

    Article  Google Scholar 

  199. Melzack R, Wall PD. Pain mechanisms: a new theory. Science. 1965;150(3699):971–9.

    Article  CAS  Google Scholar 

  200. Tabeeva GR. Neurostimulation of the supraorbital nerve with the Cefaly device - a new method for the treatment of migraine. Zh Nevrol Psikhiatr Im S S Korsakova. 2019;119(3):133–40. https://doi.org/10.17116/jnevro2019119031133.

    Article  CAS  PubMed  Google Scholar 

  201. Wheeler A, Smith HS. Botulinum toxins: mechanisms of action, antinociception and clinical applications. Toxicology. 2013;306:124–46. https://doi.org/10.1016/j.tox.2013.02.006.

    Article  CAS  PubMed  Google Scholar 

  202. Blumenfeld A, Silberstein SD, Dodick DW, Aurora SK, Turkel CC, Binder WJ. Method of injection of onabotulinumtoxinA for chronic migraine: a safe, well-tolerated, and effective treatment paradigm based on the PREEMPT clinical program. Headache. 2010;50(9):1406–18. https://doi.org/10.1111/j.1526-4610.2010.01766.x.

    Article  PubMed  Google Scholar 

  203. Başar E, Arıcı C. Use of Botulinum Neurotoxin in Ophthalmology. Turk J Ophthalmol. 2016;46(6):282–90. https://doi.org/10.4274/tjo.57701.

    Article  PubMed  PubMed Central  Google Scholar 

  204. Diel RJ, Kroeger ZA, Levitt RC, Sarantopoulos C, Sered H, Martinez-Barrizonte J, et al. Botulinum Toxin A for the treatment of photophobia and dry eye. Ophthalmology. 2018;125(1):139–40. https://doi.org/10.1016/j.ophtha.2017.09.031.

    Article  PubMed  Google Scholar 

  205. Diel RJ, Hwang J, Kroeger ZA, Levitt RC, Sarantopoulos CD, Sered H, et al. Photophobia and sensations of dryness in patients with migraine occur independent of baseline tear volume and improve following botulinum toxin A injections. Br J Ophthalmol. 2019;103(8):1024–9. https://doi.org/10.1136/bjophthalmol-2018-312649.

    Article  PubMed  Google Scholar 

  206. Venkateswaran NJH, Rong AJ, Levitt AE, Diel RJ, Levitt RC, Sarantopoulos K, Lee WW, Galor A. Onabotulinum toxin A improves photophobia and sensations of dryness independent of ocular surface parameters in patients with neuropathic-like dry eye without a history of migraine. [Poster Presentation]. 2019 (in press).

  207. Duerr ER, Chang A, Venkateswaran N, Goldhardt R, Levitt RC, Gregori NZ, et al. Resolution of pain with periocular injections in a patient with a 7-year history of chronic ocular pain. Am J Ophthalmol Case Rep. 2019;14:35–8. https://doi.org/10.1016/j.ajoc.2019.02.001.

    Article  PubMed  PubMed Central  Google Scholar 

  208. Sayegh RR, Sweet JA, Miller JP, Hayek SM. Electrical stimulation of the trigeminal ganglion and intrathecal drug delivery systems for the management of corneal neuropathic pain. Cornea. 2016;35(4):576–7. https://doi.org/10.1097/ICO.0000000000000751.

    Article  PubMed  Google Scholar 

  209. Hayek SM, Sweet JA, Miller JP, Sayegh RR. Successful management of corneal neuropathic pain with intrathecal targeted drug delivery. Pain Med. 2016;17(7):1302–7. https://doi.org/10.1093/pm/pnv058.

    Article  PubMed  Google Scholar 

  210. Patel S, Felix ER, Levitt RC, Sarantopoulos CD, Galor A. Dysfunctional Coping Mechanisms Contribute to Dry Eye Symptoms. J Clin Med. 2019. https://doi.org/10.3390/jcm8060901.

    Article  PubMed  PubMed Central  Google Scholar 

  211. Zilliox LA. Neuropathic Pain. Continuum (Minneap Minn). 2017;23(2, selected topics in outpatient neurology):512–32. https://doi.org/10.1212/CON.0000000000000462.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anat Galor.

Ethics declarations

Funding

Supported by the Department of Veterans Affairs, Veterans Health Administration, Office of Research and Development, Clinical Sciences Research EPID-006-15S (Dr Galor), R01EY026174 (Dr Galor), NIH Center Core Grant P30EY014801 and Research to Prevent Blindness Unrestricted Grant.

Conflict of Interest

Authors Dermer, Lent-Schochet, Theotoka, Paba, Cheema, and Kim have no conflicts of interest to disclose. Dr. Anat Galor has no conflicts of interest to declare and her grant and consulting activities have not influenced the content of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dermer, H., Lent-Schochet, D., Theotoka, D. et al. A Review of Management Strategies for Nociceptive and Neuropathic Ocular Surface Pain. Drugs 80, 547–571 (2020). https://doi.org/10.1007/s40265-020-01282-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-020-01282-3

Navigation