Skip to main content
Log in

Therapies Directed Against B-Cells and Downstream Effectors in Generalized Autoimmune Myasthenia Gravis: Current Status

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Myasthenia gravis is a rare, heterogeneous, classical autoimmune disease characterized by fatigable skeletal muscle weakness, which is directly mediated by autoantibodies targeting various components of the neuromuscular junction, including the acetylcholine receptor, muscle specific tyrosine kinase, and lipoprotein-related protein 4. Subgrouping of myasthenia gravis is dependent on the age of onset, pattern of clinical weakness, autoantibody detected, type of thymic pathology, and response to immunotherapy. Generalized immunosuppressive therapies are effective in all subgroups of myasthenia gravis; however, approximately 15% remain refractory and more effective treatments with improved safety profiles are needed. In recent years, successful utilization of targeted B-cell therapies in this disease has triggered renewed focus in unraveling the underlying immunopathology in attempts to identify newer therapeutic targets. While myasthenia gravis is predominantly B-cell mediated, T cells, T cell–B cell interactions, and B-cell-related factors are increasingly recognized to play key roles in its immunopathology, particularly in autoantibody production, and novel therapies have focused on targeting these specific immune system components. This overview describes the current understanding of myasthenia gravis immunopathology before discussing B-cell-related therapies, their therapeutic targets, and the rationale and evidence for their use. Several prospective studies demonstrated efficacy of rituximab in various myasthenia gravis subtypes, particularly that characterized by antibodies against muscle-specific tyrosine kinase. However, a recent randomized control trial in patients with acetylcholine receptor antibodies was negative. Eculizumab, a complement inhibitor, has recently gained regulatory approval for myasthenia gravis based on a phase III trial that narrowly missed its primary endpoint while achieving robust results in all secondary endpoints. Zilucoplan is a subcutaneously administered terminal complement inhibitor that recently demonstrated significant improvements in functional outcome measures in a phase II trial. Rozanolixizumab, CFZ533, belimumab, and bortezomib are B-cell-related therapies that are in the early stages of evaluation in treating myasthenia gravis. The rarity of myasthenia gravis, heterogeneity in its clinical manifestations, and variability in immunosuppressive regimens are challenges to conducting successful trials. Nonetheless, these are promising times for myasthenia gravis, as renewed research efforts provide novel insights into its immunopathology, allowing for development of targeted therapies with increased efficacy and safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gilhus NE. Myasthenia gravis. N Engl J Med. 2016;375(26):2570–81.

    CAS  PubMed  Google Scholar 

  2. Gilhus NE, Verschuuren JJ. Myasthenia gravis: subgroup classification and therapeutic strategies. Lancet Neurol. 2015;14(10):1023–36.

    CAS  PubMed  Google Scholar 

  3. Chiou-Tan FY, Gilchrist JM. Repetitive nerve stimulation and single-fiber electromyography in the evaluation of patients with suspected myasthenia gravis or Lambert–Eaton myasthenic syndrome: review of recent literature. Muscle Nerve. 2015;52(3):455–62.

    PubMed  Google Scholar 

  4. Kerty E, Elsais A, Argov Z, Evoli A, Gilhus NE. EFNS/ENS guidelines for the treatment of ocular myasthenia. Eur J Neurol. 2014;21(5):687–93.

    CAS  PubMed  Google Scholar 

  5. Sanders DB, Wolfe GI, Benatar M, Evoli A, Gilhus NE, Illa I, et al. International consensus guidance for management of myasthenia gravis: executive summary. Neurology. 2016;87(4):419–25.

    PubMed  PubMed Central  Google Scholar 

  6. Silvestri NJ, Wolfe GI. Treatment-refractory myasthenia gravis. J Clin Neuromuscul Dis. 2014;15(4):167–78.

    PubMed  Google Scholar 

  7. Zaja F, Russo D, Fuga G, Perella G, Baccarani M. Rituximab for myasthenia gravis developing after bone marrow transplant. Neurology. 2000;55(7):1062–3.

    CAS  PubMed  Google Scholar 

  8. Lebrun C, Bourg V, Tieulie N, Thomas P. Successful treatment of refractory generalized myasthenia gravis with rituximab. Eur J Neurol. 2009;16(2):246–50.

    CAS  PubMed  Google Scholar 

  9. Stieglbauer K, Topakian R, Schaffer V, Aichner FT. Rituximab for myasthenia gravis: three case reports and review of the literature. J Neurol Sci. 2009;280(1–2):120–2.

    CAS  PubMed  Google Scholar 

  10. Zebardast N, Patwa HS, Novella SP, Goldstein JM. Rituximab in the management of refractory myasthenia gravis. Muscle Nerve. 2010;41(3):375–8.

    CAS  PubMed  Google Scholar 

  11. Nowak RJ, Dicapua DB, Zebardast N, Goldstein JM. Response of patients with refractory myasthenia gravis to rituximab: a retrospective study. Ther Adv Neurol Disord. 2011;4(5):259–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Collongues N, Casez O, Lacour A, Tranchant C, Vermersch P, de Seze J, et al. Rituximab in refractory and non-refractory myasthenia: a retrospective multicenter study. Muscle Nerve. 2012;46(5):687–91.

    CAS  PubMed  Google Scholar 

  13. Diaz-Manera J, Martinez-Hernandez E, Querol L, Klooster R, Rojas-Garcia R, Suarez-Calvet X, et al. Long-lasting treatment effect of rituximab in MuSK myasthenia. Neurology. 2012;78(3):189–93.

    CAS  PubMed  Google Scholar 

  14. Hehir MK, Hobson-Webb LD, Benatar M, Barnett C, Silvestri NJ, Howard JF Jr, et al. Rituximab as treatment for anti-MuSK myasthenia gravis: multicenter blinded prospective review. Neurology. 2017;89(10):1069–77.

    CAS  PubMed  Google Scholar 

  15. Robeson KR, Kumar A, Keung B, DiCapua DB, Grodinsky E, Patwa HS, et al. Durability of the rituximab response in acetylcholine receptor autoantibody-positive myasthenia gravis. JAMA Neurol. 2017;74(1):60–6.

    PubMed  Google Scholar 

  16. Tandan R, Hehir MK 2nd, Waheed W, Howard DB. Rituximab treatment of myasthenia gravis: a systematic review. Muscle Nerve. 2017;56(2):185–96.

    CAS  PubMed  Google Scholar 

  17. Beecher G, Anderson D, Siddiqi ZA. Rituximab in refractory myasthenia gravis: extended prospective study results. Muscle Nerve. 2018;58(3):452–5.

    CAS  PubMed  Google Scholar 

  18. Anderson D, Phan C, Johnston WS, Siddiqi ZA. Rituximab in refractory myasthenia gravis: a prospective, open-label study with long-term follow-up. Ann Clin Transl Neurol. 2016;3(7):552–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Patrick J, Lindstrom J. Autoimmune response to acetylcholine receptor. Science. 1973;180(4088):871–2.

    CAS  PubMed  Google Scholar 

  20. Lennon VA, Lindstrom JM, Seybold ME. Experimental autoimmune myasthenia: a model of myasthenia gravis in rats and guinea pigs. J Exp Med. 1975;141(6):1365–75.

    CAS  PubMed  Google Scholar 

  21. Tarrab-Hazdai R, Aharonov A, Silman I, Fuchs S, Abramsky O. Experimental autoimmune myasthenia induced in monkeys by purified acetylcholine receptor. Nature. 1975;256(5513):128–30.

    CAS  PubMed  Google Scholar 

  22. Tarrab-Hazdi R, Aharonov A, Abramsky O, Yaar I, Fuchs S. Passive transfer of experimental autoimmune myasthenia by lymph node cells in inbred guinea pigs. J Exp Med. 1975;142(3):785–9.

    CAS  PubMed  Google Scholar 

  23. Toyka KV, Brachman DB, Pestronk A, Kao I. Myasthenia gravis: passive transfer from man to mouse. Science. 1975;190(4212):397–9.

    CAS  PubMed  Google Scholar 

  24. Lindstrom JM, Engel AG, Seybold ME, Lennon VA, Lambert EH. Pathological mechanisms in experimental autoimmune myasthenia gravis. II. Passive transfer of experimental autoimmune myasthenia gravis in rats with anti-acetylcholine recepotr antibodies. J Exp Med. 1976;144(3):739–53.

    CAS  PubMed  Google Scholar 

  25. Aharonov A, Tarrab-Hazdai R, Silman I, Fuchs S. Immunochemical studies on acetylcholine receptor from Torpedo californica. Immunochemistry. 1977;14(2):129–37.

    CAS  PubMed  Google Scholar 

  26. Oda K, Korenaga S, Ito Y. Myasthenia gravis: passive transfer to mice of antibody to human and mouse acetylcholine receptor. Neurology. 1981;31(3):282–7.

    CAS  PubMed  Google Scholar 

  27. Viegas S, Jacobson L, Waters P, Cossins J, Jacob S, Leite MI, et al. Passive and active immunization models of MuSK-Ab positive myasthenia: electrophysiological evidence for pre and postsynaptic defects. Exp Neurol. 2012;234(2):506–12.

    CAS  PubMed  Google Scholar 

  28. Shen C, Lu Y, Zhang B, Figueiredo D, Bean J, Jung J, et al. Antibodies against low-density lipoprotein receptor-related protein 4 induce myasthenia gravis. J Clin Invest. 2013;123(12):5190–202.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Fuchs S, Aricha R, Reuveni D, Souroujon MC. Experimental autoimmune myasthenia gravis (EAMG): from immunochemical characterization to therapeutic approaches. J Autoimmun. 2014;54:51–9.

    CAS  PubMed  Google Scholar 

  30. Keesey J, Lindstrom J, Cokely H. Anti-acetylcholine receptor antibody in neonatal myasthenia gravis. N Engl J Med. 1977;296(1):55.

    CAS  PubMed  Google Scholar 

  31. Donaldson JO, Penn AS, Lisak RP, Abramsky O, Brenner T, Schotland DL. Antiacetylcholine receptor antibody in neonatal myasthenia gravis. Am J Dis Child. 1981;135(3):222–6.

    CAS  PubMed  Google Scholar 

  32. Melber D. Maternal-fetal transmission of myasthenia gravis with acetylcholine-receptor antibody. N Engl J Med. 1988;318(15):996.

    CAS  PubMed  Google Scholar 

  33. Vernet-der Garabedian B, Lacokova M, Eymard B, Morel E, Faltin M, Zajac J, et al. Association of neonatal myasthenia gravis with antibodies against the fetal acetylcholine receptor. J Clin Invest. 1994;94(2):555–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Yan M, Liu Z, Fei E, Chen W, Lai X, Luo B, et al. Induction of anti-agrin antibodies causes myasthenia gravis in mice. Neuroscience. 2018;373:113–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Gallardo E, Martinez-Hernandez E, Titulaer MJ, Huijbers MG, Martinez MA, Ramos A, et al. Cortactin autoantibodies in myasthenia gravis. Autoimmun Rev. 2014;13(10):1003–7.

    CAS  PubMed  Google Scholar 

  36. Zoltowska Katarzyna M, Belaya K, Leite M, Patrick W, Vincent A, Beeson D. Collagen Q—a potential target for autoantibodies in myasthenia gravis. J Neurol Sci. 2015;348(1–2):241–4.

    CAS  PubMed  Google Scholar 

  37. Agius MA, Zhu S, Kirvan CA, Schafer AL, Lin MY, Fairclough RH, et al. Rapsyn antibodies in myasthenia gravis. Ann N Y Acad Sci. 1998;841:516–21.

    CAS  PubMed  Google Scholar 

  38. Yamamoto AM, Gajdos P, Eymard B, Tranchant C, Warter JM, Gomez L, et al. Anti-titin antibodies in myasthenia gravis: tight association with thymoma and heterogeneity of nonthymoma patients. Arch Neurol. 2001;58(6):885–90.

    CAS  PubMed  Google Scholar 

  39. Romi F, Skeie GO, Gilhus NE, Aarli JA. Striational antibodies in myasthenia gravis: reactivity and possible clinical significance. Arch Neurol. 2005;62(3):442–6.

    PubMed  Google Scholar 

  40. Romi F, Suzuki S, Suzuki N, Petzold A, Plant GT, Gilhus NE. Anti-voltage-gated potassium channel Kv1.4 antibodies in myasthenia gravis. J Neurol. 2012;259(7):1312–6.

    CAS  PubMed  Google Scholar 

  41. Rodgaard A, Nielsen FC, Djurup R, Somnier F, Gammeltoft S. Acetylcholine receptor antibody in myasthenia gravis: predominance of IgG subclasses 1 and 3. Clin Exp Immunol. 1987;67(1):82–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Gilhus NE, Skeie GO, Romi F, Lazaridis K, Zisimopoulou P, Tzartos S. Myasthenia gravis—autoantibody characteristics and their implications for therapy. Nat Rev Neurol. 2016;12(5):259–68.

    CAS  PubMed  Google Scholar 

  43. Koneczny I, Cossins J, Vincent A. The role of muscle-specific tyrosine kinase (MuSK) and mystery of MuSK myasthenia gravis. J Anat. 2014;224(1):29–35.

    CAS  PubMed  Google Scholar 

  44. McConville J, Farrugia ME, Beeson D, Kishore U, Metcalfe R, Newsom-Davis J, et al. Detection and characterization of MuSK antibodies in seronegative myasthenia gravis. Ann Neurol. 2004;55(4):580–4.

    CAS  PubMed  Google Scholar 

  45. Ma CS, Deenick EK, Batten M, Tangye SG. The origins, function, and regulation of T follicular helper cells. J Exp Med. 2012;209(7):1241–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Xin N, Fu L, Shao Z, Guo M, Zhang X, Zhang Y, et al. RNA interference targeting Bcl-6 ameliorates experimental autoimmune myasthenia gravis in mice. Mol Cell Neurosci. 2014;58:85–94.

    CAS  PubMed  Google Scholar 

  47. Nath A, Kerman RH, Novak IS, Wolinsky JS. Immune studies in human immunodeficiency virus infection with myasthenia gravis: a case report. Neurology. 1990;40(4):581–3.

    CAS  PubMed  Google Scholar 

  48. Authier FJ, De Grissac N, Degos JD, Gherardi RK. Transient myasthenia gravis during HIV infection. Muscle Nerve. 1995;18(8):914–6.

    CAS  PubMed  Google Scholar 

  49. Zhang M, Zhou Y, Guo J, Li H, Tian F, Gong L, et al. Thymic TFH cells involved in the pathogenesis of myasthenia gravis with thymoma. Exp Neurol. 2014;254:200–5.

    CAS  PubMed  Google Scholar 

  50. Song Y, Zhou L, Miao F, Chen G, Zhu Y, Gao X, et al. Increased frequency of thymic T follicular helper cells in myasthenia gravis patients with thymoma. J Thorac Dis. 2016;8(3):314–22.

    PubMed  PubMed Central  Google Scholar 

  51. Luo C, Li Y, Liu W, Feng H, Wang H, Huang X, et al. Expansion of circulating counterparts of follicular helper T cells in patients with myasthenia gravis. J Neuroimmunol. 2013;256(1–2):55–61.

    CAS  PubMed  Google Scholar 

  52. Zhang CJ, Gong Y, Zhu W, Qi Y, Yang CS, Fu Y, et al. Augmentation of circulating follicular helper T cells and their impact on autoreactive B cells in myasthenia gravis. J Immunol. 2016;197(7):2610–7.

    CAS  PubMed  Google Scholar 

  53. Yang Y, Zhang M, Ye Y, Ma S, Fan L, Li Z. High frequencies of circulating Tfh–Th17 cells in myasthenia gravis patients. Neurol Sci. 2017;38(9):1599–608.

    PubMed  Google Scholar 

  54. Gensous N, Charrier M, Duluc D, Contin-Bordes C, Truchetet ME, Lazaro E, et al. T follicular helper cells in autoimmune disorders. Front Immunol. 2018;9:1637.

    PubMed  PubMed Central  Google Scholar 

  55. Alexander CM, Tygrett LT, Boyden AW, Wolniak KL, Legge KL, Waldschmidt TJ. T regulatory cells participate in the control of germinal centre reactions. Immunology. 2011;133(4):452–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Chung Y, Tanaka S, Chu F, Nurieva RI, Martinez GJ, Rawal S, et al. Follicular regulatory T cells expressing Foxp3 and Bcl-6 suppress germinal center reactions. Nat Med. 2011;17(8):983–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Linterman MA, Pierson W, Lee SK, Kallies A, Kawamoto S, Rayner TF, et al. Foxp3+ follicular regulatory T cells control the germinal center response. Nat Med. 2011;17(8):975–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Wen Y, Yang B, Lu J, Zhang J, Yang H, Li J. Imbalance of circulating CD4(+)CXCR5(+)FOXP3(+) Tfr-like cells and CD4(+)CXCR5(+)FOXP3(−) Tfh-like cells in myasthenia gravis. Neurosci Lett. 2016;630:176–82.

    CAS  PubMed  Google Scholar 

  59. Balandina A, Lecart S, Dartevelle P, Saoudi A, Berrih-Aknin S. Functional defect of regulatory CD4(+)CD25+ T cells in the thymus of patients with autoimmune myasthenia gravis. Blood. 2005;105(2):735–41.

    CAS  PubMed  Google Scholar 

  60. Thiruppathi M, Rowin J, Ganesh B, Sheng JR, Prabhakar BS, Meriggioli MN. Impaired regulatory function in circulating CD4(+)CD25(high)CD127(low/−) T cells in patients with myasthenia gravis. Clin Immunol. 2012;145(3):209–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Berrih-Aknin S, Le Panse R. Myasthenia gravis: a comprehensive review of immune dysregulation and etiological mechanisms. J Autoimmun. 2014;52:90–100.

    CAS  PubMed  Google Scholar 

  62. Yi JS, Guidon A, Sparks S, Osborne R, Juel VC, Massey JM, et al. Characterization of CD4 and CD8 T cell responses in MuSK myasthenia gravis. J Autoimmun. 2014;52:130–8.

    CAS  PubMed  Google Scholar 

  63. Yilmaz V, Oflazer P, Aysal F, Durmus H, Poulas K, Yentur SP, et al. Differential cytokine changes in patients with myasthenia gravis with antibodies against AChR and MuSK. PLoS One. 2015;10(4):e0123546.

    PubMed  PubMed Central  Google Scholar 

  64. Zhang B, Wu T, Chen M, Zhou Y, Yi D, Guo R. The CD40/CD40L system: a new therapeutic target for disease. Immunol Lett. 2013;153(1–2):58–61.

    CAS  PubMed  Google Scholar 

  65. Im SH, Barchan D, Maiti PK, Fuchs S, Souroujon MC. Blockade of CD40 ligand suppresses chronic experimental myasthenia gravis by down-regulation of Th1 differentiation and up-regulation of CTLA-4. J Immunol. 2001;166(11):6893–8.

    CAS  PubMed  Google Scholar 

  66. Kawai T, Andrews D, Colvin RB, Sachs DH, Cosimi AB. Thromboembolic complications after treatment with monoclonal antibody against CD40 ligand. Nat Med. 2000;6(2):114.

    CAS  PubMed  Google Scholar 

  67. Mittag T, Kornfeld P, Tormay A, Woo C. Detection of anti-acetylcholine receptor factors in serum and thymus from patients with myasthenia gravis. N Engl J Med. 1976;294(13):691–4.

    CAS  PubMed  Google Scholar 

  68. Vincent A, Scadding GK, Thomas HC, Newsom-Davis J. In-vitro synthesis of anti-acetylcholine-receptor antibody by thymic lymphocytes in myasthenia gravis. Lancet. 1978;1(8059):305–7.

    CAS  PubMed  Google Scholar 

  69. Marx A, Pfister F, Schalke B, Saruhan-Direskeneli G, Melms A, Strobel P. The different roles of the thymus in the pathogenesis of the various myasthenia gravis subtypes. Autoimmun Rev. 2013;12(9):875–84.

    CAS  PubMed  Google Scholar 

  70. Marx A, Willcox N, Leite MI, Chuang WY, Schalke B, Nix W, et al. Thymoma and paraneoplastic myasthenia gravis. Autoimmunity. 2010;43(5–6):413–27.

    CAS  PubMed  Google Scholar 

  71. Wolfe GI, Kaminski HJ, Aban IB, Minisman G, Kuo HC, Marx A, et al. Randomized trial of thymectomy in myasthenia gravis. N Engl J Med. 2016;375(6):511–22.

    PubMed  PubMed Central  Google Scholar 

  72. Okumura M, Ohta M, Takeuchi Y, Shiono H, Inoue M, Fukuhara K, et al. The immunologic role of thymectomy in the treatment of myasthenia gravis: implication of thymus-associated B-lymphocyte subset in reduction of the anti-acetylcholine receptor antibody titer. J Thorac Cardiovasc Surg. 2003;126(6):1922–8.

    PubMed  Google Scholar 

  73. Vincent A, Newsom-Davis J, Newton P, Beck N. Acetylcholine receptor antibody and clinical response to thymectomy in myasthenia gravis. Neurology. 1983;33(10):1276–82.

    CAS  PubMed  Google Scholar 

  74. Newsom-Davis J, Willcox N, Scadding G, Calder L, Vincent A. Anti-acetylcholine receptor antibody synthesis by cultured lymphocytes in myasthenia gravis: thymic and peripheral blood cell interactions. Ann N Y Acad Sci. 1981;377:393–402.

    CAS  PubMed  Google Scholar 

  75. Fujii Y, Monden Y, Hashimoto J, Nakahara K, Kawashima Y. Acetylcholine receptor antibody production by bone marrow cells in a patient with myasthenia gravis. Neurology. 1985;35(4):577–9.

    CAS  PubMed  Google Scholar 

  76. Fujii Y, Monden Y, Hashimoto J, Nakahara K, Kawashima Y. Acetylcholine receptor antibody-producing cells in thymus and lymph nodes in myasthenia gravis. Clin Immunol Immunopathol. 1985;34(1):141–6.

    CAS  PubMed  Google Scholar 

  77. Leite MI, Strobel P, Jones M, Micklem K, Moritz R, Gold R, et al. Fewer thymic changes in MuSK antibody-positive than in MuSK antibody-negative MG. Ann Neurol. 2005;57(3):444–8.

    PubMed  Google Scholar 

  78. Clifford KM, Hobson-Webb LD, Benatar M, Burns TM, Barnett C, Silvestri NJ, et al. Thymectomy may not be associated with clinical improvement in MuSK myasthenia gravis. Muscle Nerve. 2018. https://doi.org/10.1002/mus.26404(Epub ahead of print).

    Article  Google Scholar 

  79. Lee JY, Stathopoulos P, Gupta S, Bannock JM, Barohn RJ, Cotzomi E, et al. Compromised fidelity of B-cell tolerance checkpoints in AChR and MuSK myasthenia gravis. Ann Clin Transl Neurol. 2016;3(6):443–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Stathopoulos P, Kumar A, Heiden JAV, Pascual-Goni E, Nowak RJ, O’Connor KC. Mechanisms underlying B cell immune dysregulation and autoantibody production in MuSK myasthenia gravis. Ann N Y Acad Sci. 2018;1412(1):154–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. LeBien TW, Tedder TF. B lymphocytes: how they develop and function. Blood. 2008;112(5):1570–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Quach TD, Rodriguez-Zhurbenko N, Hopkins TJ, Guo X, Hernandez AM, Li W, et al. Distinctions among circulating antibody-secreting cell populations, including B-1 cells, in human adult peripheral blood. J Immunol. 2016;196(3):1060–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Stathopoulos P, Kumar A, Nowak RJ, O’Connor KC. Autoantibody-producing plasmablasts after B cell depletion identified in muscle-specific kinase myasthenia gravis. JCI Insight. 2017;2:17.

    Google Scholar 

  84. Yi JS, Guptill JT, Stathopoulos P, Nowak RJ, O’Connor KC. B cells in the pathophysiology of myasthenia gravis. Muscle Nerve. 2018;57(2):172–84.

    PubMed  Google Scholar 

  85. Tedder TF. B10 cells: a functionally defined regulatory B cell subset. J Immunol. 2015;194(4):1395–401.

    CAS  PubMed  Google Scholar 

  86. Yi JS, Russo MA, Massey JM, Juel V, Hobson-Webb LD, Gable K, et al. B10 cell frequencies and suppressive capacity in myasthenia gravis are associated with disease severity. Front Neurol. 2017;8:34.

    PubMed  PubMed Central  Google Scholar 

  87. Sun F, Ladha SS, Yang L, Liu Q, Shi SX, Su N, et al. Interleukin-10 producing-B cells and their association with responsiveness to rituximab in myasthenia gravis. Muscle Nerve. 2014;49(4):487–94.

    CAS  PubMed  Google Scholar 

  88. Schneider P, MacKay F, Steiner V, Hofmann K, Bodmer JL, Holler N, et al. BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth. J Exp Med. 1999;189(11):1747–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Kang SY, Kang CH, Lee KH. B-cell-activating factor is elevated in serum of patients with myasthenia gravis. Muscle Nerve. 2016;54(6):1030–3.

    CAS  PubMed  Google Scholar 

  90. Guptill JT, Yi JS, Sanders DB, Guidon AC, Juel VC, Massey JM, et al. Characterization of B cells in muscle-specific kinase antibody myasthenia gravis. Neurol Neuroimmunol Neuroinflamm. 2015;2(2):e77.

    PubMed  PubMed Central  Google Scholar 

  91. Hahn BH. Belimumab for systemic lupus erythematosus. N Engl J Med. 2013;368(16):1528–35.

    CAS  PubMed  Google Scholar 

  92. Jaretzki A 3rd, Barohn RJ, Ernstoff RM, Kaminski HJ, Keesey JC, Penn AS, et al. Myasthenia gravis: recommendations for clinical research standards. Task Force of the Medical Scientific Advisory Board of the Myasthenia Gravis Foundation of America. Neurology. 2000;55(1):16–23.

    PubMed  Google Scholar 

  93. ClinicalTrials.gov. BeatMG: Phase II trial of rituximab in myasthenia gravis. NCT02110706. https://clinicaltrials.gov/ct2/show/NCT02110706. Accessed 18 Nov 2018.

  94. Burns TM. The MG composite: an outcome measure for myasthenia gravis for use in clinical trials and everyday practice. Ann N Y Acad Sci. 2012;1274:99–106.

    PubMed  Google Scholar 

  95. Barohn RJ, McIntire D, Herbelin L, Wolfe GI, Nations S, Bryan WW. Reliability testing of the quantitative myasthenia gravis score. Ann N Y Acad Sci. 1998;841:769–72.

    CAS  PubMed  Google Scholar 

  96. ClinicalTrials.gov. A study evaluating the safety and efficacy of rituximab in patients with myasthenia gravis (Rinomax). NCT02950155. https://clinicaltrials.gov/ct2/show/NCT02950155. Accessed 18 Nov 2018.

  97. Huang Z, Wu Y, Zhou X, Xu J, Zhu W, Shu Y, et al. Efficacy of therapy with bortezomib in solid tumors: a review based on 32 clinical trials. Future Oncol. 2014;10(10):1795–807.

    CAS  PubMed  Google Scholar 

  98. Gomez AM, Vrolix K, Martinez-Martinez P, Molenaar PC, Phernambucq M, van der Esch E, et al. Proteasome inhibition with bortezomib depletes plasma cells and autoantibodies in experimental autoimmune myasthenia gravis. J Immunol. 2011;186(4):2503–13.

    CAS  PubMed  Google Scholar 

  99. Gomez AM, Willcox N, Vrolix K, Hummel J, Nogales-Gadea G, Saxena A, et al. Proteasome inhibition with bortezomib depletes plasma cells and specific autoantibody production in primary thymic cell cultures from early-onset myasthenia gravis patients. J Immunol. 2014;193(3):1055–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Schneider-Gold C, Reinacher-Schick A, Ellrichmann G, Gold R. Bortezomib in severe MuSK-antibody positive myasthenia gravis: first clinical experience. Ther Adv Neurol Disord. 2017;10(10):339–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. ClinicalTrials.gov. Therapy of antibody-mediated autoimmune diseases by bortezomib (TAVAB). NCT02102594. https://clinicaltrials.gov/ct2/show/NCT02102594. Accessed 18 Nov 2018.

  102. Ristov J, Espie P, Ulrich P, Sickert D, Flandre T, Dimitrova M, et al. Characterization of the in vitro and in vivo properties of CFZ533, a blocking and non-depleting anti-CD40 monoclonal antibody. Am J Transplant. 2018;18(12):2895–904.

    CAS  PubMed  Google Scholar 

  103. Sidiropoulos PI, Boumpas DT. Lessons learned from anti-CD40L treatment in systemic lupus erythematosus patients. Lupus. 2004;13(5):391–7.

    CAS  PubMed  Google Scholar 

  104. ClinicalTrials.gov. Safety, tolerability, pharmacokinetics and efficacy of CFZ533 in moderate to severe myasthenia gravis. NCT02565576. https://clinicaltrials.gov/ct2/show/NCT02565576. Accessed 18 Nov 2018.

  105. Baker KP, Edwards BM, Main SH, Choi GH, Wager RE, Halpern WG, et al. Generation and characterization of LymphoStat-B, a human monoclonal antibody that antagonizes the bioactivities of B lymphocyte stimulator. Arthritis Rheum. 2003;48(11):3253–65.

    CAS  PubMed  Google Scholar 

  106. Hewett K, Sanders DB, Grove RA, Broderick CL, Rudo TJ, Bassiri A, et al. Randomized study of adjunctive belimumab in participants with generalized myasthenia gravis. Neurology. 2018;90(16):e1425–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Kiessling P, Lledo-Garcia R, Watanabe S, Langdon G, Tran D, Bari M, et al. The FcRn inhibitor rozanolixizumab reduces human serum IgG concentration: a randomized phase 1 study. Sci Transl Med. 2017;9:414.

    Google Scholar 

  108. Smith B, Kiessling A, Lledo-Garcia R, Dixon KL, Christodoulou L, Catley MC, et al. Generation and characterization of a high affinity anti-human FcRn antibody, rozanolixizumab, and the effects of different molecular formats on the reduction of plasma IgG concentration. MAbs. 2018;10(7):1111–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Liu L, Garcia AM, Santoro H, Zhang Y, McDonnell K, Dumont J, et al. Amelioration of experimental autoimmune myasthenia gravis in rats by neonatal FcR blockade. J Immunol. 2007;178(8):5390–8.

    CAS  PubMed  Google Scholar 

  110. ClinicalTrials.gov. Study to test the safety, tolerability and efficacy of UCB7665 in subjects with moderate to severe myasthenia gravis. NCT03052751. https://clinicaltrials.gov/ct2/show/study/NCT03052751. Accessed 17 Nov 2018.

  111. UCB Biopharmaceuticals. UCB Accelerates anti-FcRn rozanolixizumab in myasthenia gravis into confirmatory development phase. 2018. https://www.ucb.com/stories-media/Press-Releases/article/UCB-Accelerates-Anti-FcRn-Rozanolixizumab-in-Myasthenia-Gravis-into-Confirmatory-Development-Phase Accessed 17 Nov 2018.

  112. Nakano S, Engel AG. Myasthenia gravis: quantitative immunocytochemical analysis of inflammatory cells and detection of complement membrane attack complex at the end-plate in 30 patients. Neurology. 1993;43(6):1167–72.

    CAS  PubMed  Google Scholar 

  113. Sahashi K, Engel AG, Lambert EH, Howard FM Jr. Ultrastructural localization of the terminal and lytic ninth complement component (C9) at the motor end-plate in myasthenia gravis. J Neuropathol Exp Neurol. 1980;39(2):160–72.

    CAS  PubMed  Google Scholar 

  114. Alexion Pharmaceuticals Inc. Soliris (eculizumab): US prescribing information. 2018. http://alexion.com/Documents/Soliris_USPI.aspx. Accessed 17 Nov 2018.

  115. Zhou Y, Gong B, Lin F, Rother RP, Medof ME, Kaminski HJ. Anti-C5 antibody treatment ameliorates weakness in experimentally acquired myasthenia gravis. J Immunol. 2007;179(12):8562–7.

    CAS  PubMed  Google Scholar 

  116. Howard JF Jr, Utsugisawa K, Benatar M, Murai H, Barohn RJ, Illa I, et al. Safety and efficacy of eculizumab in anti-acetylcholine receptor antibody-positive refractory generalised myasthenia gravis (REGAIN): a phase 3, randomised, double-blind, placebo-controlled, multicentre study. Lancet Neurol. 2017;16(12):976–86.

    CAS  PubMed  Google Scholar 

  117. Howard JF Jr, Barohn RJ, Cutter GR, Freimer M, Juel VC, Mozaffar T, et al. A randomized, double-blind, placebo-controlled phase II study of eculizumab in patients with refractory generalized myasthenia gravis. Muscle Nerve. 2013;48(1):76–84.

    CAS  PubMed  Google Scholar 

  118. Wolfe GI, Herbelin L, Nations SP, Foster B, Bryan WW, Barohn RJ. Myasthenia gravis activities of daily living profile. Neurology. 1999;52(7):1487–9.

    CAS  PubMed  Google Scholar 

  119. ClinicalTrials.gov. ECU-MG-302: an extension trial of ECU-MG-301 to evaluate safety and efficacy of eculizumab in refractory generalized myasthenia gravis. https://clinicaltrials.gov/ct2/show/NCT02301624. Accessed 4 Dec 2018.

  120. Howard J, Wang JJ, O’Brien F, Mantegazza R. Efficacy of eculizumab on myasthenia gravis-activities of daily living and its respiratory, bulbar, limb and ocular domains in patients with ACHR+ refractory generalized myasthenia gravis [abstract]. Muscle Nerve. 2017;56(3):649.

    Google Scholar 

  121. Ra Pharmaceuticals. Ra Pharmaceuticals announces positive top-line data from phase 2 trial of zilucoplan in patients with generalized myasthenia gravis. 2018. https://rapharma.gcs-web.com/news-releases/news-release-details/ra-pharmaceuticals-announces-positive-top-line-data-phase-2. Accessed 25 Jan 2019.

  122. Genentech, Inc. Rituxan (rituximab): highlights of prescribing information. 2018. https://www.gene.com/download/pdf/rituxan_prescribing.pdf. Accessed 4 Dec 2018.

  123. Kanth KM, Solorzano GE, Goldman MD. PML in a patient with myasthenia gravis treated with multiple immunosuppressing agents. Neurol Clin Pract. 2016;6(2):e17–9.

    PubMed  PubMed Central  Google Scholar 

  124. Ale A, Bruna J, Navarro X, Udina E. Neurotoxicity induced by antineoplastic proteasome inhibitors. Neurotoxicology. 2014;43:28–35.

    CAS  PubMed  Google Scholar 

  125. Liu RT, Zhang P, Yang CL, Pang Y, Zhang M, Zhang N, et al. ONX-0914, a selective inhibitor of immunoproteasome, ameliorates experimental autoimmune myasthenia gravis by modulating humoral response. J Neuroimmunol. 2017;311:71–8.

    CAS  PubMed  Google Scholar 

  126. von Brzezinski L, Saring P, Landgraf P, Cammann C, Seifert U, Dieterich DC. Low neurotoxicity of ONX-0914 supports the idea of specific immunoproteasome inhibition as a side-effect-limitin, therapeutic strategyg. Eur J Microbiol Immunol (Bp). 2017;7(3):234–45.

    Google Scholar 

  127. Howard JF, Kaminski HJ, Nowak RJ, Wolfe GI, Benatar MG, Ricardo A, et al. RA101495, a subcutaneously administered peptide inhibitor of complement component 5 (C5) for the treatment of generalized myasthenia gravis (gMG): Phase 1 results and phase 2 design (S31.006). Neurology. 2018;90:15 Supplement.

    Google Scholar 

  128. Benatar M, Howard JF Jr, Barohn R, Wolfe GI, Cutter G. Learning from the past: reflections on recently completed myasthenia gravis trials. Ann N Y Acad Sci. 2018;1412(1):5–13.

    PubMed  Google Scholar 

  129. Guptill JT, Raja S, Sanders DB, Narayanaswami P. Comparative effectiveness clinical trials to advance treatment of myasthenia gravis. Ann N Y Acad Sci. 2018;1413(1):69–75.

    PubMed  Google Scholar 

  130. Aguilo-Seara G, Xie Y, Sheehan J, Kusner LL, Kaminski HJ. Ablation of IL-17 expression moderates experimental autoimmune myasthenia gravis disease severity. Cytokine. 2017;96:279–85.

    CAS  PubMed  Google Scholar 

  131. Aricha R, Mizrachi K, Fuchs S, Souroujon MC. Blocking of IL-6 suppresses experimental autoimmune myasthenia gravis. J Autoimmun. 2011;36(2):135–41.

    CAS  PubMed  Google Scholar 

  132. Deng C, Goluszko E, Tuzun E, Yang H, Christadoss P. Resistance to experimental autoimmune myasthenia gravis in IL-6-deficient mice is associated with reduced germinal center formation and C3 production. J Immunol. 2002;169(2):1077–83.

    CAS  PubMed  Google Scholar 

  133. Meager A, Wadhwa M, Dilger P, Bird C, Thorpe R, Newsom-Davis J, et al. Anti-cytokine autoantibodies in autoimmunity: preponderance of neutralizing autoantibodies against interferon-alpha, interferon-omega and interleukin-12 in patients with thymoma and/or myasthenia gravis. Clin Exp Immunol. 2003;132(1):128–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Schaffert H, Pelz A, Saxena A, Losen M, Meisel A, Thiel A, et al. IL-17-producing CD4(+) T cells contribute to the loss of B-cell tolerance in experimental autoimmune myasthenia gravis. Eur J Immunol. 2015;45(5):1339–47.

    CAS  PubMed  Google Scholar 

  135. Bryant A, Atkins H, Pringle CE, Allan D, Anstee G, Bence-Bruckler I, et al. Myasthenia gravis treated with autologous hematopoietic stem cell transplantation. JAMA Neurol. 2016;73(6):652–8.

    PubMed  Google Scholar 

  136. Sudres M, Maurer M, Robinet M, Bismuth J, Truffault F, Girard D, et al. Preconditioned mesenchymal stem cells treat myasthenia gravis in a humanized preclinical model. JCI Insight. 2017;2(7):e89665.

    PubMed  PubMed Central  Google Scholar 

  137. Yu J, Zheng C, Ren X, Li J, Liu M, Zhang L, et al. Intravenous administration of bone marrow mesenchymal stem cells benefits experimental autoimmune myasthenia gravis mice through an immunomodulatory action. Scand J Immunol. 2010;72(3):242–9.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaeem Azfer Siddiqi.

Ethics declarations

Funding

This review was prepared without industry or Grant funding.

Conflict of Interest

Grayson Beecher, Brendan N. Putko, Amanda N. Wagner, and Zaeem A. Siddiqi have no conflicts of interest that are directly relevant to the contents of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beecher, G., Putko, B.N., Wagner, A.N. et al. Therapies Directed Against B-Cells and Downstream Effectors in Generalized Autoimmune Myasthenia Gravis: Current Status. Drugs 79, 353–364 (2019). https://doi.org/10.1007/s40265-019-1065-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-019-1065-0

Navigation