Skip to main content
Log in

Does the Administration of Sevelamer or Nicotinamide Modify Uremic Toxins or Endotoxemia in Chronic Hemodialysis Patients?

  • Original Research Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Background

Hyperphosphatemia control is a major issue in hemodialysis patients. Both sevelamer and nicotinamide are prescribed for this purpose. In addition, they exert pleiotropic effects such as an improvement of inflammatory status and potentially enhanced clearance of uremic toxins. In the present secondary analysis of the NICOREN trial, we investigated the impact of sevelamer and nicotinamide on uremic toxins, toxin precursors, and endotoxemia in chronic hemodialysis patients.

Methods

Circulating uremic toxins (including phenylacetylglutamine, trimethylamine-N-oxide, p-cresyl sulfate, indoxyl sulfate, kynurenine, hippuric acid, indole-3-acetic acid, 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid, kynurenic acid, and p-cresyl glucuronide) and precursors were measured by ultra-performance liquid chromatography-tandem mass spectrometry, and urea, uric acid, phosphate, C-reactive protein, and intact parathyroid hormone by routine biochemistry methods. Serum endotoxin (evaluated by lipopolysaccharide levels) and C-terminal fibroblast growth factor-23 levels were measured using enzyme-linked immunosorbent assay kits.

Results

One hundred hemodialysis patients were randomized to receive either nicotinamide or sevelamer treatment. Among them, 63% were male, mean (± standard deviation) age was 65 ± 14 years, 47% had diabetes mellitus, and 51% had a history of cardiovascular disease. In the sevelamer group, but not the nicotinamide group, serum levels of urea, uric acid, and fibroblast growth factor-23 were significantly reduced after 6 months of treatment. The other circulating uremic toxins and toxin precursors remained unchanged in response to either phosphate-lowering agent. Sevelamer treatment led to a marked decrease in serum lipopolysaccharide (p < 0.001) whereas nicotinamide treatment induced an only modest decrease of borderline significance (p = 0.057). There was no change in C-reactive protein levels.

Conclusion

In contrast to sevelamer, nicotinamide did not reduce circulating levels of low-molecular-weight uremic toxins other than phosphate, and neither agent reduced circulating uremic toxins of high-molecular-weight or protein-bound toxins. Sevelamer, but not nicotinamide, reduced serum endotoxin levels. Despite no change in serum C-reactive protein, the endotoxin-lowering effect of sevelamer may help to attenuate the inflammatory status of patients with chronic kidney disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Block GA, Klassen PS, Lazarus JM, Ofsthun N, Lowrie EG, Chertow GM. Mineral metabolism, mortality, and morbidity in maintenance hemodialysis. J Am Soc Nephrol. 2004;15:2208–18.

    Article  CAS  PubMed  Google Scholar 

  2. Cannata-Andía JB, Martin KJ. The challenge of controlling phosphorus in chronic kidney disease. Nephrol Dial Transplant. 2016;31:541–7.

    Article  CAS  PubMed  Google Scholar 

  3. Carfagna F, Del Vecchio L, Pontoriero G, Locatelli F. Current and potential treatment options for hyperphosphatemia. Expert Opin Drug Saf. 2018;17:597–607.

    Article  CAS  PubMed  Google Scholar 

  4. Lenglet A, Liabeuf S, El Esper N, Brisset S, Mansour J, Lemaire-Hurtel A-S, et al. Efficacy and safety of nicotinamide in haemodialysis patients: the NICOREN study. Nephrol Dial Transplant. 2017;32:870–9.

    Article  CAS  PubMed  Google Scholar 

  5. Nikolov IG, Joki N, Maizel J, Lacour B, Drüeke TB, Massy ZA. Pleiotropic effects of the non-calcium phosphate binder sevelamer. Kidney Int Suppl. 2006;105:S16–23.

    Article  CAS  Google Scholar 

  6. Marangon N, Lindholm B, Stenvinkel P. Nonphosphate-binding effects of sevelamer: are they of clinical relevance? Semin Dial. 2008;21:385–9.

    Article  PubMed  Google Scholar 

  7. Wilkes BM, Reiner D, Kern M, Burke S. Simultaneous lowering of serum phosphate and LDL-cholesterol by sevelamer hydrochloride (RenaGel) in dialysis patients. Clin Nephrol. 1998;50:381–6.

    CAS  PubMed  Google Scholar 

  8. Braunlin W, Zhorov E, Guo A, Apruzzese W, Xu Q, Hook P, et al. Bile acid binding to sevelamer HCl. Kidney Int. 2002;62:611–9.

    Article  CAS  PubMed  Google Scholar 

  9. Caglar K, Yilmaz MI, Saglam M, Cakir E, Acikel C, Eyileten T, et al. Short-term treatment with sevelamer increases serum fetuin-a concentration and improves endothelial dysfunction in chronic kidney disease stage 4 patients. Clin J Am Soc Nephrol. 2008;3:61–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stinghen AEM, Gonçalves SM, Bucharles S, Branco FS, Gruber B, Hauser AB, et al. Sevelamer decreases systemic inflammation in parallel to a reduction in endotoxemia. Blood Purif. 2010;29:352–6.

    Article  CAS  PubMed  Google Scholar 

  11. Yubero-Serrano EM, Woodward M, Poretsky L, Vlassara H, Striker GE; AGE-less Study Group. Effects of sevelamer carbonate on advanced glycation end products and antioxidant/pro-oxidant status in patients with diabetic kidney disease. Clin J Am Soc Nephrol. 2015;10:759–66.

  12. Lin C-J, Pan C-F, Chuang C-K, Liu H-L, Huang S-F, Chen H-H, et al. Effects of sevelamer hydrochloride on uremic toxins serum indoxyl sulfate and P-cresyl sulfate in hemodialysis patients. J Clin Med Res. 2017;9:765–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Castro R, Herman A, Ferreira C, Travassos F, Nunes-Azevedo J, Oliveira M. RenaGel efficacy in severe secondary hyperparathyroidism. Nefrologia. 2002;22:448–55.

    CAS  PubMed  Google Scholar 

  14. Vanholder R, Pletinck A, Schepers E, Glorieux G. Biochemical and clinical impact of organic uremic retention solutes: a comprehensive update. Toxins. 2018;10.

  15. Duranton F, Cohen G, De Smet R, Rodriguez M, Jankowski J, Vanholder R, et al. Normal and pathologic concentrations of uremic toxins. J Am Soc Nephrol. 2012;23:1258–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lenglet A, Liabeuf S, Guffroy P, Fournier A, Brazier M, Massy ZA. Use of nicotinamide to treat hyperphosphatemia in dialysis patients. Drugs R D. 2013;13:165–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Moberg L, Olsson A, Berne C, Felldin M, Foss A, Källen R, et al. Nicotinamide inhibits tissue factor expression in isolated human pancreatic islets: implications for clinical islet transplantation. Transplantation. 2003;76:1285–8.

    Article  CAS  PubMed  Google Scholar 

  18. Hiromatsu Y, Sato M, Yamada K, Nonaka K. Inhibitory effects of nicotinamide on recombinant human interferon-gamma-induced intercellular adhesion molecule-1 (ICAM-1) and HLA-DR antigen expression on cultured human endothelial cells. Immunol Lett. 1992;31:35–9.

    Article  CAS  PubMed  Google Scholar 

  19. Biedroń R, Ciszek M, Tokarczyk M, Bobek M, Kurnyta M, Słominska EM, et al. 1-Methylnicotinamide and nicotinamide: two related anti-inflammatory agents that differentially affect the functions of activated macrophages. Arch Immunol Ther Exp (Warsz). 2008;56:127–34.

    Article  CAS  Google Scholar 

  20. Lappas M, Permezel M. The anti-inflammatory and antioxidative effects of nicotinamide, a vitamin B(3) derivative, are elicited by FoxO3 in human gestational tissues: implications for preterm birth. J Nutr Biochem. 2011;22:1195–201.

    Article  CAS  PubMed  Google Scholar 

  21. Hashimoto T, Perlot T, Rehman A, Trichereau J, Ishiguro H, Paolino M, et al. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature. 2012;487:477–81.

    Article  CAS  PubMed  Google Scholar 

  22. Hill LJ, Williams AC. Meat intake and the dose of vitamin B3—nicotinamide: cause of the causes of disease transitions, health divides, and health futures? Int J Tryptophan Res IJTR. 2017;10:1178646917704662.

    PubMed  Google Scholar 

  23. Lee W-J, Hase K. Gut microbiota-generated metabolites in animal health and disease. Nat Chem Biol. 2014;10:416–24.

    Article  CAS  PubMed  Google Scholar 

  24. Hauser AB, Stinghen AEM, Gonçalves SM, Bucharles S, Pecoits-Filho R. A gut feeling on endotoxemia: causes and consequences in chronic kidney disease. Nephron Clin Pract. 2011;118:c165–172; discussion c172.

  25. Gonçalves S, Pecoits-Filho R, Perreto S, Barberato SH, Stinghen AEM, Lima EGA, et al. Associations between renal function, volume status and endotoxaemia in chronic kidney disease patients. Nephrol Dial Transplant. 2006;21:2788–94.

    Article  PubMed  Google Scholar 

  26. Ferramosca E, Burke S, Chasan-Taber S, Ratti C, Chertow GM, Raggi P. Potential antiatherogenic and anti-inflammatory properties of sevelamer in maintenance hemodialysis patients. Am Heart J. 2005;149:820–5.

    Article  CAS  PubMed  Google Scholar 

  27. Yamada K, Fujimoto S, Tokura T, Fukudome K, Ochiai H, Komatsu H, et al. Effect of sevelamer on dyslipidemia and chronic inflammation in maintenance hemodialysis patients. Ren Fail. 2005;27:361–5.

    Article  CAS  PubMed  Google Scholar 

  28. Hauser AB, Azevedo IRF, Gonçalves S, Stinghen A, Aita C, Pecoits-Filho R. Sevelamer carbonate reduces inflammation and endotoxemia in an animal model of uremia. Blood Purif. 2010;30:153–8.

    Article  CAS  PubMed  Google Scholar 

  29. Sun PP, Perianayagam MC, Jaber BL. Endotoxin-binding affinity of sevelamer: a potential novel anti-inflammatory mechanism. Kidney Int Suppl. 2009;114:S20–5.

    Article  CAS  Google Scholar 

  30. Shantouf R, Budoff MJ, Ahmadi N, Tiano J, Flores F, Kalantar-Zadeh K. Effects of sevelamer and calcium-based phosphate binders on lipid and inflammatory markers in hemodialysis patients. Am J Nephrol. 2008;28:275–9.

    Article  CAS  PubMed  Google Scholar 

  31. Karacaglar E, Atar I, Altin C, Yetis B, Cakmak A, Bayraktar N, et al. The effects of niacin on inflammation in patients with non-ST elevated acute coronary syndrome. Acta Cardiol Sin. 2015;31:120–6.

    PubMed  PubMed Central  Google Scholar 

  32. Navarro-González JF, Mora-Fernández C, de Fuentes MM, Donate-Correa J, Cazaña-Pérez V, García-Pérez J. Effect of phosphate binders on serum inflammatory profile, soluble CD14, and endotoxin levels in hemodialysis patients. Clin J Am Soc Nephrol. 2011;6:2272–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fukuzawa M, Satoh J, Muto G, Muto Y, Nishimura S, Miyaguchi S, et al. Inhibitory effect of nicotinamide on in vitro and in vivo production of tumor necrosis factor-alpha. Immunol Lett. 1997;59:7–11.

    Article  CAS  PubMed  Google Scholar 

  34. Traister A, Breitman I, Bar-Lev E, Zvibel I, Harel A, Halpern Z, et al. Nicotinamide induces apoptosis and reduces collagen I and pro-inflammatory cytokines expression in rat hepatic stellate cells. Scand J Gastroenterol. 2005;40:1226–34.

    Article  CAS  PubMed  Google Scholar 

  35. Ungerstedt JS, Blömback M, Söderström T. Nicotinamide is a potent inhibitor of proinflammatory cytokines. Clin Exp Immunol. 2003;131:48–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bossola M, Di Stasio E, Sanguinetti M, Posteraro B, Antocicco M, Pepe G, et al. Serum endotoxin activity measured with endotoxin activity assay is associated with serum interleukin-6 levels in patients on chronic hemodialysis. Blood Purif. 2016;42:294–300.

    Article  CAS  PubMed  Google Scholar 

  37. Massy ZA, Pietrement C, Touré F. Reconsidering the lack of urea toxicity in dialysis patients. Semin Dial. 2016;29:333–7.

    Article  PubMed  Google Scholar 

  38. Su X, Xu B, Yan B, Qiao X, Wang L. Effects of uric acid-lowering therapy in patients with chronic kidney disease: a meta-analysis. PLoS One. 2017;12:e0187550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Garg JP, Chasan-Taber S, Blair A, Plone M, Bommer J, Raggi P, et al. Effects of sevelamer and calcium-based phosphate binders on uric acid concentrations in patients undergoing hemodialysis: a randomized clinical trial. Arthritis Rheum. 2005;52:290–5.

    Article  CAS  PubMed  Google Scholar 

  40. Brandenburg VM, Schlieper G, Heussen N, Holzmann S, Busch B, Evenepoel P, et al. Serological cardiovascular and mortality risk predictors in dialysis patients receiving sevelamer: a prospective study. Nephrol Dial Transplant. 2010;25:2672–9.

    Article  CAS  PubMed  Google Scholar 

  41. De Smet R, Thermote F, Lameire N, Vanholder R. Sevelamer hydrochloride (Renagel (R)) adsorbs the uremic compound indoxyl sulfate. 2003;14:206.

  42. Phan O, Ivanovski O, Nguyen-Khoa T, Mothu N, Angulo J, Westenfeld R, et al. Sevelamer prevents uremia-enhanced atherosclerosis progression in apolipoprotein E-deficient mice. Circulation. 2005;112:2875–82.

    Article  CAS  PubMed  Google Scholar 

  43. Soop A, Albert J, Weitzberg E, Bengtsson A, Nilsson C-G, Sollevi A. Nicotinamide does not influence cytokines or exhaled NO in human experimental endotoxaemia. Clin Exp Immunol. 2004;135:114–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Albert Fournier who initiated this clinical study. They also thank Amiens University Hospital, especially the Clinical Research and Innovation Directorate, for logistical support; the Clinical Research Center for study management (Momar Diouf); the Biochemistry laboratory of CHU Amiens (Romuald Mentaverri) for their contribution to FG23 measurements, and the Department of Nephrology, Internal Medicine, Dialysis, Transplantation and Intensive Care (Gabriel Choukroun). Last but not least, the authors would like to thank the patients and the physicians of the 18 dialysis centers that participated in the NICOREN trial.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziad A. Massy.

Ethics declarations

Funding

This study was funded by an interregional Grant (PHRC IR08: 2008-004673-17).

Conflict of interest

Ziad A. Massy reports grants for CKD REIN and other research projects from Amgen, Baxter, Fresenius Medical Care, GlaxoSmithKline, Merck Sharp and Dohme-Chibret, Sanofi-Genzyme, Lilly, Otsuka, and the French Government, as well as fees and grants to charities from Astellas, Baxter, Daichii, Medice, and Sanofi-Genzyme. These sources of funding are not necessarily related to the content of the present manuscript. Tilman B. Drueke reports fees for advisor/consultant services from Amgen, F. Hoffman-La Roche, FMC, Glaxo-Smith-Kline, KfH-Stiftung Präventivmedizin, Sanofi-Genzyme, and Vifor and speaker fees from Akebia, Amgen, Astellas, Chugai, Kyowa Hakko Kirin, and Sanofi-Genzyme. Aurelie Lenglet, Nicolas Fabresse, Méline Taupin, Cathy Gomila, Sophie Liabeuf, Said Kamel, and Jean Claude Alvarez have no conflicts of interest that are directly relevant to the content of this article.

Ethics approval

The protocol was approved by a local investigational review board (CPP Nord Ouest II, Amiens, France; reference 2008-004673-17) and implemented in accordance with the ethical principles of the Declaration of Helsinki (ClinicalTrials.gov registration number NCT01011699).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lenglet, A., Fabresse, N., Taupin, M. et al. Does the Administration of Sevelamer or Nicotinamide Modify Uremic Toxins or Endotoxemia in Chronic Hemodialysis Patients?. Drugs 79, 855–862 (2019). https://doi.org/10.1007/s40265-019-01118-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-019-01118-9

Navigation