Skip to main content
Log in

Targeting Bruton’s Tyrosine Kinase Across B-Cell Malignancies

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Bruton’s tyrosine kinase (BTK) is crucial in B-cell development and survival. The role of BTK as a downstream kinase in the B-cell receptor (BCR) signaling pathway is well described. As a key player in the pathogenesis of B-cell malignancies, targeting of dysregulated BCR signaling has been explored by development of inhibitors of downstream mediators. Discovery of the biological function of BTK and the development of covalent inhibitors for clinical use, ibrutinib as the lead agent and acalabrutinib as the second clinically approved BTK inhibitor, have revolutionized the treatment options for B-cell malignancies. Currently, ibrutinib is approved for mantle cell lymphoma, chronic lymphocytic leukemia, lymphoplasmacytic lymphoma/Waldenström macroglobulinemia, small lymphocytic lymphoma, marginal zone lymphoma and chronic graft versus host disease, while acalabrutinib is approved for mantle cell lymphoma. Potential expansion of indications in other diseases is under investigation in several clinical trials, while combination of BTK inhibitors with either chemoimmunotherapy or other targeted agents is being systematically explored in B-cell malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

(reprinted from the original paper with permission: Niemann and Wiestner [5])

Fig. 3

(reprinted from the original paper with permission: Herman et al. [64])

Similar content being viewed by others

References

  1. Bruton OC. Agammaglobulinemia. Pediatrics. 1952;9:722–8.

    CAS  PubMed  Google Scholar 

  2. Tsukada S, Saffran DC, Rawlings DJ, et al. Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell. 1993;72:279–90.

    Article  CAS  Google Scholar 

  3. Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK. Unmutated Ig VH genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood. 1999;94:1848–54.

    CAS  Google Scholar 

  4. Damle RN, Wasil T, Fais F, et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. In: Presented in part at the 40th annual meeting of the american society of hematology, held in Miami Beach, FL, December 4–8, 1998, 1999, vol. 94, pp. 1840–7.

  5. Niemann CU, Wiestner A. B-cell receptor signaling as a driver of lymphoma development and evolution. Semin Cancer Biol. 2013;23:410–21.

    Article  CAS  Google Scholar 

  6. Niemann CU, Jones J, Wiestner A. Towards targeted therapy of chronic lymphocytic leukemia. Adv Exp Med Biol. 2013;792:259–91.

    Article  CAS  Google Scholar 

  7. Wang ML, Rule S, Martin P, et al. Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. N Engl J Med. 2013;369:507–16.

    Article  CAS  Google Scholar 

  8. Wu J, Zhang M, Liu D. Acalabrutinib (ACP-196): a selective second-generation BTK inhibitor. J Hematol Oncol. 2016;9:21.

    Article  Google Scholar 

  9. Wang M, Rule S, Zinzani PL, et al. Acalabrutinib in relapsed or refractory mantle cell lymphoma (ACE-LY-004): a single-arm, multicentre, phase 2 trial. Lancet. 2018;391:659–67.

    Article  CAS  Google Scholar 

  10. Marcotte DJ, Liu YT, Arduini RM, et al. Structures of human Bruton’s tyrosine kinase in active and inactive conformations suggest a mechanism of activation for TEC family kinases. Protein Sci. 2010;19:429–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Murayama K, Kato-Murayama M, Mishima C, et al. Crystal structure of the Bruton’s tyrosine kinase PH domain with phosphatidylinositol. Biochem Biophys Res Commun. 2008;377:23–8.

    Article  CAS  Google Scholar 

  12. Woyach JA, Ruppert AS, Guinn D, et al. BTK(C481S)-mediated resistance to ibrutinib in chronic lymphocytic leukemia. J Clin Oncol Off J Am Soc Clin Oncol. 2017;35:1437–43.

    Article  CAS  Google Scholar 

  13. Komarova NL, Burger JA, Wodarz D. Evolution of ibrutinib resistance in chronic lymphocytic leukemia (CLL). Proc Natl Acad Sci USA. 2014;111:13906–11.

    Article  CAS  Google Scholar 

  14. Woyach JA, Furman RR, Liu TM, et al. Resistance mechanisms for the Bruton’s tyrosine kinase inhibitor ibrutinib. N Engl J Med. 2014;370:2286–94.

    Article  Google Scholar 

  15. Lemmon MA. Membrane recognition by phospholipid-binding domains. Nat Rev Mol Cell Biol. 2008;9:99.

    Article  CAS  Google Scholar 

  16. Muzio M, Apollonio B, Scielzo C, et al. Constitutive activation of distinct BCR-signaling pathways in a subset of CLL patients: a molecular signature of anergy. Blood. 2008;112:188–95.

    Article  CAS  Google Scholar 

  17. Sainz-Perez A, Gary-Gouy H, Portier A, et al. High Mda-7 expression promotes malignant cell survival and p38 MAP kinase activation in chronic lymphocytic leukemia. Leukemia. 2006;20:498.

    Article  CAS  Google Scholar 

  18. Ougolkov AV, Bone ND, Fernandez-Zapico ME, Kay NE, Billadeau DD. Inhibition of glycogen synthase kinase-3 activity leads to epigenetic silencing of nuclear factor κB target genes and induction of apoptosis in chronic lymphocytic leukemia B cells. Blood. 2007;110:735–42.

    Article  CAS  Google Scholar 

  19. Schuh K, Avots A, Tony H-P, Serfling E, Kneitz C. Nuclear NF-ATp is a hallmark of unstimulated B Cells from B-CLL patients. Leuk Lymphoma. 1996;23:583–92.

    Article  CAS  Google Scholar 

  20. Burger JA, Chiorazzi N. B cell receptor signaling in chronic lymphocytic leukemia. Trends Immunol. 2013;34:592–601.

    Article  CAS  Google Scholar 

  21. Herman SEM, Gordon AL, Hertlein E, et al. Bruton tyrosine kinase represents a promising therapeutic target for treatment of chronic lymphocytic leukemia and is effectively targeted by PCI-32765. Blood. 2011;117:6287–96.

    Article  CAS  Google Scholar 

  22. Miklos D, Cutler CS, Arora M, et al. Ibrutinib for chronic graft-versus-host disease after failure of prior therapy. Blood. 2017;130:2243–50.

    Article  CAS  Google Scholar 

  23. Byrd JC, Furman RR, Coutre SE, et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med. 2013;369:32–42.

    Article  CAS  Google Scholar 

  24. Dimopoulos MA, Trotman J, Tedeschi A, et al. Ibrutinib for patients with rituximab-refractory Waldenström’s macroglobulinaemia (iNNOVATE): an open-label substudy of an international, multicentre, phase 3 trial. Lancet Oncol. 2017;18:241–50.

    Article  CAS  Google Scholar 

  25. Noy A, de Vos S, Thieblemont C, et al. Targeting Bruton tyrosine kinase with ibrutinib in relapsed/refractory marginal zone lymphoma. Blood. 2017;129:2224–32.

    Article  CAS  Google Scholar 

  26. Niemann CU, Herman SE, Maric I, et al. Disruption of in vivo chronic lymphocytic leukemia tumor-microenvironment interactions by ibrutinib-findings from an investigator-initiated phase II study. Clin Cancer Res. 2016;22:1572–82.

    Article  CAS  Google Scholar 

  27. Herman SEM, Montraveta A, Niemann CU, et al. The Bruton tyrosine kinase (BTK) inhibitor acalabrutinib demonstrates potent on-target effects and efficacy in two mouse models of chronic lymphocytic leukemia. Clin Cancer Res. 2017;23:2831–41.

    Article  CAS  Google Scholar 

  28. Bye AP, Unsworth AJ, Desborough MJ, et al. Severe platelet dysfunction in NHL patients receiving ibrutinib is absent in patients receiving acalabrutinib. Blood Adv. 2017;1:2610–23.

    PubMed  PubMed Central  Google Scholar 

  29. Yin Q, Sivina M, Robins H, et al. Ibrutinib therapy increases T cell repertoire diversity in patients with chronic lymphocytic leukemia. J Immunol. 2017;198:1740–7.

    Article  CAS  Google Scholar 

  30. Dubovsky JA, Beckwith KA, Natarajan G, et al. Ibrutinib is an irreversible molecular inhibitor of ITK driving a Th1-selective pressure in T lymphocytes. Blood. 2013;122:2539–49.

    Article  CAS  Google Scholar 

  31. Sagiv-Barfi I, Kohrt HE, Burckhardt L, Czerwinski DK, Levy R. Ibrutinib enhances the antitumor immune response induced by intratumoral injection of a TLR9 ligand in mouse lymphoma. Blood. 2015;125:2079–86.

    Article  CAS  Google Scholar 

  32. Sagiv-Barfi I, Kohrt HEK, Czerwinski DK, Ng PP, Chang BY, Levy R. Therapeutic antitumor immunity by checkpoint blockade is enhanced by ibrutinib, an inhibitor of both BTK and ITK. Proc Natl Acad Sci. 2015;112:E966–72.

    Article  CAS  Google Scholar 

  33. Byrd JC, Harrington B, O’Brien S, et al. Acalabrutinib (ACP-196) in relapsed chronic lymphocytic leukemia. N Engl J Med. 2016;374:323–32.

    Article  CAS  Google Scholar 

  34. Patel V, Balakrishnan K, Bibikova E, et al. Comparison of acalabrutinib, a selective Bruton tyrosine kinase inhibitor, with ibrutinib in chronic lymphocytic leukemia cells. Clin Cancer Res. 2017;23:3734–43.

    Article  CAS  Google Scholar 

  35. Pan Z, Scheerens H, Li SJ, et al. Discovery of selective irreversible inhibitors for Bruton’s tyrosine kinase. ChemMedChem. 2007;2:58–61.

    Article  CAS  Google Scholar 

  36. Palma M, Krstic A, Berglöf A, et al. Very early effects of ibrutinib on tumor and immune cells in blood and lymph nodes in relapsed or refractory chronic lymphocytic leukemia (CLL) patients. Blood. 2016;128:3235.

    Google Scholar 

  37. Burger JA, Styles L, Kipps TJ. Ibrutinib for chronic lymphocytic leukemia. N Engl J Med. 2016;374:1594–5.

    PubMed  Google Scholar 

  38. O’Brien S, Furman RR, Coutre S, et al. Single-agent ibrutinib in treatment-naïve and relapsed/refractory chronic lymphocytic leukemia: a 5-year experience. Blood. 2018;131:1910–9.

    Article  Google Scholar 

  39. Farooqui MZ, Valdez J, Martyr S, et al. Ibrutinib for previously untreated and relapsed or refractory chronic lymphocytic leukaemia with TP53 aberrations: a phase 2, single-arm trial. Lancet Oncol. 2015;16:169–76.

    Article  CAS  Google Scholar 

  40. O’Brien S, Jones JA, Coutre SE, et al. Ibrutinib for patients with relapsed or refractory chronic lymphocytic leukaemia with 17p deletion (RESONATE-17): a phase 2, open-label, multicentre study. Lancet Oncol. 2016;17:1409–18.

    Article  Google Scholar 

  41. Ahn IE, Farooqui MZH, Tian X, et al. Depth and durability of response to ibrutinib in CLL: 5-year follow-up of a phase 2 study. Blood. 2018;131:2357–66.

    Article  CAS  Google Scholar 

  42. Ghia P, Cuneo A. Ibrutinib in the real world patient: many lights and some shades. Haematologica. 2016;101:1448–50.

    Article  CAS  Google Scholar 

  43. Hansson L, Winqvist M, Asklid A, et al. Real-world results on ibrutinib in patients with relapsed or refractory chronic lymphocytic leukemia (CLL): data from 97 Swedish patients treated in a compassionate use program. Blood. 2015;126:1745.

    Google Scholar 

  44. von Tresckow J BJ, Niemann CU, Kater AP, Fink AM, et al. The GAIA (CLL13) trial—an international, randomized, four-arm study for first line treatment of physically fit CLL patients without del17p or TP53 mutation. Integr Cancer Sci Therap 2017;4.

  45. Elevate CLL R/R: study of acalabrutinib (ACP-196) versus ibrutinib in previously treated subjects with high risk chronic lymphocytic leukemia. 2015. 2018, https://clinicaltrials.gov/ct2/show/study/NCT02477696?term=acalabrutinib&recrs=de&phase=2&rank=1. Accessed 14 Sept 2018.

  46. Elevate CLL TN: study of obinutuzumab + chlorambucil, acalabrutinib (ACP-196) + obinutuzumab, and acalabrutinib in subjects with previously untreated CLL. 2015. 2018, https://clinicaltrials.gov/ct2/show/study/NCT02475681?term=acalabrutinib&recrs=de&phase=2&rank=2. Accessed 14 Sept 2018.

  47. Tam CS, Anderson MA, Pott C, et al. Ibrutinib plus venetoclax for the treatment of mantle-cell lymphoma. N Engl J Med. 2018;378:1211–23.

    Article  CAS  Google Scholar 

  48. Jerkeman M, Eskelund CW, Hutchings M, et al. Ibrutinib, lenalidomide, and rituximab in relapsed or refractory mantle cell lymphoma (PHILEMON): a multicentre, open-label, single-arm, phase 2 trial. Lancet Haematol. 2018;5:e109–16.

    Article  Google Scholar 

  49. Treon SP, Tripsas CK, Meid K, et al. Ibrutinib in previously treated Waldenström’s macroglobulinemia. N Engl J Med. 2015;372:1430–40.

    Article  CAS  Google Scholar 

  50. Castillo JJ, Palomba ML, Advani R, Treon SP. Ibrutinib in Waldenström macroglobulinemia: latest evidence and clinical experience. Ther Adv Hematol. 2016;7:179–86.

    Article  CAS  Google Scholar 

  51. Chiron D, Di Liberto M, Martin P, et al. Cell-cycle reprogramming for PI3K inhibition overrides a relapse-specific C481S BTK mutation revealed by longitudinal functional genomics in mantle cell lymphoma. Cancer Discov. 2014;4:1022–35.

    Article  CAS  Google Scholar 

  52. Maddocks KJ, Ruppert AS, Lozanski G, et al. Etiology of ibrutinib therapy discontinuation and outcomes in patients with chronic lymphocytic leukemia. JAMA Oncol. 2015;1:80–7.

    Article  Google Scholar 

  53. Ahn IE, Underbayev C, Albitar A, et al. Clonal evolution leading to ibrutinib resistance in chronic lymphocytic leukemia. Blood 2017;129(11):1469–79.

    Article  CAS  Google Scholar 

  54. Binnerts ME, Otipoby KL, Hopkins BT, et al. Abstract C186: SNS-062 is a potent noncovalent BTK inhibitor with comparable activity against wild type BTK and BTK with an acquired resistance mutation. Mol Cancer Ther. 2015;14:C186-C.

    Article  Google Scholar 

  55. Jones JA, Mato AR, Wierda WG, et al. Venetoclax for chronic lymphocytic leukaemia progressing after ibrutinib: an interim analysis of a multicentre, open-label, phase 2 trial. Lancet Oncol. 2018;19:65–75.

    Article  CAS  Google Scholar 

  56. Carsten U, Niemann M-DL, Nasserinejad K, Janssens AMH, Enggaard L, Kersting S, Veldhuis GJ, Mous R, Melink CHM, Dobber JA, Schjødt I, Dompeling EC, Poulsen CB, Tran HTT, Salmi T, Mattsson M, Kater AP. Safety analysis of venetoclax and ibrutinib for previously treated patients with chronic lymphocytic leukemia (CLL): first interim analysis from the phase ii vision ho141 trial. 23rd European In: Hematology association congress. Stockholm, 2018.

  57. Hillmen P, Munir T, Rawstron A, et al. Initial results of ibrutinib plus venetoclax in relapsed, refractory CLL (bloodwise TAP CLARITY study): high rates of overall response, complete remission and MRD eradication after 6 months of combination therapy. Blood. 2017;130:428.

    Google Scholar 

  58. Cramer P, von Tresckow J, Bahlo J, et al. Bendamustine followed by obinutuzumab and venetoclax in chronic lymphocytic leukaemia (CLL2-BAG): primary endpoint analysis of a multicentre, open-label, phase 2 trial. Lancet Oncol. 2018;19:1215–28.

    Article  CAS  Google Scholar 

  59. Collett L, Howard DR, Munir T, et al. Assessment of ibrutinib plus rituximab in front-line CLL (FLAIR trial): study protocol for a phase III randomised controlled trial. Trials. 2017;18:387.

    Article  Google Scholar 

  60. Hallek M, Kay NE, Osterborg A, et al. The HELIOS trial protocol: a Phase III study of ibrutinib in combination with bendamustine and rituximab in relapsed/refractory chronic lymphocytic leukemia. Future Oncol. 2015;11:51–9.

    Article  CAS  Google Scholar 

  61. Chanan-Khan A, Cramer P, Demirkan F, et al. Ibrutinib combined with bendamustine and rituximab compared with placebo, bendamustine, and rituximab for previously treated chronic lymphocytic leukaemia or small lymphocytic lymphoma (HELIOS): a randomised, double-blind, phase 3 study. Lancet Oncol. 2016;17:200–11.

    Article  CAS  Google Scholar 

  62. Davids MS, Kim HT, Brander DM, et al. Initial results of a multicenter, phase II study of ibrutinib plus FCR (iFCR) as frontline therapy for younger CLL patients. Blood. 2016;128:3243.

    Google Scholar 

  63. Valentin R, Deng J, Ten Hacken E, et al. Dynamic BH3 profiling to assess the effects of novel agents on anti-apoptotic protein dependence of CLL cells. Blood. 2017;130:4289.

    Google Scholar 

  64. Herman SEM, Montraveta A, Niemann CU, et al. The Bruton’s tyrosine kinase (BTK) inhibitor acalabrutinib demonstrates potent on-target effects and efficacy in two mouse models of chronic lymphocytic leukemia. Clin Cancer Res Off J Am Assoc Cancer Res. 2017;23:2831–41.

    Article  CAS  Google Scholar 

  65. Burger JA. Ibrutinib as initial therapy for patients with chronic lymphocytic leukemia. N Engl J Med. 2015;373:2425–37.

    Article  CAS  Google Scholar 

  66. Langerbeins P, Bahlo J, Rhein C, et al. The CLL12 trial protocol: a placebo-controlled double-blind Phase III study of ibrutinib in the treatment of early-stage chronic lymphocytic leukemia patients with risk of early disease progression. Future Oncol. 2015;11:1895–903.

    Article  CAS  Google Scholar 

  67. Coutré SE, Furman RR, Flinn IW, et al. Extended treatment with single-agent ibrutinib at the 420 mg dose leads to durable responses in chronic lymphocytic leukemia/small lymphocytic lymphoma. Clin Cancer Res. 2017;23:1149–55.

    Article  Google Scholar 

  68. O’Brien S, Furman RR, Coutre SE, et al. Ibrutinib as initial therapy for elderly patients with chronic lymphocytic leukaemia or small lymphocytic lymphoma: an open-label, multicentre, phase 1b/2 trial. Lancet Oncol. 2014;15:48–58.

    Article  Google Scholar 

  69. Jain P, Keating MJ, Wierda WG, et al. Long-term follow-up of treatment with ibrutinib and rituximab in patients with high-risk chronic lymphocytic leukemia. Clin Cancer Res. 2017;23:2154–8.

    Article  CAS  Google Scholar 

  70. Byrd JC. Ibrutinib versus ofatumumab in previously treated chronic lymphoid leukemia. N Engl J Med. 2014;371:213–23.

    Article  Google Scholar 

  71. Brown JR, Barrientos JC, Barr PM, et al. The Bruton tyrosine kinase inhibitor ibrutinib with chemoimmunotherapy in patients with chronic lymphocytic leukemia. Blood. 2015;125:2915–22.

    Article  CAS  Google Scholar 

  72. Jaglowski SM, Jones JA, Nagar V, et al. Safety and activity of BTK inhibitor ibrutinib combined with ofatumumab in chronic lymphocytic leukemia: a phase 1b/2 study. Blood. 2015;126:842–50.

    Article  CAS  Google Scholar 

  73. Ujjani CS, Jung S-H, Pitcher B, et al. Phase 1 trial of rituximab, lenalidomide, and ibrutinib in previously untreated follicular lymphoma: alliance A051103. Blood. 2016;128:2510–6.

    Article  CAS  Google Scholar 

  74. Younes A, Thieblemont C, Morschhauser F, et al. Combination of ibrutinib with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) for treatment-naive patients with CD20-positive B-cell non-Hodgkin lymphoma: a non-randomised, phase 1b study. Lancet Oncol. 2014;15:1019–26.

    Article  CAS  Google Scholar 

  75. Maddocks K, Christian B, Jaglowski S, et al. A phase 1/1b study of rituximab, bendamustine, and ibrutinib in patients with untreated and relapsed/refractory non-Hodgkin lymphoma. Blood. 2015;125:242–8.

    Article  CAS  Google Scholar 

  76. Wang ML, Lee H, Chuang H, et al. Ibrutinib in combination with rituximab in relapsed or refractory mantle cell lymphoma: a single-centre, open-label, phase 2 trial. Lancet Oncol. 2016;17:48–56.

    Article  CAS  Google Scholar 

  77. Dreyling M, Jurczak W, Jerkeman M, et al. Ibrutinib versus temsirolimus in patients with relapsed or refractory mantle-cell lymphoma: an international, randomised, open-label, phase 3 study. Lancet. 2016;387:770–8.

    Article  CAS  Google Scholar 

  78. Brown JR, Harb WA, Hill BT, et al. Phase I study of single-agent CC-292, a highly selective Bruton’s tyrosine kinase inhibitor, in relapsed/refractory chronic lymphocytic leukemia. Haematologica. 2016;101:e295–8.

    Article  Google Scholar 

  79. Walter HS, Jayne S, Rule SA, et al. Long-term follow-up of patients with CLL treated with the selective Bruton’s tyrosine kinase inhibitor ONO/GS-4059. Blood. 2017;129:2808–10.

    Article  CAS  Google Scholar 

  80. Walter HS, Rule SA, Dyer MJS, et al. A phase 1 clinical trial of the selective BTK inhibitor ONO/GS-4059 in relapsed and refractory mature B-cell malignancies. Blood. 2016;127:411–9.

    Article  CAS  Google Scholar 

  81. Neuman LL, Ward R, Arnold D, et al. First-in-human phase 1a study of the safety, pharmacokinetics, and pharmacodynamics of the noncovalent bruton tyrosine kinase (BTK) inhibitor SNS-062 in healthy subjects. Blood. 2016;128:2032.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Utoft Niemann.

Ethics declarations

Funding

This study was funded by The Danish Cancer Society (Grant number R-130-A8217-15-S38) and The Novo Nordisk Foundation (Grant number NNF16OC0019302).

Conflict of interest

Carsten Utoft Niemann has received grants from Janssen and Abbvie; consulting fees from Roche, Gilead, Janssen, Abbvie, AstraZeneca, and CSL Behring; and travel support to meetings from Roche, Gilead, Janssen, and Abbvie. Caspar da Cunha-Bang declares no conflicts of interest that might be relevant to the contents of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Cunha-Bang, C., Niemann, C.U. Targeting Bruton’s Tyrosine Kinase Across B-Cell Malignancies. Drugs 78, 1653–1663 (2018). https://doi.org/10.1007/s40265-018-1003-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-018-1003-6

Navigation