Skip to main content

Advertisement

Log in

Treating Chronic Pain: An Overview of Clinical Studies Centered on the Buprenorphine Option

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

The buprenorphine receptor binding profile is unique in that it binds to all three major opioid receptors (mu, kappa, delta), and also binds to the orphan-like receptor, the receptor for orphanin FQ/nociceptin, with lower affinity. Within the mu receptor group, buprenorphine analgesia in rodents is dependent on the recently discovered arylepoxamide receptor target in brain, which involves a truncated 6-transmembrane mu receptor gene protein, distinguishing itself from morphine and most other mu opioids. Although originally designed as an analgesic, buprenorphine has mainly been used for opioid maintenance therapy and only now is increasingly recognized as an effective analgesic with an improved therapeutic index relative to certain potent opioids. Albeit a second-, third-, or fourth-line analgesic, buprenorphine is a reasonable choice in certain clinical situations. Transdermal patches and buccal film formulations are now commercially available as analgesics. This review discusses buprenorphine pharmacodynamics and pharmacokinetics, use in certain populations, and provides a synopsis of systematic reviews and randomized analgesic trials. We briefly discuss postoperative management in patients receiving buprenorphine maintenance therapy, opioid equivalence to buprenorphine, rotations to buprenorphine from other opioids, and clinical relevance of buprenorphine-related QTc interval changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Davis MP. Twelve reasons for considering buprenorphine as a frontline analgesic in the management of pain. J Support Oncol. 2012;10(6):209–19.

    Article  PubMed  CAS  Google Scholar 

  2. Jasinski DR, Pevnick JS, Griffith JD. Human pharmacology and abuse potential of the analgesic buprenorphine: a potential agent for treating narcotic addiction. Arch Gen Psychiatry. 1978;35(4):501–16.

    Article  PubMed  CAS  Google Scholar 

  3. Henningfield JE, Sun WZ. Concluding statement—neuropharmacological basis and clinical rationale for control of transdermal buprenorphine as a step II analgesic. Acta Anaesthesiol Taiwan. 2015;53(2):77–9.

    Article  PubMed  Google Scholar 

  4. Dahan A, Yassen A, Romberg R, Sarton E, Teppema L, Olofsen E, et al. Buprenorphine induces ceiling in respiratory depression but not in analgesia. Br J Anaesth. 2006;96(5):627–32.

    Article  PubMed  CAS  Google Scholar 

  5. Dahan A, Yassen A, Bijl H, Romberg R, Sarton E, Teppema L, et al. Comparison of the respiratory effects of intravenous buprenorphine and fentanyl in humans and rats. Br J Anaesth. 2005;94(6):825–34.

    Article  PubMed  CAS  Google Scholar 

  6. Pergolizzi JV Jr, Scholten W, Smith KJ, Leighton-Scott J, Willis JC, Henningfield JE. The unique role of transdermal buprenorphine in the global chronic pain epidemic. Acta Anaesthesiol Taiwan. 2015;53(2):71–6.

    Article  PubMed  Google Scholar 

  7. Johnson RE, Fudala PJ, Payne R. Buprenorphine: considerations for pain management. J Pain Sympt Manag. 2005;29(3):297–326.

    Article  CAS  Google Scholar 

  8. Ding Z, Raffa RB. Identification of an additional supraspinal component to the analgesic mechanism of action of buprenorphine. Br J Pharmacol. 2009;157(5):831–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Khroyan TV, Wu J, Polgar WE, Cami-Kobeci G, Fotaki N, Husbands SM, et al. BU08073 a buprenorphine analogue with partial agonist activity at mu-receptors in vitro but long-lasting opioid antagonist activity in vivo in mice. Br J Pharmacol. 2015;172(2):668–80.

    Article  PubMed  CAS  Google Scholar 

  10. Lutfy K, Cowan A. Buprenorphine: a unique drug with complex pharmacology. Curr Neuropharmacol. 2004;2(4):395–402.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Negus SS, Bidlack JM, Mello NK, Furness MS, Rice KC, Brandt MR. Delta opioid antagonist effects of buprenorphine in rhesus monkeys. Behav Pharmacol. 2002;13(7):557–70.

    Article  PubMed  CAS  Google Scholar 

  12. Grinnell SG, Ansonoff M, Marrone GF, Lu Z, Narayan A, Xu J, et al. Mediation of buprenorphine analgesia by a combination of traditional and truncated mu opioid receptor splice variants. Synapse. 2016;70(10):395–407.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Majumdar S, Grinnell S, Le Rouzic V, Burgman M, Polikar L, Ansonoff M, et al. Truncated G protein-coupled mu opioid receptor MOR-1 splice variants are targets for highly potent opioid analgesics lacking side effects. Proc Natl Acad Sci USA. 2011;108(49):19778–83.

    Article  PubMed  Google Scholar 

  14. Traynor JR, Nahorski SR. Modulation by mu-opioid agonists of guanosine-5′-O-(3-[35S]thio)triphosphate binding to membranes from human neuroblastoma SH-SY5Y cells. Mol Pharmacol. 1995;47(4):848–54.

    PubMed  CAS  Google Scholar 

  15. Fantozzi R, Mullikin-Kilpatrick D, Blume AJ. Irreversible inactivation of the opiate receptors in the neuroblastoma x glioma hybrid NG108-15 by chlornaltrexamine. Mol Pharmacol. 1981;20(1):8–15.

    PubMed  CAS  Google Scholar 

  16. Zaki PA, Keith DE Jr, Brine GA, Carroll FI, Evans CJ. Ligand-induced changes in surface mu-opioid receptor number: relationship to G protein activation? J Pharmacol Exp Ther. 2000;292(3):1127–34.

    PubMed  CAS  Google Scholar 

  17. McPherson J, Rivero G, Baptist M, Llorente J, Al-Sabah S, Krasel C, et al. mu-opioid receptors: correlation of agonist efficacy for signalling with ability to activate internalization. Mol Pharmacol. 2010;78(4):756–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Vanderah TW, Gardell LR, Burgess SE, Ibrahim M, Dogrul A, Zhong CM, et al. Dynorphin promotes abnormal pain and spinal opioid antinociceptive tolerance. J Neurosci. 2000;20(18):7074–9.

    Article  PubMed  CAS  Google Scholar 

  19. Ossipov MH, Lai J, Malan TP Jr, Porreca F. Spinal and supraspinal mechanisms of neuropathic pain. Ann N Y Acad Sci. 2000;909:12–24.

    Article  PubMed  CAS  Google Scholar 

  20. Stanciu CN, Glass OM, Penders TM. Use of Buprenorphine in treatment of refractory depression: a review of current literature. Asian J Psychiatr. 2017;26:94–8.

    Article  PubMed  Google Scholar 

  21. Karp JF, Butters MA, Begley AE, Miller MD, Lenze EJ, Blumberger DM, et al. Safety, tolerability, and clinical effect of low-dose buprenorphine for treatment-resistant depression in midlife and older adults. J Clin Psychiatry. 2014;75(8):e785–93.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bodkin JA, Zornberg GL, Lukas SE, Cole JO. Buprenorphine treatment of refractory depression. J Clin Psychopharmacol. 1995;15(1):49–57.

    Article  PubMed  CAS  Google Scholar 

  23. Falcon E, Browne CA, Leon RM, Fleites VC, Sweeney R, Kirby LG, et al. Antidepressant-like effects of buprenorphine are mediated by kappa opioid receptors. Neuropsychopharmacology. 2016;41(9):2344–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Bohn LM, Lefkowitz RJ, Gainetdinov RR, Peppel K, Caron MG, Lin FT. Enhanced morphine analgesia in mice lacking beta-arrestin 2. Science. 1999;286(5449):2495–8.

    Article  PubMed  CAS  Google Scholar 

  25. Raehal KM, Schmid CL, Groer CE, Bohn LM. Functional selectivity at the mu-opioid receptor: implications for understanding opioid analgesia and tolerance. Pharmacol Rev. 2011;63(4):1001–19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Raehal KM, Bohn LM. The role of beta-arrestin2 in the severity of antinociceptive tolerance and physical dependence induced by different opioid pain therapeutics. Neuropharmacology. 2011;60(1):58–65.

    Article  PubMed  CAS  Google Scholar 

  27. Reiter E, Ahn S, Shukla AK, Lefkowitz RJ. Molecular mechanism of beta-arrestin-biased agonism at seven-transmembrane receptors. Annu Rev Pharmacol Toxicol. 2012;52:179–97.

    Article  PubMed  CAS  Google Scholar 

  28. Yu Y, Zhang L, Yin X, Sun H, Uhl GR, Wang JB. Mu opioid receptor phosphorylation, desensitization, and ligand efficacy. J Biol Chem. 1997;272(46):28869–74.

    Article  PubMed  CAS  Google Scholar 

  29. Grinnell SG, Majumdar S, Narayan A, Le Rouzic V, Ansonoff M, Pintar JE, et al. Pharmacologic characterization in the rat of a potent analgesic lacking respiratory depression, IBNtxA. J Pharmacol Exp Ther. 2014;350(3):710–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Cowan A. Buprenorphine: the basic pharmacology revisited. J Addict Med. 2007;1(2):68–72.

    Article  PubMed  CAS  Google Scholar 

  31. Cowan A. Buprenorphine: new pharmacological aspects. Int J Clin Pract Suppl. 2003;133:3–8 (discussion 23–4).

    CAS  Google Scholar 

  32. Kogel B, Christoph T, Strassburger W, Friderichs E. Interaction of mu-opioid receptor agonists and antagonists with the analgesic effect of buprenorphine in mice. Eur J Pain. 2005;9(5):599–611.

    Article  PubMed  CAS  Google Scholar 

  33. Kress HG. Clinical update on the pharmacology, efficacy and safety of transdermal buprenorphine. Eur J Pain. 2009;13(3):219–30.

    Article  PubMed  CAS  Google Scholar 

  34. Recker MD, Higgins GA. The opioid receptor like-1 receptor agonist Ro 64-6198 (1S,3aS-8-2,3,3a,4,5,6-hexahydro-1H-phenalen-1-yl-1-phenyl-1,3,8-triaza-spiro[4.5]decan-4-one) produces a discriminative stimulus in rats distinct from that of a mu, kappa, and delta opioid receptor agonist cue. J Pharmacol Exp Ther. 2004;311(2):652–8.

    Article  PubMed  CAS  Google Scholar 

  35. Lewis JW, Husbands SM. The orvinols and related opioids–high affinity ligands with diverse efficacy profiles. Curr Pharm Des. 2004;10(7):717–32.

    Article  PubMed  CAS  Google Scholar 

  36. Pergolizzi J, Aloisi AM, Dahan A, Filitz J, Langford R, Likar R, et al. Current knowledge of buprenorphine and its unique pharmacological profile. Pain Pract. 2010;10(5):428–50.

    Article  PubMed  Google Scholar 

  37. Dahan A. Opioid-induced respiratory effects: new data on buprenorphine. Palliat Med. 2006;20(Suppl 1):s3–8.

    PubMed  Google Scholar 

  38. Gerhold KJ, Drdla-Schutting R, Honsek SD, Forsthuber L, Sandkuhler J. Pronociceptive and antinociceptive effects of buprenorphine in the spinal cord dorsal horn cover a dose range of four orders of magnitude. J Neurosci. 2015;35(26):9580–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Schnabel A, Reichl SU, Zahn PK, Pogatzki-Zahn EM, Meyer-Friessem CH. Efficacy and safety of buprenorphine in peripheral nerve blocks: a meta-analysis of randomised controlled trials. Eur J Anaesthesiol. 2017;34(9):576–86.

    Article  PubMed  CAS  Google Scholar 

  40. Leffler A, Frank G, Kistner K, Niedermirtl F, Koppert W, Reeh PW, et al. Local anesthetic-like inhibition of voltage-gated Na(+) channels by the partial mu-opioid receptor agonist buprenorphine. Anesthesiology. 2012;116(6):1335–46.

    Article  PubMed  CAS  Google Scholar 

  41. Rickli A, Liakoni E, Hoener MC, Liechti ME. Opioid-induced inhibition of the human 5-HT and noradrenaline transporters in vitro: link to clinical reports of serotonin syndrome. Br J Pharmacol. 2018;175(3):532–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Sutcliffe KJ, Henderson G, Kelly E, Sessions RB. Drug binding poses relate structure with efficacy in the mu opioid receptor. J Mol Biol. 2017;429(12):1840–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Christopoulos A, El-Fakahany EE. Qualitative and quantitative assessment of relative agonist efficacy. Biochem Pharmacol. 1999;58(5):735–48.

    Article  PubMed  CAS  Google Scholar 

  44. Heit HA, Gourlay DL. Buprenorphine: new tricks with an old molecule for pain management. Clin J Pain. 2008;24(2):93–7.

    Article  PubMed  Google Scholar 

  45. Sloan P. Buprenorphine for chronic pain management. J Support Oncol. 2012;10(6):220–1.

    Article  PubMed  Google Scholar 

  46. Macintyre PE, Huxtable CA. Buprenorphine for the management of acute pain. Anaesth Intensive Care. 2017;45(2):143–6.

    PubMed  CAS  Google Scholar 

  47. Macintyre PE, Russell RA, Usher KA, Gaughwin M, Huxtable CA. Pain relief and opioid requirements in the first 24 hours after surgery in patients taking buprenorphine and methadone opioid substitution therapy. Anaesth Intensive Care. 2013;41(2):222–30.

    PubMed  CAS  Google Scholar 

  48. Huxtable CA, Roberts LJ, Somogyi AA, MacIntyre PE. Acute pain management in opioid-tolerant patients: a growing challenge. Anaesth Intensive Care. 2011;39(5):804–23.

    PubMed  CAS  Google Scholar 

  49. Ohtani M, Kotaki H, Sawada Y, Iga T. Comparative analysis of buprenorphine- and norbuprenorphine-induced analgesic effects based on pharmacokinetic-pharmacodynamic modeling. J Pharmacol Exp Ther. 1995;272(2):505–10.

    PubMed  CAS  Google Scholar 

  50. Tournier N, Chevillard L, Megarbane B, Pirnay S, Scherrmann JM, Decleves X. Interaction of drugs of abuse and maintenance treatments with human P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2). Int J Neuropsychopharmacol. 2010;13(7):905–15.

    Article  PubMed  CAS  Google Scholar 

  51. Alhaddad H, Cisternino S, Decleves X, Tournier N, Schlatter J, Chiadmi F, et al. Respiratory toxicity of buprenorphine results from the blockage of P-glycoprotein-mediated efflux of norbuprenorphine at the blood-brain barrier in mice. Crit Care Med. 2012;40(12):3215–23.

    Article  PubMed  CAS  Google Scholar 

  52. Raehal KM, Walker JK, Bohn LM. Morphine side effects in beta-arrestin 2 knockout mice. J Pharmacol Exp Ther. 2005;314(3):1195–201.

    Article  PubMed  CAS  Google Scholar 

  53. Webster LR, Camilleri M, Finn A. Opioid-induced constipation: rationale for the role of norbuprenorphine in buprenorphine-treated individuals. Subst Abuse Rehabil. 2016;7:81–6.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Brown SM, Holtzman M, Kim T, Kharasch ED. Buprenorphine metabolites, buprenorphine-3-glucuronide and norbuprenorphine-3-glucuronide, are biologically active. Anesthesiology. 2011;115(6):1251–60.

    PubMed  PubMed Central  CAS  Google Scholar 

  55. Yassen A, Kan J, Olofsen E, Suidgeest E, Dahan A, Danhof M. Pharmacokinetic-pharmacodynamic modeling of the respiratory depressant effect of norbuprenorphine in rats. J Pharmacol Exp Ther. 2007;321(2):598–607.

    Article  PubMed  CAS  Google Scholar 

  56. Ohtani M, Kotaki H, Nishitateno K, Sawada Y, Iga T. Kinetics of respiratory depression in rats induced by buprenorphine and its metabolite, norbuprenorphine. J Pharmacol Exp Ther. 1997;281(1):428–33.

    PubMed  CAS  Google Scholar 

  57. Strang J, Knight A, Baillie S, Reed K, Bogdanowicz K, Bell J. Norbuprenorphine and respiratory depression: Exploratory analyses with new lyophilized buprenorphine and sublingual buprenorphine. Int J Clin Pharmacol Ther. 2018;56(2):81–5.

    Article  PubMed  Google Scholar 

  58. Megarbane B, Marie N, Pirnay S, Borron SW, Gueye PN, Risede P, et al. Buprenorphine is protective against the depressive effects of norbuprenorphine on ventilation. Toxicol Appl Pharmacol. 2006;212(3):256–67.

    Article  PubMed  CAS  Google Scholar 

  59. Brown SM, Campbell SD, Crafford A, Regina KJ, Holtzman MJ, Kharasch ED. P-glycoprotein is a major determinant of norbuprenorphine brain exposure and antinociception. J Pharmacol Exp Ther. 2012;343(1):53–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Wang Y, Cipriano A, Munera C, Harris SC. Dose-dependent flux of buprenorphine following transdermal administration in healthy subjects. J Clin Pharmacol. 2016;56(10):1263–71.

    Article  PubMed  CAS  Google Scholar 

  61. Yokell MA, Zaller ND, Green TC, Rich JD. Buprenorphine and buprenorphine/naloxone diversion, misuse, and illicit use: an international review. Curr Drug Abuse Rev. 2011;4(1):28–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Bullingham RE, McQuay HJ, Moore RA. Clinical pharmacokinetics of narcotic agonist-antagonist drugs. Clin Pharmacokinet. 1983;8(4):332–43.

    Article  PubMed  CAS  Google Scholar 

  63. Mendelson J, Upton RA, Everhart ET, Jacob P 3rd, Jones RT. Bioavailability of sublingual buprenorphine. J Clin Pharmacol. 1997;37(1):31–7.

    Article  PubMed  CAS  Google Scholar 

  64. Nath RP, Upton RA, Everhart ET, Cheung P, Shwonek P, Jones RT, et al. Buprenorphine pharmacokinetics: relative bioavailability of sublingual tablet and liquid formulations. J Clin Pharmacol. 1999;39(6):619–23.

    Article  PubMed  CAS  Google Scholar 

  65. Downing JW, Leary WP, White ES. Buprenorphine: a new potent long-acting synthetic analgesic. Comparison with morphine. Br J Anaesth. 1977;49(3):251–5.

    Article  PubMed  CAS  Google Scholar 

  66. Yassen A, Olofsen E, Kan J, Dahan A, Danhof M. Animal-to-human extrapolation of the pharmacokinetic and pharmacodynamic properties of buprenorphine. Clin Pharmacokinet. 2007;46(5):433–47.

    Article  PubMed  CAS  Google Scholar 

  67. Yassen A, Olofsen E, Dahan A, Danhof M. Pharmacokinetic-pharmacodynamic modeling of the antinociceptive effect of buprenorphine and fentanyl in rats: role of receptor equilibration kinetics. J Pharmacol Exp Ther. 2005;313(3):1136–49.

    Article  PubMed  CAS  Google Scholar 

  68. Bullingham RE, McQuay HJ, Moore A, Bennett MR. Buprenorphine kinetics. Clin Pharmacol Ther. 1980;28(5):667–72.

    Article  PubMed  CAS  Google Scholar 

  69. Yassen A, Kan J, Olofsen E, Suidgeest E, Dahan A, Danhof M. Mechanism-based pharmacokinetic-pharmacodynamic modeling of the respiratory-depressant effect of buprenorphine and fentanyl in rats. J Pharmacol Exp Ther. 2006;319(2):682–92.

    Article  PubMed  CAS  Google Scholar 

  70. Yassen A, Olofsen E, Romberg R, Sarton E, Danhof M, Dahan A. Mechanism-based pharmacokinetic-pharmacodynamic modeling of the antinociceptive effect of buprenorphine in healthy volunteers. Anesthesiology. 2006;104(6):1232–42.

    Article  PubMed  CAS  Google Scholar 

  71. Koppert W, Ihmsen H, Korber N, Wehrfritz A, Sittl R, Schmelz M, et al. Different profiles of buprenorphine-induced analgesia and antihyperalgesia in a human pain model. Pain. 2005;118(1–2):15–22.

    Article  PubMed  CAS  Google Scholar 

  72. Ebling WF, Lee EN, Stanski DR. Understanding pharmacokinetics and pharmacodynamics through computer stimulation: I. The comparative clinical profiles of fentanyl and alfentanil. Anesthesiology. 1990;72(4):650–8.

    Article  PubMed  CAS  Google Scholar 

  73. Pontani RB, Vadlamani NL, Misra AL. Disposition in the rat of buprenorphine administered parenterally and as a subcutaneous implant. Xenobiotica. 1985;15(4):287–97.

    Article  PubMed  CAS  Google Scholar 

  74. Shiue CY, Bai LQ, Teng RR, Arnett CD, Dewey SL, Wolf AP, et al. A comparison of the brain uptake of N-(cyclopropyl[11C]methyl)norbuprenorphine ([11C]buprenorphine) and N-(cyclopropyl[11C]methyl)nordiprenorphine ([11C]diprenorphine) in baboon using PET. Int J Rad Appl Instrum B. 1991;18(3):281–8.

    Article  PubMed  CAS  Google Scholar 

  75. Greenwald M, Johanson CE, Bueller J, Chang Y, Moody DE, Kilbourn M, et al. Buprenorphine duration of action: mu-opioid receptor availability and pharmacokinetic and behavioral indices. Biol Psychiatry. 2007;61(1):101–10.

    Article  PubMed  CAS  Google Scholar 

  76. Plosker GL. Buprenorphine 5, 10 and 20 mug/h transdermal patch: a review of its use in the management of chronic non-malignant pain. Drugs. 2011;71(18):2491–509.

    Article  PubMed  CAS  Google Scholar 

  77. Heel RC, Brogden RN, Speight TM, Avery GS. Buprenorphine: a review of its pharmacological properties and therapeutic efficacy. Drugs. 1979;17(2):81–110.

    Article  PubMed  CAS  Google Scholar 

  78. Brewster D, Humphrey MJ, McLeavy MA. Biliary excretion, metabolism and enterohepatic circulation of buprenorphine. Xenobiotica. 1981;11(3):189–96.

    Article  PubMed  CAS  Google Scholar 

  79. Cone EJ, Gorodetzky CW, Yousefnejad D, Buchwald WF, Johnson RE. The metabolism and excretion of buprenorphine in humans. Drug Metab Dispos. 1984;12(5):577–81.

    PubMed  CAS  Google Scholar 

  80. Picard N, Cresteil T, Djebli N, Marquet P. In vitro metabolism study of buprenorphine: evidence for new metabolic pathways. Drug Metab Dispos. 2005;33(5):689–95.

    Article  PubMed  CAS  Google Scholar 

  81. Sullivan JG, Webster L. Novel buccal film formulation of buprenorphine-naloxone for the maintenance treatment of opioid dependence: a 12-week conversion study. Clin Ther. 2015;37(5):1064–75.

    Article  PubMed  CAS  Google Scholar 

  82. Webster L, Hjelmstrom P, Sumner M, Gunderson EW. Efficacy and safety of a sublingual buprenorphine/naloxone rapidly dissolving tablet for the treatment of adults with opioid dependence: a randomized trial. J Addict Dis. 2016;35(4):325–38.

    Article  PubMed  Google Scholar 

  83. Kuhlman JJ Jr, Lalani S, Magluilo J Jr, Levine B, Darwin WD. Human pharmacokinetics of intravenous, sublingual, and buccal buprenorphine. J Anal Toxicol. 1996;20(6):369–78.

    Article  PubMed  CAS  Google Scholar 

  84. Elkader A, Sproule B. Buprenorphine: clinical pharmacokinetics in the treatment of opioid dependence. Clin Pharmacokinet. 2005;44(7):661–80.

    Article  PubMed  CAS  Google Scholar 

  85. Gunderson EW, Hjelmstrom P, Sumner M, Study I. Effects of a higher-bioavailability buprenorphine/naloxone sublingual tablet versus buprenorphine/naloxone film for the treatment of opioid dependence during induction and stabilization: a multicenter, randomized trial. Clin Ther. 2015;37(10):2244–55.

  86. Fischer A, Jonsson M, Hjelmstrom P. Pharmaceutical and pharmacokinetic characterization of a novel sublingual buprenorphine/naloxone tablet formulation in healthy volunteers. Drug Dev Ind Pharm. 2015;41(1):79–84.

    Article  PubMed  CAS  Google Scholar 

  87. Lintzeris N, Leung SY, Dunlop AJ, Larance B, White N, Rivas GR, et al. A randomised controlled trial of sublingual buprenorphine-naloxone film versus tablets in the management of opioid dependence. Drug Alcohol Depend. 2013;131(1–2):119–26.

    Article  PubMed  CAS  Google Scholar 

  88. Bai SA, Xiang Q, Finn A. Evaluation of the pharmacokinetics of single- and multiple-dose buprenorphine buccal film in healthy volunteers. Clin Ther. 2016;38(2):358–69.

    Article  PubMed  CAS  Google Scholar 

  89. Priestley T, Chappa AK, Mould DR, Upton RN, Shusterman N, Passik S, et al. Converting from transdermal to buccal formulations of buprenorphine: a pharmacokinetic meta-model simulation in healthy volunteers. Pain Med. Epub 29 Sep 2017. https://doi.org/10.1093/pm/pnx235.

  90. Evans HC, Easthope SE. Transdermal buprenorphine. Drugs. 2003;63(19):1999–2010 (discussion 1–2).

    Article  PubMed  CAS  Google Scholar 

  91. Sittl R. Transdermal buprenorphine in the treatment of chronic pain. Expert Rev Neurother. 2005;5(3):315–23.

    Article  PubMed  CAS  Google Scholar 

  92. Kapil RP, Cipriano A, Friedman K, Michels G, Shet MS, Colucci SV, et al. Once-weekly transdermal buprenorphine application results in sustained and consistent steady-state plasma levels. J Pain Symp Manag. 2013;46(1):65–75.

    Article  CAS  Google Scholar 

  93. Plosker GL, Lyseng-Williamson KA. Buprenorphine 5, 10 and 20 mug/h transdermal patch: a guide to its use in chronic non-malignant pain. CNS Drugs. 2012;26(4):367–73.

    Article  PubMed  CAS  Google Scholar 

  94. Middleton LS, Nuzzo PA, Lofwall MR, Moody DE, Walsh SL. The pharmacodynamic and pharmacokinetic profile of intranasal crushed buprenorphine and buprenorphine/naloxone tablets in opioid abusers. Addiction. 2011;106(8):1460–73.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Walsh SL, Nuzzo PA, Babalonis S, Casselton V, Lofwall MR. Intranasal buprenorphine alone and in combination with naloxone: abuse liability and reinforcing efficacy in physically dependent opioid abusers. Drug Alcohol Depend. 2016;162:190–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Tegeder I, Lotsch J, Geisslinger G. Pharmacokinetics of opioids in liver disease. Clin Pharmacokinet. 1999;37(1):17–40.

    Article  PubMed  CAS  Google Scholar 

  97. Chang Y, Moody DE. Glucuronidation of buprenorphine and norbuprenorphine by human liver microsomes and UDP-glucuronosyltransferases. Drug Metab Lett. 2009;3(2):101–7.

    Article  PubMed  CAS  Google Scholar 

  98. Blanco F, Muriel C, Labrador J, Gonzalez-Porras JR, Gonzalez-Sarmiento R, Lozano FS. Influence of UGT2B7, CYP3A4, and OPRM1 gene polymorphisms on transdermal buprenorphine pain control in patients with critical lower limb ischemia awaiting revascularization. Pain Pract. 2016;16(7):842–9.

    Article  PubMed  Google Scholar 

  99. Sastre JA, Varela G, Lopez M, Muriel C, Gonzalez-Sarmiento R. Influence of uridine diphosphate-glucuronyltransferase 2B7 (UGT2B7) variants on postoperative buprenorphine analgesia. Pain Pract. 2015;15(1):22–30.

    Article  PubMed  Google Scholar 

  100. Moody DE, Slawson MH, Strain EC, Laycock JD, Spanbauer AC, Foltz RL. A liquid chromatographic-electrospray ionization-tandem mass spectrometric method for determination of buprenorphine, its metabolite, norbuprenorphine, and a coformulant, naloxone, that is suitable for in vivo and in vitro metabolism studies. Anal Biochem. 2002;306(1):31–9.

    Article  PubMed  CAS  Google Scholar 

  101. Fihlman M, Hemmila T, Hagelberg NM, Kuusniemi K, Backman JT, Laitila J, et al. Voriconazole more likely than posaconazole increases plasma exposure to sublingual buprenorphine causing a risk of a clinically important interaction. Eur J Clin Pharmacol. 2016;72(11):1363–71.

    Article  PubMed  CAS  Google Scholar 

  102. Kapil RP, Cipriano A, Michels GH, Perrino P, O’Keefe SA, Shet MS, et al. Effect of ketoconazole on the pharmacokinetic profile of buprenorphine following administration of a once-weekly buprenorphine transdermal system. Clin Drug Investig. 2012;32(9):583–92.

    PubMed  CAS  Google Scholar 

  103. Moody DE, Chang Y, Huang W, McCance-Katz EF. The in vivo response of novel buprenorphine metabolites, M1 and M3, to antiretroviral inducers and inhibitors of buprenorphine metabolism. Basic Clin Pharmacol Toxicol. 2009;105(3):211–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Moody DE, Fang WB, Lin SN, Weyant DM, Strom SC, Omiecinski CJ. Effect of rifampin and nelfinavir on the metabolism of methadone and buprenorphine in primary cultures of human hepatocytes. Drug Metab Dispos. 2009;37(12):2323–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Mahmood I. Prediction of clearance, volume of distribution, and half-life of drugs in extremely low to low birth weight neonates: an allometric approach. Eur J Drug Metab Pharmacokinet. 2017;42(4):601–10.

    Article  PubMed  CAS  Google Scholar 

  106. Ng CM, Dombrowsky E, Lin H, Erlich ME, Moody DE, Barrett JS, et al. Population pharmacokinetic model of sublingual buprenorphine in neonatal abstinence syndrome. Pharmacotherapy. 2015;35(7):670–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Vest M. Insufficient glucuronide formation in the newborn and its relationship to the pathogenesis of icterus neonatorum. Arch Dis Child. 1958;33(171):473–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Choonara I, Lawrence A, Michalkiewicz A, Bowhay A, Ratcliffe J. Morphine metabolism in neonates and infants. Br J Clin Pharmacol. 1992;34(5):434–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. de Wildt SN, Kearns GL, Murry DJ, Koren G, van den Anker JN. Ontogeny of midazolam glucuronidation in preterm infants. Eur J Clin Pharmacol. 2010;66(2):165–70.

    Article  PubMed  CAS  Google Scholar 

  110. Hartley R, Green M, Quinn MW, Rushforth JA, Levene MI. Development of morphine glucuronidation in premature neonates. Biol Neonate. 1994;66(1):1–9.

    Article  PubMed  CAS  Google Scholar 

  111. Michel E, Anderson BJ, Zernikow B. Buprenorphine TTS for children: a review of the drug’s clinical pharmacology. Paediatr Anaesth. 2011;21(3):280–90.

    Article  PubMed  Google Scholar 

  112. Michel E, Zernikow B. Buprenorphine in children. A clinical and pharmacological review [in German]. Schmerz. 2006;20(1):40–50.

    Article  PubMed  CAS  Google Scholar 

  113. Pergolizzi J, Boger RH, Budd K, Dahan A, Erdine S, Hans G, et al. Opioids and the management of chronic severe pain in the elderly: consensus statement of an International Expert Panel with focus on the six clinically most often used World Health Organization Step III opioids (buprenorphine, fentanyl, hydromorphone, methadone, morphine, oxycodone). Pain Pract. 2008;8(4):287–313.

    Article  PubMed  Google Scholar 

  114. Vadivelu N, Hines RL. Management of chronic pain in the elderly: focus on transdermal buprenorphine. Clin Interv Aging. 2008;3(3):421–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Al-Tawil N, Odar-Cederlof I, Berggren AC, Johnson HE, Persson J. Pharmacokinetics of transdermal buprenorphine patch in the elderly. Eur J Clin Pharmacol. 2013;69(2):143–9.

    Article  PubMed  CAS  Google Scholar 

  116. Filitz J, Griessinger N, Sittl R, Likar R, Schuttler J, Koppert W. Effects of intermittent hemodialysis on buprenorphine and norbuprenorphine plasma concentrations in chronic pain patients treated with transdermal buprenorphine. Eur J Pain. 2006;10(8):743–8.

    Article  PubMed  CAS  Google Scholar 

  117. Boger RH. Renal impairment: a challenge for opioid treatment? The role of buprenorphine. Palliat Med. 2006;20(Suppl 1):s17–23.

    PubMed  Google Scholar 

  118. Yeung CK, Shen DD, Thummel KE, Himmelfarb J. Effects of chronic kidney disease and uremia on hepatic drug metabolism and transport. Kidney Int. 2014;85(3):522–8.

    Article  PubMed  CAS  Google Scholar 

  119. Nolin TD, Appiah K, Kendrick SA, Le P, McMonagle E, Himmelfarb J. Hemodialysis acutely improves hepatic CYP3A4 metabolic activity. J Am Soc Nephrol. 2006;17(9):2363–7.

    Article  PubMed  CAS  Google Scholar 

  120. Hand CW, Sear JW, Uppington J, Ball MJ, McQuay HJ, Moore RA. Buprenorphine disposition in patients with renal impairment: single and continuous dosing, with special reference to metabolites. Br J Anaesth. 1990;64(3):276–82.

    Article  PubMed  CAS  Google Scholar 

  121. Summerfield RJ, Allen MC, Moore RA, Sear JW, McQuay HJ. Buprenorphine in end stage renal failure. Anaesthesia. 1985;40(9):914.

    Article  PubMed  CAS  Google Scholar 

  122. Nasser AF, Heidbreder C, Liu Y, Fudala PJ. Pharmacokinetics of sublingual buprenorphine and naloxone in subjects with mild to severe hepatic impairment (child-pugh classes A, B, and C), in hepatitis C virus-seropositive subjects, and in healthy volunteers. Clin Pharmacokinet. 2015;54(8):837–49.

    Article  PubMed  CAS  Google Scholar 

  123. Furlan V, Demirdjian S, Bourdon O, Magdalou J, Taburet AM. Glucuronidation of drugs by hepatic microsomes derived from healthy and cirrhotic human livers. J Pharmacol Exp Ther. 1999;289(2):1169–75.

    PubMed  CAS  Google Scholar 

  124. Hardwick RN, Ferreira DW, More VR, Lake AD, Lu Z, Manautou JE, et al. Altered UDP-glucuronosyltransferase and sulfotransferase expression and function during progressive stages of human nonalcoholic fatty liver disease. Drug Metab Dispos. 2013;41(3):554–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Verbeeck RK. Pharmacokinetics and dosage adjustment in patients with hepatic dysfunction. Eur J Clin Pharmacol. 2008;64(12):1147–61.

    Article  PubMed  CAS  Google Scholar 

  126. Elbekai RH, Korashy HM, El-Kadi AO. The effect of liver cirrhosis on the regulation and expression of drug metabolizing enzymes. Curr Drug Metab. 2004;5(2):157–67.

    Article  PubMed  CAS  Google Scholar 

  127. Ciccozzi A, Angeletti C, Baldascino G, Petrucci E, Bonetti C, De Santis S, et al. High dose of buprenorphine in terminally ill patient with liver failure: efficacy and tolerability. J Opioid Manag. 2012;8(4):253–9.

    Article  PubMed  Google Scholar 

  128. Wolff RF, Aune D, Truyers C, Hernandez AV, Misso K, Riemsma R, et al. Systematic review of efficacy and safety of buprenorphine versus fentanyl or morphine in patients with chronic moderate to severe pain. Curr Med Res Opin. 2012;28(5):833–45.

    Article  PubMed  CAS  Google Scholar 

  129. Wolff RF, Reid K, di Nisio M, Aune D, Truyers C, Hernandez AV, et al. Systematic review of adverse events of buprenorphine patch versus fentanyl patch in patients with chronic moderate-to-severe pain. Pain Manag. 2012;2(4):351–62.

    Article  PubMed  Google Scholar 

  130. Ahn JS, Lin J, Ogawa S, Yuan C, O’Brien T, Le BH, et al. Transdermal buprenorphine and fentanyl patches in cancer pain: a network systematic review. J Pain Res. 2017;10:1963–72.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Cote J, Montgomery L. Sublingual buprenorphine as an analgesic in chronic pain: a systematic review. Pain Med. 2014;15(7):1171–8.

    Article  PubMed  Google Scholar 

  132. James IG, O’Brien CM, McDonald CJ. A randomized, double-blind, double-dummy comparison of the efficacy and tolerability of low-dose transdermal buprenorphine (BuTrans seven-day patches) with buprenorphine sublingual tablets (Temgesic) in patients with osteoarthritis pain. J Pain Symp Manag. 2010;40(2):266–78.

    Article  CAS  Google Scholar 

  133. Naing C, Yeoh PN, Aung K. A meta-analysis of efficacy and tolerability of buprenorphine for the relief of cancer pain. Springerplus. 2014;3:87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Wiffen PJ, Derry S, Moore RA, Stannard C, Aldington D, Cole P, et al. Buprenorphine for neuropathic pain in adults. Cochrane Database Syst Rev. 2015;(9):CD011603.

  135. Buprenorphine for chronic pain: a review of the clinical effectiveness. Ottawa (ON); Canadian Agency for Drugs and Technologies in Health; 2017.

  136. Sittl R, Griessinger N, Likar R. Analgesic efficacy and tolerability of transdermal buprenorphine in patients with inadequately controlled chronic pain related to cancer and other disorders: a multicenter, randomized, double-blind, placebo-controlled trial. Clin Ther. 2003;25(1):150–68.

    Article  PubMed  CAS  Google Scholar 

  137. Poulain P, Denier W, Douma J, Hoerauf K, Samija M, Sopata M, et al. Efficacy and safety of transdermal buprenorphine: a randomized, placebo-controlled trial in 289 patients with severe cancer pain. J Pain Symp Manag. 2008;36(2):117–25.

    Article  CAS  Google Scholar 

  138. Conaghan PG, O’Brien CM, Wilson M, Schofield JP. Transdermal buprenorphine plus oral paracetamol vs an oral codeine-paracetamol combination for osteoarthritis of hip and/or knee: a randomised trial. Osteoarthritis Cartilage. 2011;19(8):930–8.

    Article  PubMed  CAS  Google Scholar 

  139. Steiner D, Munera C, Hale M, Ripa S, Landau C. Efficacy and safety of buprenorphine transdermal system (BTDS) for chronic moderate to severe low back pain: a randomized, double-blind study. J Pain. 2011;12(11):1163–73.

    Article  PubMed  CAS  Google Scholar 

  140. Steiner DJ, Sitar S, Wen W, Sawyerr G, Munera C, Ripa SR, et al. Efficacy and safety of the seven-day buprenorphine transdermal system in opioid-naive patients with moderate to severe chronic low back pain: an enriched, randomized, double-blind, placebo-controlled study. J Pain Symptom Manag. 2011;42(6):903–17.

    Article  CAS  Google Scholar 

  141. Landau CJ, Carr WD, Razzetti AJ, Sessler NE, Munera C, Ripa SR. Buprenorphine transdermal delivery system in adults with persistent noncancer-related pain syndromes who require opioid therapy: a multicenter, 5-week run-in and randomized, double-blind maintenance-of-analgesia study. Clin Ther. 2007;29(10):2179–93.

    Article  PubMed  CAS  Google Scholar 

  142. Gordon A, Callaghan D, Spink D, Cloutier C, Dzongowski P, O’Mahony W, et al. Buprenorphine transdermal system in adults with chronic low back pain: a randomized, double-blind, placebo-controlled crossover study, followed by an open-label extension phase. Clin Ther. 2010;32(5):844–60.

    Article  PubMed  CAS  Google Scholar 

  143. Mitra F, Chowdhury S, Shelley M, Williams G. A feasibility study of transdermal buprenorphine versus transdermal fentanyl in the long-term management of persistent non-cancer pain. Pain Med. 2013;14(1):75–83.

    Article  PubMed  Google Scholar 

  144. Muriel C, Failde I, Mico JA, Neira M, Sanchez-Magro I. Effectiveness and tolerability of the buprenorphine transdermal system in patients with moderate to severe chronic pain: a multicenter, open-label, uncontrolled, prospective, observational clinical study. Clin Ther. 2005;27(4):451–62.

    Article  PubMed  CAS  Google Scholar 

  145. Griessinger N, Sittl R, Likar R. Transdermal buprenorphine in clinical practice—a post-marketing surveillance study in 13,179 patients. Curr Med Res Opin. 2005;21(8):1147–56.

    Article  PubMed  CAS  Google Scholar 

  146. Gianni W, Madaio AR, Ceci M, Benincasa E, Conati G, Franchi F, et al. Transdermal buprenorphine for the treatment of chronic noncancer pain in the oldest old. J Pain Symptom Manag. 2011;41(4):707–14.

    Article  CAS  Google Scholar 

  147. Sittl R, Nuijten M, Poulsen Nautrup B. Patterns of dosage changes with transdermal buprenorphine and transdermal fentanyl for the treatment of noncancer and cancer pain: a retrospective data analysis in Germany. Clin Ther. 2006;28(8):1144–54.

    Article  PubMed  CAS  Google Scholar 

  148. Likar R, Kayser H, Sittl R. Long-term management of chronic pain with transdermal buprenorphine: a multicenter, open-label, follow-up study in patients from three short-term clinical trials. Clin Ther. 2006;28(6):943–52.

    Article  PubMed  CAS  Google Scholar 

  149. Aalto M, Visapaa JP, Halme JT, Fabritius C, Salaspuro M. Effectiveness of buprenorphine maintenance treatment as compared to a syringe exchange program among buprenorphine misusing opioid-dependent patients. Nord J Psychiatry. 2011;65(4):238–43.

    Article  PubMed  Google Scholar 

  150. Yoon DH, Bin SI, Chan SK, Chung CK, In Y, Kim H, et al. Effectiveness and tolerability of transdermal buprenorphine patches: a multicenter, prospective, open-label study in Asian patients with moderate to severe chronic musculoskeletal pain. BMC Musculoskelet Disord. 2017;18(1):337.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Lesen E, Ericson L, Simonsberg C, Varelius R, Bjorholt I, Soderpalm B. Dose patterns among patients using low-dose buprenorphine patches. Pain Med. 2013;14(9):1374–80.

    Article  PubMed  Google Scholar 

  152. Rauck RL, Potts J, Xiang Q, Tzanis E, Finn A. Efficacy and tolerability of buccal buprenorphine in opioid-naive patients with moderate to severe chronic low back pain. Postgrad Med. 2016;128(1):1–11.

    Article  PubMed  Google Scholar 

  153. Gimbel J, Spierings EL, Katz N, Xiang Q, Tzanis E, Finn A. Efficacy and tolerability of buccal buprenorphine in opioid-experienced patients with moderate to severe chronic low back pain: results of a phase 3, enriched enrollment, randomized withdrawal study. Pain. 2016;157(11):2517–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Hale M, Urdaneta V, Kirby MT, Xiang Q, Rauck R. Long-term safety and analgesic efficacy of buprenorphine buccal film in patients with moderate-to-severe chronic pain requiring around-the-clock opioids. J Pain Res. 2017;10:233–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Przeklasa-Muszynska A, Dobrogowski J. Transdermal buprenorphine in the treatment of cancer and non-cancer pain—the results of multicenter studies in Poland. Pharmacol Rep. 2011;63(4):935–48.

    Article  PubMed  CAS  Google Scholar 

  156. Budd K. High dose buprenorphine for postoperative analgesia. Anaesthesia. 1981;36(9):900–3.

    Article  PubMed  CAS  Google Scholar 

  157. Kim HJ, Ahn HS, Nam Y, Chang BS, Lee CK, Yeom JS. Comparative study of the efficacy of transdermal buprenorphine patches and prolonged-release tramadol tablets for postoperative pain control after spinal fusion surgery: a prospective, randomized controlled non-inferiority trial. Eur Spine J. 2017;26(11):2961–8.

    Article  PubMed  Google Scholar 

  158. Mercieri M, Palmisani S, De Blasi RA, D’Andrilli A, Naccarato A, Silvestri B, et al. Low-dose buprenorphine infusion to prevent postoperative hyperalgesia in patients undergoing major lung surgery and remifentanil infusion: a double-blind, randomized, active-controlled trial. Br J Anaesth. 2017;119(4):792–802.

    Article  PubMed  Google Scholar 

  159. Chang KY, Chang WK, Chang WL, Lin SM, Chan KH, Sung CS, et al. Comparison of intravenous patient-controlled analgesia with buprenorphine versus morphine after lumbar spinal fusion—a prospective randomized clinical trial. Acta Anaesthesiol Taiwan. 2006;44(3):153–9.

    PubMed  Google Scholar 

  160. Williams BA, Butt MT, Zeller JR, Coffee S, Pippi MA. Multimodal perineural analgesia with combined bupivacaine-clonidine-buprenorphine-dexamethasone: safe in vivo and chemically compatible in solution. Pain Med. 2015;16(1):186–98.

    Article  PubMed  Google Scholar 

  161. Alemanno F, Westermann B, Bettoni A, Candiani A, Cesana BM. Buprenorphine versus tramadol as perineural adjuvants for postoperative analgesia in patients undergoing arthroscopic rotator cuff repair under middle interscalene block: a retrospective study. Minerva Anestesiol. 2014;80(11):1198–204.

    PubMed  CAS  Google Scholar 

  162. Kosel J, Bobik P, Tomczyk M. Buprenorphine: the unique opioid adjuvant in regional anesthesia. Expert Rev Clin Pharmacol. 2016;9(3):375–83.

    Article  PubMed  CAS  Google Scholar 

  163. Strain EC, Moody DE, Stoller KB, Walsh SL, Bigelow GE. Relative bioavailability of different buprenorphine formulations under chronic dosing conditions. Drug Alcohol Depend. 2004;74(1):37–43.

    Article  PubMed  CAS  Google Scholar 

  164. Weinhold LL, Bigelow GE, Preston KL. Combination of naloxone with buprenorphine in humans. NIDA Res Monogr. 1989;95:485.

    PubMed  CAS  Google Scholar 

  165. Simojoki K, Vorma H, Alho H. A retrospective evaluation of patients switched from buprenorphine (Subutex) to the buprenorphine/naloxone combination (Suboxone). Subst Abuse Treat Prev Policy. 2008;3:16.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Coffman BL, Rios GR, King CD, Tephly TR. Human UGT2B7 catalyzes morphine glucuronidation. Drug Metab Dispos. 1997;25(1):1–4.

    PubMed  CAS  Google Scholar 

  167. Sittl R, Likar R, Nautrup BP. Equipotent doses of transdermal fentanyl and transdermal buprenorphine in patients with cancer and noncancer pain: results of a retrospective cohort study. Clin Ther. 2005;27(2):225–37.

    Article  PubMed  CAS  Google Scholar 

  168. Mok MS, Lippmann M, Steen SN. Multidose/observational, comparative clinical analgetic evaluation of buprenorphine. J Clin Pharmacol. 1981;21(7):323–9.

    Article  PubMed  CAS  Google Scholar 

  169. Tigerstedt I, Turunen M, Tammisto T, Hastbacka J. The effect of buprenorphine and oxycodone on the intracholedochal passage pressure. Acta Anaesthesiol Scand. 1981;25(2):99–102.

    Article  PubMed  CAS  Google Scholar 

  170. Wang RI, Johnson RP, Robinson N, Waite E. The study of analgesics following single and repeated doses. J Clin Pharmacol. 1981;21(2):121–5.

    Article  PubMed  CAS  Google Scholar 

  171. Mercadante S, Casuccio A, Tirelli W, Giarratano A. Equipotent doses to switch from high doses of opioids to transdermal buprenorphine. Support Care Cancer. 2009;17(6):715–8.

    Article  PubMed  Google Scholar 

  172. Mercadante S, Porzio G, Fulfaro F, Aielli F, Verna L, Ficorella C, et al. Switching from transdermal drugs: an observational “N of 1” study of fentanyl and buprenorphine. J Pain Symptom Manage. 2007;34(5):532–8.

    Article  PubMed  CAS  Google Scholar 

  173. Cuschieri RJ, Morran CG, McArdle CS. Comparison of morphine and sublingual buprenorphine following abdominal surgery. Br J Anaesth. 1984;56(8):855–9.

    Article  PubMed  CAS  Google Scholar 

  174. Skaer TL. Dosing considerations with transdermal formulations of fentanyl and buprenorphine for the treatment of cancer pain. J Pain Res. 2014;7:495–503.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Oifa S, Sydoruk T, White I, Ekstein MP, Marouani N, Chazan S, et al. Effects of intravenous patient-controlled analgesia with buprenorphine and morphine alone and in combination during the first 12 postoperative hours: a randomized, double-blind, four-arm trial in adults undergoing abdominal surgery. Clin Ther. 2009;31(3):527–41.

    Article  PubMed  CAS  Google Scholar 

  176. Mercadante S, Villari P, Ferrera P, Porzio G, Aielli F, Verna L, et al. Safety and effectiveness of intravenous morphine for episodic breakthrough pain in patients receiving transdermal buprenorphine. J Pain Symp Manag. 2006;32(2):175–9.

    Article  CAS  Google Scholar 

  177. Stromer W, Michaeli K, Sandner-Kiesling A. Reply to: an alternative way of managing acute pain in patients who are in buprenorphine opioid substitution therapy programmes. Eur J Anaesthesiol. 2013;30(11):718–9.

    Article  PubMed  Google Scholar 

  178. Stromer W, Michaeli K, Sandner-Kiesling A. Perioperative pain therapy in opioid abuse. Eur J Anaesthesiol. 2013;30(2):55–64.

    Article  PubMed  CAS  Google Scholar 

  179. Huxtable CA, Macintyre PE. An alternative way of managing acute pain in patients who are in buprenorphine opioid substitution therapy programs. Eur J Anaesthesiol. 2013;30(11):717–8.

    Article  PubMed  Google Scholar 

  180. Leighton BL, Crock LW. Case series of successful postoperative pain management in buprenorphine maintenance therapy patients. Anesth Analg. 2017;125(5):1779–83.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Rosado J, Walsh SL, Bigelow GE, Strain EC. Sublingual buprenorphine/naloxone precipitated withdrawal in subjects maintained on 100 mg of daily methadone. Drug Alcohol Depend. 2007;90(2–3):261–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Malinoff HL, Barkin RL, Wilson G. Sublingual buprenorphine is effective in the treatment of chronic pain syndrome. Am J Ther. 2005;12(5):379–84.

    Article  PubMed  Google Scholar 

  183. Rosenblum A, Cruciani RA, Strain EC, Cleland CM, Joseph H, Magura S, et al. Sublingual buprenorphine/naloxone for chronic pain in at-risk patients: development and pilot test of a clinical protocol. J Opioid Manag. 2012;8(6):369–82.

    Article  PubMed  PubMed Central  Google Scholar 

  184. Daitch D, Daitch J, Novinson D, Frey M, Mitnick C, Pergolizzi J Jr. Conversion from high-dose full-opioid agonists to sublingual buprenorphine reduces pain scores and improves quality of life for chronic pain patients. Pain Med. 2014;15(12):2087–94.

    Article  PubMed  Google Scholar 

  185. Daitch J, Frey ME, Silver D, Mitnick C, Daitch D, Pergolizzi J, Jr. Conversion of chronic pain patients from full-opioid agonists to sublingual buprenorphine. Pain Physician. 2012;15(3 Suppl):ES59–66.

  186. Webster L, Gruener D, Kirby T, Xiang Q, Tzanis E, Finn A. Evaluation of the tolerability of switching patients on chronic full mu-opioid agonist therapy to buccal buprenorphine. Pain Med (Epub 25 Feb 2016).

  187. Heit HA, Covington E, Good PM. Dear DEA. Pain Med. 2004;5(3):303–8.

    Article  PubMed  Google Scholar 

  188. Boyer EW, McCance-Katz EF, Marcus S. Methadone and buprenorphine toxicity in children. Am J Addict. 2010;19(1):89–95.

    Article  PubMed  Google Scholar 

  189. Fareed A, Patil D, Scheinberg K, Blackinton Gale R, Vayalapalli S, Casarella J, et al. Comparison of QTc interval prolongation for patients in methadone versus buprenorphine maintenance treatment: a 5-year follow-up. J Addict Dis. 2013;32(3):244–51.

    Article  PubMed  Google Scholar 

  190. Stallvik M, Nordstrand B, Kristensen O, Bathen J, Skogvoll E, Spigset O. Corrected QT interval during treatment with methadone and buprenorphine: relation to doses and serum concentrations. Drug Alcohol Depend. 2013;129(1–2):88–93.

    Article  PubMed  CAS  Google Scholar 

  191. de Jong IM, de Ruiter GS. Buprenorphine as a safe alternative to methadone in a patient with acquired long QT syndrome: a case report. Neth Heart J. 2013;21(5):249–52.

    Article  PubMed  Google Scholar 

  192. Wedam EF, Bigelow GE, Johnson RE, Nuzzo PA, Haigney MC. QT-interval effects of methadone, levomethadyl, and buprenorphine in a randomized trial. Arch Intern Med. 2007;167(22):2469–75.

    Article  PubMed  CAS  Google Scholar 

  193. Krantz MJ, Garcia JA, Mehler PS. Effects of buprenorphine on cardiac repolarization in a patient with methadone-related torsade de pointes. Pharmacotherapy. 2005;25(4):611–4.

    Article  PubMed  Google Scholar 

  194. Darpo B, Zhou M, Bai SA, Ferber G, Xiang Q, Finn A. Differentiating the effect of an opioid agonist on cardiac repolarization from micro-receptor-mediated, indirect effects on the qt interval: a randomized, 3-way crossover study in healthy subjects. Clin Ther. 2016;38(2):315–26.

    Article  PubMed  CAS  Google Scholar 

  195. Harris SC, Morganroth J, Ripa SR, Thorn MD, Colucci S. Effects of buprenorphine on QT intervals in healthy subjects: results of 2 randomized positive- and placebo-controlled trials. Postgrad Med. 2017;129(1):69–80.

    Article  PubMed  Google Scholar 

  196. Mayet S, Gossop M, Lintzeris N, Markides V, Strang J. Methadone maintenance, QTc and torsade de pointes: who needs an electrocardiogram and what is the prevalence of QTc prolongation? Drug Alcohol Rev. 2011;30(4):388–96.

    Article  PubMed  Google Scholar 

  197. Russell L, Levine D. Methadone-induced Torsades de pointes. R I Med J (2013). 2013;96(8):20–1.

  198. Baker JR, Best AM, Pade PA, McCance-Katz EF. Effect of buprenorphine and antiretroviral agents on the QT interval in opioid-dependent patients. Ann Pharmacother. 2006;40(3):392–6.

    Article  PubMed  CAS  Google Scholar 

  199. Kao DP, Haigney MC, Mehler PS, Krantz MJ. Arrhythmia associated with buprenorphine and methadone reported to the Food and Drug Administration. Addiction. 2015;110(9):1468–75.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institute on Drug Abuse (DA00641, DA007242), the Peter McManus Charitable Trust and The Mayday Fund to GWP and a core grant from the National Cancer Institute to MSKCC (CA008748).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mellar P. Davis.

Ethics declarations

Conficts of interest

M. P. Davis, G. Pasternak and B. Behm all declare that they have no relevant conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davis, M.P., Pasternak, G. & Behm, B. Treating Chronic Pain: An Overview of Clinical Studies Centered on the Buprenorphine Option. Drugs 78, 1211–1228 (2018). https://doi.org/10.1007/s40265-018-0953-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-018-0953-z

Navigation