Skip to main content
Log in

Metastatic Melanoma: Recent Therapeutic Progress and Future Perspectives

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

The prognosis of patients with metastatic melanoma has dramatically improved in recent years with the introduction of two new therapeutic strategies. BRAF and MEK inhibitors are small molecules that are able to block the mitogen-activated protein kinase (MAPK) pathway, which is constitutively activated by recurrent BRAF V600 mutations in 45% of melanoma patients. These agents were shown to provide a rapid and strong response but are often limited by a high rate of secondary resistance. Monoclonal antibodies against the immune checkpoints cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and programmed death 1 (PD-1) can restore an efficient and durable anti-tumor immunity, even following treatment discontinuation. Anti-PD-1 antibodies were shown to prolong survival of metastatic melanoma patients and a real cure seems to be obtainable in some patients. Many more therapies are currently under investigation, given that 50% of patients still do not have long-term benefits from approved treatments. The main goal is to avoid or circumvent primary or secondary immune resistance to anti-PD-1 therapy not only by targeting other players in the tumor microenvironment but also by optimizing treatment sequencing and combining anti-PD-1 with other treatments, especially with BRAF and MEK inhibitors. The unexpected major successes of immunotherapies in melanoma have opened the way for the development of these treatments in other cancers. In this review, we describe the different available treatments, their toxicities, and the key components of our decisional algorithms, and give an overview of what we expect to be the near future of melanoma treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Karimkhani C, Green AC, Nijsten T, Weinstock MA, Dellavalle RP, Naghavi M, et al. The global burden of melanoma: results from the Global Burden of Disease Study 2015. Br J Dermatol. 2017;177(1):134–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Dennis LK, Vanbeek MJ, Beane Freeman LE, Smith BJ, Dawson DV, Coughlin JA. Sunburns and risk of cutaneous melanoma: does age matter? A comprehensive meta-analysis. Ann Epidemiol. 2008;18(8):614–27.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tucker MA, Elder DE, Curry M, Fraser MC, Pichler V, Zametkin D, et al. Risks of melanoma and other cancers in melanoma-prone families over four decades. J Investig Dermatol. 2018. https://doi.org/10.1016/j.jid.2018.01.021.

    Article  PubMed  Google Scholar 

  4. Thomas NE, Edmiston SN, Alexander A, Millikan RC, Groben PA, Hao H, et al. Number of nevi and early-life ambient UV exposure are associated with BRAF-mutant melanoma. Cancer Epidemiol Biomark Prev. 2007;16(5):991–7.

    Article  CAS  Google Scholar 

  5. Korn EL, Liu P-Y, Lee SJ, Chapman J-AW, Niedzwiecki D, Suman VJ, et al. Meta-analysis of phase II cooperative group trials in metastatic stage IV melanoma to determine progression-free and overall survival benchmarks for future phase II trials. J Clin Oncol. 2008;26(4):527–34.

    Article  PubMed  Google Scholar 

  6. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–54.

    Article  PubMed  CAS  Google Scholar 

  7. Ascierto PA, Kirkwood JM, Grob J-J, Simeone E, Grimaldi AM, Maio M, et al. The role of BRAF V600 mutation in melanoma. J Transl Med. 2012;9(10):85.

    Article  CAS  Google Scholar 

  8. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364(26):2507–16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Hauschild A, Grob J-J, Demidov LV, Jouary T, Gutzmer R, Millward M, et al. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2012;380(9839):358–65.

    Article  PubMed  CAS  Google Scholar 

  10. Dummer R, Ascierto PA, Gogas HJ, Arance A, Mandala M, Liszkay G, et al. Encorafenib plus binimetinib versus vemurafenib or encorafenib in patients with BRAF-mutant melanoma (COLUMBUS): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2018;19:603–15.

    Article  PubMed  CAS  Google Scholar 

  11. Long GV, Flaherty KT, Stroyakovskiy D, Gogas H, Levchenko E, de Braud F, et al. Dabrafenib plus trametinib versus dabrafenib monotherapy in patients with metastatic BRAF V600E/K-mutant melanoma: long-term survival and safety analysis of a phase 3 study. Ann Oncol. 2017;28(7):1631–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Robert C, Karaszewska B, Schachter J, Rutkowski P, Mackiewicz A, Stroiakovski D, et al. Improved overall survival in melanoma with combined dabrafenib and trametinib. N Engl J Med. 2015;372(1):30–9.

    Article  PubMed  CAS  Google Scholar 

  13. Ascierto PA, McArthur GA, Dréno B, Atkinson V, Liszkay G, Di Giacomo AM, et al. Cobimetinib combined with vemurafenib in advanced BRAF(V600)-mutant melanoma (coBRIM): updated efficacy results from a randomised, double-blind, phase 3 trial. Lancet Oncol. 2016;17(9):1248–60.

    Article  PubMed  CAS  Google Scholar 

  14. Larkin J, Ascierto PA, Dréno B, Atkinson V, Liszkay G, Maio M, et al. Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N Engl J Med. 2014;371(20):1867–76.

    Article  PubMed  CAS  Google Scholar 

  15. Boussemart L, Malka-Mahieu H, Girault I, Allard D, Hemmingsson O, Tomasic G, et al. eIF4F is a nexus of resistance to anti-BRAF and anti-MEK cancer therapies. Nature. 2014;513(7516):105–9.

    Article  PubMed  CAS  Google Scholar 

  16. Vesely MD, Schreiber RD. Cancer immunoediting: antigens, mechanisms, and implications to cancer immunotherapy. Ann N Y Acad Sci. 2013;1284:1–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Baitsch L, Baumgaertner P, Devêvre E, Raghav SK, Legat A, Barba L, et al. Exhaustion of tumor-specific CD8+ T cells in metastases from melanoma patients. J Clin Investig. 2011;121(6):2350–60.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Robert C, Thomas L, Bondarenko I, O’Day S, Weber J, Garbe C, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011;364(26):2517–26.

    Article  PubMed  CAS  Google Scholar 

  20. Maio M, Grob J-J, Aamdal S, Bondarenko I, Robert C, Thomas L, et al. Five-year survival rates for treatment-naive patients with advanced melanoma who received ipilimumab plus dacarbazine in a phase III trial. J Clin Oncol. 2015;33(10):1191–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228–47.

    Article  PubMed  CAS  Google Scholar 

  22. Wolchok JD, Hoos A, O’Day S, Weber JS, Hamid O, Lebbé C, et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res. 2009;15(23):7412–20.

    Article  PubMed  CAS  Google Scholar 

  23. Weber JS, Dummer R, de Pril V, Lebbé C, Hodi FS. MDX010-20 Investigators. Patterns of onset and resolution of immune-related adverse events of special interest with ipilimumab: detailed safety analysis from a phase 3 trial in patients with advanced melanoma. Cancer. 2013;119(9):1675–82.

    Article  PubMed  CAS  Google Scholar 

  24. Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372(4):320–30.

    Article  PubMed  CAS  Google Scholar 

  25. Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, et al. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med. 2015;372(26):2521–32.

    Article  PubMed  CAS  Google Scholar 

  26. Wolchok JD, Chiarion-Sileni V, Gonzalez R, Rutkowski P, Grob J-J, Cowey CL, et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 2017;377(14):1345–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Johnson DB, Balko JM, Compton ML, Chalkias S, Gorham J, Xu Y, et al. Fulminant myocarditis with combination immune checkpoint blockade. N Engl J Med. 2016;375(18):1749–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Jessurun CAC, Vos JAM, Limpens J, Luiten RM. Biomarkers for response of melanoma patients to immune checkpoint inhibitors: a systematic review. Front Oncol. 2017;7:233.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hugo W, Zaretsky JM, Sun L, Song C, Moreno BH, Hu-Lieskovan S, et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell. 2016;165(1):35–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Blank CU, Haanen JB, Ribas A, Schumacher TN. Cancer immunology. The “cancer immunogram”. Science. 2016;352(6286):658–60.

    Article  PubMed  CAS  Google Scholar 

  31. Andtbacka RHI, Kaufman HL, Collichio F, Amatruda T, Senzer N, Chesney J, et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol. 2015;33(25):2780–8.

    Article  PubMed  CAS  Google Scholar 

  32. Ugurel S, Röhmel J, Ascierto PA, Flaherty KT, Grob JJ, Hauschild A, et al. Survival of patients with advanced metastatic melanoma: the impact of novel therapies-update 2017. Eur J Cancer. 1990;2017(83):247–57.

    Google Scholar 

  33. Grob JJ, Long GV, Schadendorf D, Flaherty K. Disease kinetics for decision-making in advanced melanoma: a call for scenario-driven strategy trials. Lancet Oncol. 2015;16(13):e522–6.

    Article  PubMed  Google Scholar 

  34. Long GV, Grob J-J, Nathan P, Ribas A, Robert C, Schadendorf D, et al. Factors predictive of response, disease progression, and overall survival after dabrafenib and trametinib combination treatment: a pooled analysis of individual patient data from randomised trials. Lancet Oncol. 2016;17(12):1743–54.

    Article  PubMed  CAS  Google Scholar 

  35. Davies MA, Liu P, McIntyre S, Kim KB, Papadopoulos N, Hwu W-J, et al. Prognostic factors for survival in melanoma patients with brain metastases. Cancer. 2011;117(8):1687–96.

    Article  PubMed  Google Scholar 

  36. Davies MA, Saiag P, Robert C, Grob J-J, Flaherty KT, Arance A, et al. Dabrafenib plus trametinib in patients with BRAFV600-mutant melanoma brain metastases (COMBI-MB): a multicentre, multicohort, open-label, phase 2 trial. Lancet Oncol. 2017;18(7):863–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Lond GV, Atkinson V, Menzies AM, Lo S, Guminski AD, Brown MP, et al. A randomized phase II study of nivolumab or nivolumab combined with ipilimumab in patients (pts) with melanoma brain metastases (mets): the Anti-PD1 Brain Collaboration (ABC) [abstract]. J Clin Oncol. 2017;35(15_suppl):9508.

    Article  Google Scholar 

  38. Gaudy-Marqueste C, Dussouil AS, Carron R, Troin L, Malissen N, Loundou A, et al. Survival of melanoma patients treated with targeted therapy and immunotherapy after systematic upfront control of brain metastases by radiosurgery. Eur J Cancer. 1990;2017(84):44–54.

    Google Scholar 

  39. Kerr KM, Nicolson MC. Non-small cell lung cancer, PD-L1, and the pathologist. Arch Pathol Lab Med. 2016;140(3):249–54.

    Article  PubMed  Google Scholar 

  40. Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJM, Robert L, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515(7528):568–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Weide B, Martens A, Hassel JC, Berking C, Postow MA, Bisschop K, et al. Baseline biomarkers for outcome of melanoma patients treated with pembrolizumab. Clin Cancer Res. 2016;22(22):5487–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Nakamura Y, Kitano S, Takahashi A, Tsutsumida A, Namikawa K, Tanese K, et al. Nivolumab for advanced melanoma: pretreatment prognostic factors and early outcome markers during therapy. Oncotarget. 2016;7(47):77404–15.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Krieg C, Nowicka M, Guglietta S, Schindler S, Hartmann FJ, Weber LM, et al. High-dimensional single-cell analysis predicts response to anti-PD-1 immunotherapy. Nat Med. 2018;24:144–53.

    Article  PubMed  CAS  Google Scholar 

  44. Sanmamed MF, Perez-Gracia JL, Schalper KA, Fusco JP, Gonzalez A, Rodriguez-Ruiz ME, et al. Changes in serum interleukin-8 (IL-8) levels reflect and predict response to anti-PD-1 treatment in melanoma and non-small-cell lung cancer patients. Ann Oncol. 2017;28(8):1988–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Daniotti M, Vallacchi V, Rivoltini L, Patuzzo R, Santinami M, Arienti F, et al. Detection of mutated BRAFV600E variant in circulating DNA of stage III–IV melanoma patients. Int J Cancer. 2007;120(11):2439–44.

    Article  PubMed  CAS  Google Scholar 

  46. Lee JH, Long GV, Boyd S, Lo S, Menzies AM, Tembe V, et al. Circulating tumour DNA predicts response to anti-PD1 antibodies in metastatic melanoma. Ann Oncol. 2017;28(5):1130–6.

    Article  PubMed  CAS  Google Scholar 

  47. Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med. 2014;371(23):2189–99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. McGranahan N, Furness AJS, Rosenthal R, Ramskov S, Lyngaa R, Saini SK, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science. 2016;351(6280):1463–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science. 2015;350(6264):1084–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Vétizou M, Pitt JM, Daillère R, Lepage P, Waldschmitt N, Flament C, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 2015;350(6264):1079–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. 2018;359(6371):97–103.

    Article  PubMed  CAS  Google Scholar 

  52. Matson V, Fessler J, Bao R, Chongsuwat T, Zha Y, Alegre M-L, et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science. 2018;359(6371):104–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillère R, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 2018;359(6371):91–7.

    Article  PubMed  CAS  Google Scholar 

  54. Carlino MS, Vanella V, Girgis C, Giannarelli D, Guminski A, Festino L, et al. Cessation of targeted therapy after a complete response in BRAF-mutant advanced melanoma: a case series. Br J Cancer. 2016;115(11):1280–4.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Tolk H, Satzger I, Mohr P, Zimmer L, Weide B, Schäd S, et al. Complete remission of metastatic melanoma upon BRAF inhibitor treatment—what happens after discontinuation? Melanoma Res. 2015;25(4):362–6.

    Article  PubMed  CAS  Google Scholar 

  56. Robert C, Ribas A, Hamid O, Daud A, Wolchok JD, Joshua AM, et al. Durable complete response after discontinuation of pembrolizumab in patients with metastatic melanoma. J Clin Oncol. 2018;36(17):1668–74.

    Article  PubMed  Google Scholar 

  57. Schachter J, Ribas A, Long GV, Arance A, Grob J-J, Mortier L, et al. Pembrolizumab versus ipilimumab for advanced melanoma: final overall survival results of a multicentre, randomised, open-label phase 3 study (KEYNOTE-006). Lancet. 2017;390(10105):1853–62.

    Article  PubMed  CAS  Google Scholar 

  58. Chesney J, Awasthi S, Curti B, Hutchins L, Linette G, Triozzi P, et al. Phase IIIb safety results from an expanded-access protocol of talimogene laherparepvec for patients with unresected, stage IIIB-IVM1c melanoma. Melanoma Res. 2018;28(1):44–51.

    Article  PubMed  CAS  Google Scholar 

  59. Ribas A, Dummer R, Puzanov I, VanderWalde A, Andtbacka RHI, Michielin O, et al. Oncolytic virotherapy promotes intratumoral T cell infiltration and improves Anti-PD-1 immunotherapy. Cell. 2017;170(6):1109–19.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  60. Amgen. Pembrolizumab with or without talimogene laherparepvec or talimogene laherparepvec placebo in unresected melanoma (KEYNOTE-034) [ClinicalTrials.gov identifier NCT02263508]. US National Institutes of Health, ClinicalTrials.gov. https://www.clinicaltrials.gov. Accessed 27 Jun 2018.

  61. University of Utah. Neoadjuvant trial of nivolumab in combination with HF10 oncolytic viral therapy in resectable stage IIIB, IIIC, IVM1a melanoma [ClinicalTrials.gov identifier NCT03259425]. US National Institutes of Health, ClinicalTrials.gov. https://www.clinicaltrials.gov. Accessed 27 Jun 2018.

  62. Viralytics. Intratumoral CAVATAK (CVA21) and pembrolizumab in patients with advanced melanoma (VLA-011 CAPRA) (CAPRA) [ClinicalTrials.gov identifier NCT02565992]. US National Institutes of Health, ClinicalTrials.gov. https://www.clinicaltrials.gov. Accessed 27 Jun 2018.

  63. Melero I, Gaudernack G, Gerritsen W, Huber C, Parmiani G, Scholl S, et al. Therapeutic vaccines for cancer: an overview of clinical trials. Nat Rev Clin Oncol. 2014;11(9):509–24.

    Article  PubMed  CAS  Google Scholar 

  64. Carreno BM, Magrini V, Becker-Hapak M, Kaabinejadian S, Hundal J, Petti AA, et al. Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science. 2015;348(6236):803–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Uyttenhove C, Pilotte L, Théate I, Stroobant V, Colau D, Parmentier N, et al. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med. 2003;9(10):1269–74.

    Article  PubMed  CAS  Google Scholar 

  66. Spranger S, Spaapen RM, Zha Y, Williams J, Meng Y, Ha TT, et al. Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells. Sci Transl Med. 2013;5(200):200ra116.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Incyte Corporation. A phase 3 study of pembrolizumab + epacadostat or placebo in subjects with unresectable or metastatic melanoma (Keynote-252/ECHO-301) [ClinicalTrials.gov identifier NCT02752074]. US National Institutes of Health, ClinicalTrials.gov. https://www.clinicaltrials.gov. Accessed 27 Jun 2018.

  68. Long GV, Dummer R, Hamid O, Gajewski T, Caglevic C, Dalle S, et al. Epacadostat (E) plus pembrolizumab (P) versus pembrolizumab alone in patients (pts) with unresectable or metastatic melanoma: results of the phase 3 ECHO-301/KEYNOTE-252 study [abstract no. 108]. 2018 ASCO Annual Meeting; 1–5 Jun 2018; Chicago.

  69. Young A, Mittal D, Stagg J, Smyth MJ. Targeting cancer-derived adenosine: new therapeutic approaches. Cancer Discov. 2014;4(8):879–88.

    Article  PubMed  CAS  Google Scholar 

  70. Corvus Pharmaceuticals, Inc. Phase 1/1b study to evaluate the safety and tolerability of CPI-444 alone and in combination with atezolizumab in advanced cancers [ClinicalTrials.gov identifier NCT02655822]. US National Institutes of Health, ClinicalTrials.gov. https://www.clinicaltrials.gov. Accessed 27 Jun 2018.

  71. Hu-Lieskovan S, Robert L, Homet Moreno B, Ribas A. Combining targeted therapy with immunotherapy in BRAF-mutant melanoma: promise and challenges. J Clin Oncol Off J Am Soc Clin Oncol. 2014;32(21):2248–54.

    Article  CAS  Google Scholar 

  72. Hu-Lieskovan S, Mok S, Homet Moreno B, Tsoi J, Robert L, Goedert L, et al. Improved antitumor activity of immunotherapy with BRAF and MEK inhibitors in BRAF(V600E) melanoma. Sci Transl Med. 2015;7(279):279ra41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Hoffmann-La Roche. Cobimetinib (targeted therapy) plus atezolizumab (immunotherapy) in participants with advanced melanoma whose cancer has worsened during or after treatment with previous immunotherapy and atezolizumab monotherapy in participants with previously untreated advanced melanoma [ClinicalTrials.gov identifier NCT03178851]. US National Institutes of Health, ClinicalTrials.gov. https://www.clinicaltrials.gov. Accessed 27 Jun 2018.

  74. Ribas A, Hodi FS, Callahan M, Konto C, Wolchok J. Hepatotoxicity with combination of vemurafenib and ipilimumab. N Engl J Med. 2013;368(14):1365–6.

    Article  PubMed  CAS  Google Scholar 

  75. Minor DR, Puzanov I, Callahan MK, Hug BA, Hoos A. Severe gastrointestinal toxicity with administration of trametinib in combination with dabrafenib and ipilimumab. Pigment Cell Melanoma Res. 2015;28(5):611–2.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Kong Y, Si L, Zhu Y, Xu X, Corless CL, Flaherty KT, et al. Large-scale analysis of KIT aberrations in Chinese patients with melanoma. Clin Cancer Res. 2011;17(7):1684–91.

    Article  PubMed  CAS  Google Scholar 

  77. Hodi FS, Corless CL, Giobbie-Hurder A, Fletcher JA, Zhu M, Marino-Enriquez A, et al. Imatinib for melanomas harboring mutationally activated or amplified KIT arising on mucosal, acral, and chronically sun-damaged skin. J Clin Oncol. 2013;31(26):3182–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Aboudaram A, Modesto A, Chaltiel L, Gomez-Roca C, Boulinguez S, Sibaud V, et al. Concurrent radiotherapy for patients with metastatic melanoma and receiving anti-programmed-death 1 therapy: a safe and effective combination. Melanoma Res. 2017;27(5):485–91.

    Article  PubMed  CAS  Google Scholar 

  79. Pike LRG, Bang A, Ott P, Balboni T, Taylor A, Catalano P, et al. Radiation and PD-1 inhibition: favorable outcomes after brain-directed radiation. Radiother Oncol. 2017;124(1):98–103.

    Article  PubMed  CAS  Google Scholar 

  80. Merhavi-Shoham E, Itzhaki O, Markel G, Schachter J, Besser MJ. Adoptive cell therapy for metastatic melanoma. Cancer J. 2017;23(1):48–53.

    Article  PubMed  CAS  Google Scholar 

  81. Novartis Pharmaceuticals. Phase I/Ib study of NIS793 in combination with PDR001 in patients with advanced malignancies [ClinicalTrials.gov identifier NCT02947165]. US National Institutes of Health, ClinicalTrials.gov. https://www.clinicaltrials.gov. Accessed 27 Jun 2018.

  82. EMD Serono Research & Development Institute, Inc. MSB0011359C (M7824) in metastatic or locally advanced solid tumors [ClinicalTrials.gov identifier NCT02517398]. US National Institutes of Health, ClinicalTrials.gov. https://www.clinicaltrials.gov. Accessed 27 Jun 2018.

  83. Postow MA, Luke JJ, Bluth MJ, Ramaiya N, Panageas KS, Lawrence DP, et al. Ipilimumab for patients with advanced mucosal melanoma. Oncologist. 2013;18(6):726–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Shoushtari AN, Munhoz RR, Kuk D, Ott PA, Johnson DB, Tsai KK, et al. The efficacy of anti-PD-1 agents in acral and mucosal melanoma. Cancer. 2016;122(21):3354–62.

    Article  PubMed  CAS  Google Scholar 

  85. Luke JJ, Callahan MK, Postow MA, Romano E, Ramaiya N, Bluth M, et al. Clinical activity of ipilimumab for metastatic uveal melanoma: a retrospective review of the Dana-Farber Cancer Institute, Massachusetts General Hospital, Memorial Sloan-Kettering Cancer Center, and University Hospital of Lausanne experience. Cancer. 2013;119(20):3687–95.

    Article  PubMed  CAS  Google Scholar 

  86. Algazi AP, Tsai KK, Shoushtari AN, Munhoz RR, Eroglu Z, Piulats JM, et al. Clinical outcomes in metastatic uveal melanoma treated with PD-1 and PD-L1 antibodies. Cancer. 2016;122(21):3344–53.

    Article  PubMed  CAS  Google Scholar 

  87. Long GV, Hauschild A, Santinami M, Atkinson V, Mandalà M, Chiarion-Sileni V, et al. Adjuvant dabrafenib plus trametinib in stage III BRAF-mutated melanoma. N Engl J Med. 2017;377(19):1813–23.

    Article  PubMed  CAS  Google Scholar 

  88. Weber J, Mandala M, Del Vecchio M, Gogas HJ, Arance AM, Cowey CL, et al. Adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma. N Engl J Med. 2017;377(19):1824–35.

    Article  PubMed  CAS  Google Scholar 

  89. Eggermont AMM, Blank CU, Mandala M, Long GV, Atkinson V, Dalle S, et al. Adjuvant pembrolizumab versus placebo in resected stage III melanoma. N Engl J Med. 2018;378(19):1789–801.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Jacques Grob.

Ethics declarations

Funding

No external funding was used in the preparation of this review.

Conflict of interest

Jean-Jacques Grob has received consulting fees or honorarium for Bristol-Myers Squibb, Roche, Novartis, Amgen, and Pierre-Fabre. Nausicaa Malissen has received consulting fees from Bristol-Myers Squibb and payment for lectures from Bristol-Myers Squibb, Amgen, and MSD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malissen, N., Grob, JJ. Metastatic Melanoma: Recent Therapeutic Progress and Future Perspectives. Drugs 78, 1197–1209 (2018). https://doi.org/10.1007/s40265-018-0945-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-018-0945-z

Navigation