Skip to main content
Log in

Darunavir/Cobicistat/Emtricitabine/Tenofovir Alafenamide: A Review in HIV-1 Infection

  • Adis Drug Evaluation
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Darunavir/cobicistat/emtricitabine/tenofovir AF (Symtuza®) is the first protease inhibitor (PI)-based single-tablet regimen (STR) available for the treatment of adults and adolescents (aged ≥ 12 years) with HIV-1 infection. It combines the PI darunavir (which has a high genetic barrier to resistance) with the pharmacokinetic booster cobicistat and the nucleos(t)ide reverse transcriptase inhibitors emtricitabine and tenofovir alafenamide (tenofovir AF), the latter being associated with less off-target tenofovir exposure than its predecessor tenofovir disoproxil fumarate (tenofovir DF). Over 48 weeks in phase 3 trials, darunavir/cobicistat/emtricitabine/tenofovir AF was noninferior to darunavir/cobicistat plus emtricitabine/tenofovir DF in establishing virological suppression in antiretroviral therapy (ART)-naïve adults and, likewise, was noninferior to an ongoing boosted PI, emtricitabine plus tenofovir DF regimen in preventing virological rebound in virologically-suppressed, ART-experienced adults. Resistance did not emerge to the STR components, with the exception being an emtricitabine resistance-associated mutation (RAM) [M184I/V] in one of seven recipients who experienced virological failure (although M184V was a minority variant at screening in this patient). Darunavir/cobicistat/emtricitabine/tenofovir AF was generally well tolerated, with renal and bone profile improvements but less favourable effects on some lipids versus tenofovir DF-based regimens. Thus, although longer-term and cost-effectiveness data would be beneficial, darunavir/cobicistat/emtricitabine/tenofovir AF is a welcome addition to the STRs available for the treatment of adults and adolescents with HIV-1 infection, being the first to combine the high genetic resistance barrier of darunavir with the renal/bone profile of tenofovir AF, thus expanding the patient population for whom an STR may be suitable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. British HIV Association. BHIVA guidelines for the treatment of HIV-1-positive adults with antiretroviral therapy. 2015 (2016 interim update). http://www.bhiva.org. Accessed 6 June 2018.

  2. Baker D, Pell C, Donovan B. HIV as a chronic disease. Optimizing outcomes. Med Today. 2014;15(2):16–26.

    Google Scholar 

  3. European AIDS Clinical Society. Guidelines Version 9.0. 2017. http://eacsociety.org/. Accessed 6 June 2018.

  4. Shah BM, Schafer JJ, Priano J, et al. Cobicistat: a new boost for the treatment of human immunodeficiency virus infection. Pharmacotherapy. 2013;33(10):1107–16.

    Article  PubMed  CAS  Google Scholar 

  5. Xu L, Liu H, Murray BP, et al. Cobicistat (GS-9350): a potent and selective inhibitor of human CYP3A as a novel pharmacoenhancer. ACS Med Chem Lett. 2010;1(5):209–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Cossu MV, Astuti N, Capetti A, et al. Impact and differential clinical utility of cobicistat-boosted darunavir in HIV/AIDS. Virus Adapt Treat. 2015;7:47–56.

    Article  CAS  Google Scholar 

  7. Ray AS, Fordyce MW, Hitchcock MJ. Tenofovir alafenamide: a novel prodrug of tenofovir for the treatment of human immunodeficiency virus. Antivir Res. 2016;125:63–70.

    Article  PubMed  CAS  Google Scholar 

  8. Lee WA, He GX, Eisenberg E, et al. Selective intracellular activation of a novel prodrug of the human immunodeficiency virus reverse transcriptase inhibitor tenofovir leads to preferential distribution and accumulation in lymphatic tissue. Antimicrob Agents Chemother. 2005;49(5):1898–906.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Ray AS, Cihlar T, Robinson KL, et al. Mechanism of active renal tubular efflux of tenofovir. Antimicrob Agents Chemother. 2006;50(10):3297–304.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Rodriguez-Novoa S, Labarga P, D’Avolio A, et al. Impairment in kidney tubular function in patients receiving tenofovir is associated with higher tenofovir plasma concentrations. AIDS. 2010;24(7):1064–6.

    Article  PubMed  CAS  Google Scholar 

  11. Ustianowski A, Arends JE. Tenofovir: what we have learnt after 7.5 million person-years of use. Infect Dis Ther. 2015;4(2):145–57.

  12. Ruane PJ, DeJesus E, Berger D, et al. Antiviral activity, safety, and pharmacokinetics/pharmacodynamics of tenofovir alafenamide as 10-day monotherapy in HIV-1-positive adults. J Acquir Immune Defic Syndr. 2013;63(4):449–55.

    Article  PubMed  CAS  Google Scholar 

  13. De Clercq E. Tenofovir alafenamide (TAF) as the successor of tenofovir disoproxil fumarate (TDF). Biochem Pharmacol. 2016;119:1–7.

    Article  PubMed  CAS  Google Scholar 

  14. Sebaaly JC, Kelley D. Single-tablet regimens for the treatment of HIV-1 infection. Ann Pharmacother. 2017;51(4):332–44.

    Article  PubMed  CAS  Google Scholar 

  15. European Medicines Agency. Symtuza 800 mg/150 mg/200 mg/10 mg film-coated tablets: EU summary of product characteristics. 2018. http://www.ema.europa.eu/. Accessed 6 June 2018.

  16. Deeks ED. Darunavir: a review of its use in the management of HIV-1 infection. Drugs. 2014;74(1):99–125.

    Article  PubMed  CAS  Google Scholar 

  17. Deeks ED. Cobicistat: a review of its use as a pharmacokinetic enhancer of atazanavir and darunavir in patients with HIV-1 infection. Drugs. 2014;74(2):195–206.

    Article  PubMed  CAS  Google Scholar 

  18. Greig SL, Deeks ED. Elvitegravir/cobicistat/emtricitabine/tenofovir alafenamide: a review in HIV-1 infection. Drugs. 2016;76(9):957–68.

    Article  PubMed  CAS  Google Scholar 

  19. Frampton JE, Perry CM. Emtricitabine: a review of its use in the management of HIV infection. Drugs. 2005;65(10):1427–48.

    Article  PubMed  CAS  Google Scholar 

  20. Callebaut C, Stepan G, Tian Y, et al. In vitro virology profile of tenofovir alafenamide, a novel oral prodrug of tenofovir with improved antiviral activity compared to that of tenofovir disoproxil fumarate. Antimicrob Agents Chemother. 2015;59(10):5909–16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Bam RA, Birkus G, Babusis D, et al. Metabolism and antiretroviral activity of tenofovir alafenamide in CD4+ T-cells and macrophages from demographically diverse donors. Antivir Ther. 2014;19(7):669–77.

    Article  PubMed  CAS  Google Scholar 

  22. Lathouwers E, Wong EY, Luo D, et al. HIV-1 resistance rarely observed in subjects using darunavir once-daily regimens across clinical studies. HIV Clin Trials. 2017;18(5–6):196–204.

    Article  PubMed  CAS  Google Scholar 

  23. El Bouzidi K, White E, Mbisa JL, et al. HIV-1 drug resistance mutations emerging on darunavir therapy in PI-naive and -experienced patients in the UK. J Antimicrob Chemother. 2016;71(12):3487–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Armenia D, Di Carlo D, Maffongelli G, et al. Virological response and resistance profile in HIV-1-infected patients starting darunavir-containing regimens. HIV Med. 2017;18(1):21–32.

    Article  PubMed  CAS  Google Scholar 

  25. Wensing AM, Calvez V, Gunthard HF, et al. 2017 update of the drug resistance mutations in HIV-1. Top Antivir Med. 2017;24(4):132–3.

    PubMed  Google Scholar 

  26. de Meyer S, Vangeneugden T, van Baelen B, et al. Resistance profile of darunavir: combined 24-week results from the POWER trials. AIDS Res Hum Retrovir. 2008;24(3):379–88.

    Article  PubMed  CAS  Google Scholar 

  27. Eron JJ, Orkin C, Gallant J, et al. A week 48 randomized phase 3 trial of darunavir/cobicistat/emtricitabine/tenofovir alafenamide in treatment-naive HIV-1 patients. AIDS. 2018. https://doi.org/10.1097/QAD.0000000000001817.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Mills A, Crofoot G Jr, McDonald C, et al. Tenofovir alafenamide versus tenofovir disoproxil fumarate in the first protease inhibitor-based single-tablet regimen for initial HIV-1 therapy: a randomized phase 2 study. J Acquir Immune Defic Syndr. 2015;69(4):439–45.

    Article  PubMed  CAS  Google Scholar 

  29. Orkin C, Molina J-M, Negredo E, et al. Efficacy and safety of switching from boosted protease inhibitors plus emtricitabine and tenofovir disoproxil fumarate regimens to single-tablet darunavir, cobicistat, emtricitabine, and tenofovir alafenamide at 48 weeks in adults with virologically suppressed HIV-1 (EMERALD): a phase 3, randomised, non-inferiority trial. Lancet HIV. 2017. https://doi.org/10.1016/s2352-3018(17)30179-0.

    Article  PubMed  Google Scholar 

  30. European Medicines Agency. Prezista: EU summary of product characteristics. 2018. http://www.ema.europa.eu/. Accessed 6 June 2018.

  31. US FDA. Prezista (darunavir): US prescribing information. 2018. http://www.accessdata.fda.gov. Accessed 6 June 2018.

  32. Poveda E, Anta L, Blanco JL, et al. Drug resistance mutations in HIV-infected patients in the Spanish drug resistance database failing tipranavir and darunavir therapy. Antimicrob Agents Chemother. 2010;54(7):3018–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Banhegyi D, Katlama C, da Cunha CA, et al. Week 96 efficacy, virology and safety of darunavir/r versus lopinavir/r in treatment-experienced patients in TITAN. Curr HIV Res. 2012;10(2):171–81.

    Article  PubMed  CAS  Google Scholar 

  34. Lathouwers E, De La Rosa G, Van de Casteele T, et al. Virological analysis of once-daily and twice-daily darunavir/ritonavir in the ODIN trial of treatment-experienced patients. Antivir Ther. 2013;18(3):289–300.

    Article  PubMed  CAS  Google Scholar 

  35. Orkin C, DeJesus E, Khanlou H, et al. Final 192-week efficacy and safety of once-daily darunavir/ritonavir compared with lopinavir/ritonavir in HIV-1-infected treatment-naive patients in the ARTEMIS trial. HIV Med. 2013;14(1):49–59.

    Article  PubMed  CAS  Google Scholar 

  36. Stanford University HIV Drug Resistance Database. NRTI resistance notes—major nucleoside RT inhibitor (NRTI) resistance mutations. 2018. https://hivdb.stanford.edu/dr-summary/resistance-notes/NRTI/. Accessed 6 June 2018.

  37. Crauwels H, Baugh B, Van Landuyt E, et al. Bioequivalence of a darunavir-based single-tablet complete HIV-1 regimen compared to the separate agents [abstract no. MOPEB0335 plus poster]. In: 9th International AIDS society conference on HIV science. 2017.

  38. Crauwels H, Baugh B, Van Landuyt E, et al. Impact of food on the bioavailability of darunavir, cobicistat, emtricitabine and tenofovir alafenamide (DCFTAF), the first protease inhibitor-based complete HIV-1 regimen [abstract no. P310 plus poster]. J Int AIDS Soc. 2016;19(Suppl. 7):220–1.

    Google Scholar 

  39. Brown K, Thomas D, McKenney K, et al. Relative bioavailability of darunavir/cobicistat/emtricitabine/tenofovir alafenamide (D/C/F/TAF) single-tablet regimen when administered as a whole, split, or crushed tablet [Poster]. In: 16th European AIDS conference.

  40. Data on file, Janssen-Cilag International NV, 2018.

  41. Arribas Lopez JR, Orkin C, Molina J-M, et al. Bone and renal safety week 48 subgroup analysis of EMERALD, a phase 3, randomised, non-inferiority study evaluating switching from boosted-protease inhibitors (bPIs) plus emtricitabine/tenofovir disoproxil fumarate (FTC/TDF) regimens to the once-daily single-tablet regimen (STR) of darunavir/cobicistat/emtricitabine/tenofovir alafenamide (D/C/F/TAF) in virologically-suppressed, HIV-1-infected adults [abstract no. BPD2/8 plus poster]. In: 16th European AIDS conference.

  42. WHO. Guidelines for managing advanced HIV disease and rapid initiation of antiretroviral therapy. 2017. http://apps.who.int/iris/bitstream/10665/255884/1/9789241550062-eng.pdf?ua=1. Accessed 6 June 2018.

  43. Santos JR, Saumoy M, Curran A, et al. The lipid-lowering effect of tenofovir/emtricitabine: a randomized, crossover, double-blind, placebo-controlled trial. Clin Infect Dis. 2015;61(3):403–8.

    Article  PubMed  CAS  Google Scholar 

  44. Davis SA, Feldman SR. Measuring adherence in clinical trials. In: Davis SA, editor. Adherence in dermatology. Switzerland: Springer International Publishing; 2016. p. 53–9.

Download references

Acknowledgements

During the peer review process, the manufacturer of darunavir/cobicistat/emtricitabine/tenofovir AF was also offered the opportunity to review this article. Changes resulting from comments received were made on the basis of scientific and editorial merit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma D. Deeks.

Ethics declarations

Funding

The preparation of this review was not supported by any external funding.

Conflict of interest

Emma Deeks is a salaried employee of Adis/Springer, is responsible for the article content and declares no relevant conflicts of interest.

Additional information

The manuscript was reviewed by: C. Godfrey, Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA; F. Maggiolo, Division of Infectious Diseases, ASST Papa Giovanni XXIII, Bergamo, Italy; M. Nelson, Imperial College School of Medicine, London, UK.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deeks, E.D. Darunavir/Cobicistat/Emtricitabine/Tenofovir Alafenamide: A Review in HIV-1 Infection. Drugs 78, 1013–1024 (2018). https://doi.org/10.1007/s40265-018-0934-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-018-0934-2

Navigation