Skip to main content
Log in

Neuropathic Pain and Spinal Cord Injury: Phenotypes and Pharmacological Management

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Chronic neuropathic pain is a complicated condition after a spinal cord injury (SCI) that often has a lifelong and significant negative impact on life after the injury; therefore, improved pain management is considered a significant and unmet need. Neuropathic pain mechanisms are heterogeneous and the difficulty in determining their individual contribution to specific pain types may contribute to poor treatment outcomes in this population. Thus, identifying human neuropathic pain phenotypes based on pain symptoms, somatosensory changes, or cognitive and psychosocial factors that reflect specific spinal cord or brain mechanisms of neuropathic pain is an important goal. Once a pain phenotype can be reliably replicated, its relationship with biomarkers and clinical treatment outcomes can be analyzed, and thereby facilitate translational research and further the mechanistic understanding of individual differences in the pain experience and in clinical trial outcomes. The present article will discuss clinical aspects of SCI-related neuropathic pain, neuropathic pain phenotypes, pain mechanisms, potential biomarkers and pharmacological interventions, and progress regarding how defining neuropathic pain phenotypes may lead to more targeted treatments for these difficult pain conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Siddall PJ, McClelland JM, Rutkowski SB, Cousins MJ. A longitudinal study of the prevalence and characteristics of pain in the first 5 years following spinal cord injury. Pain. 2003;103:249–57.

    Article  PubMed  Google Scholar 

  2. Finnerup NB, Norrbrink C, Trok K, Piehl F, Johannesen IL, Sørensen JC, et al. Phenotypes and predictors of pain following traumatic spinal cord injury: a prospective study. J Pain. 2014;15:40–8.

    Article  PubMed  Google Scholar 

  3. Cruz-Almeida Y, Martinez-Arizala A, Widerstrom-Noga EG. Chronicity of pain associated with spinal cord injury: a longitudinal analysis. J Rehabil Res Dev. 2005;42:585–94.

    Article  PubMed  Google Scholar 

  4. Widerstrom-Noga EG, Felipe-Cuervo E, Yezierski RP, Widerström-Noga EG, Felipe-Cuervo E, Yezierski RP, et al. Chronic pain after spinal injury: interference with sleep and daily activities. Arch Phys Med Rehabil. 2001;82:1571–7.

    Article  CAS  PubMed  Google Scholar 

  5. Rubinelli S, Glässel A, Brach M. From the person’s perspective: perceived problems in functioning among individuals with spinal cord injury in Switzerland. J Rehabil Med. 2016;48:235–43.

    Article  PubMed  Google Scholar 

  6. Kennedy P, Lude P, Taylor N. Quality of life, social participation, appraisals and coping post spinal cord injury: a review of four community samples. Spinal Cord. 2006;44:95–105.

    Article  CAS  PubMed  Google Scholar 

  7. Bryce TN, Biering-Sørensen F, Finnerup NB, Cardenas DD, Defrin R, Lundeberg T, et al. International spinal cord injury pain classification: part I. Background and description. March 6–7, 2009. Spinal Cord. 2012;50:413–7.

    Article  CAS  PubMed  Google Scholar 

  8. Hulsebosch CE, Hains BC, Crown ED, Carlton SM. Mechanisms of chronic central neuropathic pain after spinal cord injury. Brain Res Rev. 2009;60:202–13.

    Article  CAS  PubMed  Google Scholar 

  9. Yezierski RP. Spinal cord injury pain: spinal and supraspinal mechanisms. J Rehabil Res Dev. 2009;46:95–107.

    Article  PubMed  Google Scholar 

  10. Finnerup NB, Baastrup C. Spinal cord injury pain: mechanisms and management. Curr Pain Headache Rep. 2012;16:207–16.

    Article  PubMed  Google Scholar 

  11. Taylor J, Huelbes S, Albu S, Gómez-Soriano J, Peñacoba C, Poole HM. Neuropathic pain intensity, unpleasantness, coping strategies, and psychosocial factors after spinal cord injury: an exploratory longitudinal study during the first year. Pain Med. 2012;13:1457–68.

    Article  PubMed  Google Scholar 

  12. Edwards RR, Sullivan MD, Wasan AD. The role of psychosocial processes in the development and maintenance of chronic pain. J Pain. 2016;17(9 Suppl):T70–92.

    Article  PubMed  Google Scholar 

  13. Turk DC, Fillingim RB, Ohrbach R, Patel KV, Allen KD, Allen KD, et al. Assessment of psychosocial and functional impact of chronic pain. J Pain. 2016;17(9 Suppl):T21–49.

    Article  PubMed  Google Scholar 

  14. Widerström-Noga EG, Felix ER, Cruz-Almeida Y, Turk DC. Psychosocial subgroups in persons with spinal cord injuries and chronic pain. Arch Phys Med Rehabil. 2007;88:1628–35.

    Article  PubMed  Google Scholar 

  15. Molton I, Cook KF, Smith AE, Amtmann D, Chen W-H, Jensen MP. Prevalence and impact of pain in adults aging with a physical disability: comparison to a US general population sample. Clin J Pain. 2014;30:307–15.

    Article  PubMed  Google Scholar 

  16. Craig A, Guest R, Tran Y, Middleton J. Cognitive impairment and mood states after spinal cord injury. J Neurotrauma. 2017;34:1156–63.

    Article  PubMed  Google Scholar 

  17. von Hehn CA, Baron R, Woolf CJ. Deconstructing the neuropathic pain phenotype to reveal neural mechanisms. Neuron. 2012;73(4):638–52.

    Article  CAS  Google Scholar 

  18. Edwards RR, Dworkin RH, Turk DC, Angst MS, Dionne R, Freeman R, et al. Patient phenotyping in clinical trials of chronic pain treatments: IMMPACT recommendations. Pain. 2016;157:1851–71.

    Article  CAS  PubMed  Google Scholar 

  19. Heutink M, Post MWM, Bongers-Janssen HMH, Dijkstra CA, Snoek GJ, Spijkerman DCM, et al. The CONECSI trial: results of a randomized controlled trial of a multidisciplinary cognitive behavioral program for coping with chronic neuropathic pain after spinal cord injury. Pain. 2012;153:120–8.

    Article  PubMed  Google Scholar 

  20. Treede RD, Jensen TS, Campbell JN, Cruccu G, Dostrovsky JO, Griffin JW, et al. Neuropathic pain: redefinition and a grading system for clinical and research purposes. Neurology. 2008;29(70):1630–5.

    Article  CAS  Google Scholar 

  21. Finnerup NB, Haroutounian S, Kamerman P, Baron R, Bennett DLH, Bouhassira D, et al. Neuropathic pain: an updated grading system for research and clinical practice. Pain. 2016;57(8):1599–606.

    Article  CAS  Google Scholar 

  22. Waring WP, Biering-Sorensen F, Burns S, Donovan W, Graves D, Jha A, et al. 2009 review and revisions of the international standards for the neurological classification of spinal cord injury. J Spinal Cord Med. 2010;33:346–52.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Widerstrom-Noga E, Felix ER, Adcock JP, Escalona M, Tibbett J. Multidimensional neuropathic pain phenotypes after spinal cord injury. J Neurotrauma. 2016;11:482–92.

    Article  Google Scholar 

  24. Carlton SM, Du J, Tan HY, Nesic O, Hargett GL, Bopp AC, et al. Peripheral and central sensitization in remote spinal cord regions contribute to central neuropathic pain after spinal cord injury. Pain. 2009;147:265–76.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gwak YS, Kang J, Unabia GC, Hulsebosch CE. Spatial and temporal activation of spinal glial cells: Role of gliopathy in central neuropathic pain following spinal cord injury in rats. Exp Neurol. 2012;234:362–72.

    Article  CAS  PubMed  Google Scholar 

  26. Hains BC, Waxman SG. Activated microglia contribute to the maintenance of chronic pain after spinal cord injury. J Neurosci. 2006;26:4308–17.

    Article  CAS  PubMed  Google Scholar 

  27. Taylor AM, Mehrabani S, Liu S, Taylor AJ, Cahill CM. Topography of microglial activation in sensory- and affect-related brain regions in chronic pain. J Neurosci Res. 2017;95(6):1330–5.

    Article  CAS  PubMed  Google Scholar 

  28. Knerlich-Lukoschus F, von der Ropp-Brenner B, Lucius R, Mehdorn HM, Held-Feindt J. Spatiotemporal CCR1, CCL3(MIP-1α), CXCR4, CXCL12(SDF-1α) expression patterns in a rat spinal cord injury model of posttraumatic neuropathic pain. J Neurosurg Spine. 2011;14:583–97.

    Article  PubMed  Google Scholar 

  29. Boroujerdi A, Zeng J, Sharp K, Kim D, Steward O, Luo ZD. Calcium channel alpha-2-delta-1 protein upregulation in dorsal spinal cord mediates spinal cord injury-induced neuropathic pain states. Pain. 2011;152:649–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Geng SJ, Liao FF, Dang WH, Ding X, Liu XD, Cai J, et al. Contribution of the spinal cord BDNF to the development of neuropathic pain by activation of the NR2B-containing NMDA receptors in rats with spinal nerve ligation. Exp Neurol. 2010;222:256–66.

    Article  CAS  PubMed  Google Scholar 

  31. Hasbargen T, Ahmed MM, Miranpuri G, Li L, Kahle KT, Resnick D, et al. Role of NKCC1 and KCC2 in the development of chronic neuropathic pain following spinal cord injury. Ann N Y Acad Sci. 2010;1198:168–72.

    Article  CAS  PubMed  Google Scholar 

  32. Knerlich-Lukoschus F, Noack M, von der Ropp-Brenner B, Lucius R, Mehdorn HM, Held-Feindt J. Spinal cord injuries induce changes in CB1 cannabinoid receptor and C–C chemokine expression in brain areas underlying circuitry of chronic pain conditions. J Neurotrauma. 2011;28:619–34.

    Article  PubMed  Google Scholar 

  33. Meisner JG, Marsh AD, Marsh DR. Loss of GABAergic interneurons in laminae I–III of the spinal cord dorsal horn contributes to reduced GABAergic tone and neuropathic pain after spinal cord injury. J Neurotrauma. 2010;27:729–37.

    Article  PubMed  Google Scholar 

  34. Voulalas PJ, Ji Y, Jiang L, Asgar J, Ro JY, Masri R. Loss of dopamine D1 receptors and diminished D1/5 receptor-mediated ERK phosphorylation in the periaqueductal gray after spinal cord lesion. Neuroscience. 2017;343:94–105.

    Article  CAS  PubMed  Google Scholar 

  35. Sandhir R, Gregory E, He Y-Y, Berman NEJ. Upregulation of inflammatory mediators in a model of chronic pain after spinal cord injury. Neurochem Res. 2011;36:856–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Haefeli J, Huie JR, Morioka K, Ferguson AR. Assessments of sensory plasticity after spinal cord injury across species. Neurosci Lett. 2016. doi:10.1016/j.neulet.2016.12.031 (pii: S0304-3940(16)30980-6).

  37. Warms C, Turner J, Marshall HM, Cardenas DD. Treatments for chronic pain associated with spinal cord injuries: many are tried, few are helpful. Clin J Pain. 2002;18:154–63.

    Article  PubMed  Google Scholar 

  38. Widerström-Noga EG, Turk DC. Types and effectiveness of treatments used by people with chronic pain associated with spinal cord injuries: influence of pain and psychosocial characteristics. Spinal Cord. 2003;41:600–9.

    Article  PubMed  Google Scholar 

  39. Guy SD, Mehta S, Harvey D, Lau B, Middleton JW, O’Connell C, et al. The CanPain SCI clinical practice guideline for rehabilitation management of neuropathic pain after spinal cord: recommendations for model systems of care. Spinal Cord. 2016;54(Suppl 1):S24–7.

    Article  PubMed  Google Scholar 

  40. Attal N, Mazaltarine G, Perrouin-Verbe B, Albert T. Chronic neuropathic pain management in spinal cord injury patients. What is the efficacy of pharmacological treatments with a general mode of administration? (oral, transdermal, intravenous). Ann Phys Rehabil Med. 2009;52:124–41.

  41. Siddall PJ, Middleton JW. A proposed algorithm for the management of pain following spinal cord injury. Spinal Cord. 2006;44:67–77.

    Article  CAS  PubMed  Google Scholar 

  42. Finnerup NB, Attal N, Haroutounian S, McNicol E, Baron R, Dworkin RH, et al. Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. Lancet Neurol. 2015;14:162–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kremer M, Salvat E, Muller A, Yalcin I, Barrot M. Antidepressants and gabapentinoids in neuropathic pain: mechanistic insights. Neuroscience. 2016;3:183–206.

    Article  CAS  Google Scholar 

  44. Xiao W, Boroujerdi A, Bennett GJ, Luo ZD. Chemotherapy-evoked painful peripheral neuropathy: analgesic effects of gabapentin and effects on expression of the alpha-2-delta type-1 calcium channel subunit. Neuroscience. 2007;144:714–20.

    Article  CAS  PubMed  Google Scholar 

  45. Bauer CS, Nieto-Rostro M, Rahman W, Tran-Van-Minh A, Ferron L, Douglas L, et al. The increased trafficking of the calcium channel subunit alpha2delta-1 to presynaptic terminals in neuropathic pain is inhibited by the alpha2delta ligand pregabalin. J Neurosci. 2009;29:4076–88.

    Article  CAS  PubMed  Google Scholar 

  46. Morimoto S, Ito M, Oda S, Sugiyama A, Kuroda M, Adachi-Akahane S. Spinal mechanism underlying the antiallodynic effect of gabapentin studied in the mouse spinal nerve ligation model. J Pharmacol Sci. 2012;118:455–66.

    Article  CAS  PubMed  Google Scholar 

  47. Coderre TJ, Kumar N, Laferriere A, Yu JSC, Leavitt A. Evidence that pregabalin reduces neuropathic pain by inhibiting the spinal release of glutamate. J Neurochem. 2005;113:552–61.

    Google Scholar 

  48. Omori Y, Kagaya K, Enomoto R, Sasaki A, Andoh T, Nojima H, et al. A mouse model of sural nerve injury-induced neuropathy: gabapentin inhibits pain-related behaviors and the hyperactivity of wide-dynamic range neurons in the dorsal horn. J Pharmacol Sci. 2009;109:532–9.

    Article  CAS  PubMed  Google Scholar 

  49. Ding L, Cai J, Guo XY, Meng XL, Xing GG. The antiallodynic action of pregabalin may depend on the suppression of spinal neuronal hyperexcitability in rats with spared nerve injury. Pain Res Manag. 2014;19:205–11.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Hayashida K-I, DeGoes S, Curry R, Eisenach JC. Gabapentin activates spinal noradrenergic activity in rats and humans and reduces hypersensitivity after surgery. Anesthesiology. 2007;106:557–62.

    Article  CAS  PubMed  Google Scholar 

  51. Suto T, Eisenach JC, Hayashida KI. Peripheral nerve injury and gabapentin, but not their combination, impair attentional behavior via direct effects on noradrenergic signaling in the brain. Pain. 2014;155:1935–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lin HC, Huang YH, Chao TH, Lin WY, Sun WZ, Yen CT. Gabapentin reverses central hypersensitivity and suppresses medial prefrontal cortical glucose metabolism in rats with neuropathic pain. Mol Pain. 2014;10:63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Kremer M, Yalcin I, Nexon L, Wurtz X, Ceredig RA, Daniel D, et al. The antiallodynic action of pregabalin in neuropathic pain is independent from the opioid system. Mol Pain. 2016;12:1–12.

    Article  CAS  Google Scholar 

  54. Wodarski R, Clark AK, Grist J, Marchand F, Malcangio M. Gabapentin reverses microglial activation in the spinal cord of streptozotocin-induced diabetic rats. Eur J Pain. 2009;13:807–11.

    Article  CAS  PubMed  Google Scholar 

  55. Siddall PJ, Cousins MJ, Otte A, Griesing T, Chambers R, Murphy TK. Pregabalin in central neuropathic pain associated with spinal cord injury: a placebo-controlled trial. Neurology. 2006;67:1792–800.

    Article  CAS  PubMed  Google Scholar 

  56. Vranken JH, Dijkgraaf MGW, Kruis MR, van der Vegt MH, Hollmann MW, Heesen M. Pregabalin in patients with central neuropathic pain: a randomized, double-blind, placebo-controlled trial of a flexible-dose regimen. Pain. 2008;136:150–7.

    Article  CAS  PubMed  Google Scholar 

  57. Cardenas DD, Nieshoff EC, Suda K, Goto S-I, Sanin L, Kaneko T, et al. A randomized trial of pregabalin in patients with neuropathic pain due to spinal cord injury. Neurology. 2013;80:533–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Putzke JD, Richards JS, Kezar L, Hicken BL, Ness TJ. Long-term use of gabapentin for treatment of pain after traumatic spinal cord injury. Clin J Pain. 2002;18:116–21.

    Article  PubMed  Google Scholar 

  59. To T-P, Lim TC, Hill ST, Frauman AG, Cooper N, Kirsa SW, et al. Gabapentin for neuropathic pain following spinal cord injury. Spinal Cord. 2002;40:282–5.

    Article  PubMed  Google Scholar 

  60. Tai Q, Kirshblum S, Chen B, Millis S, Johnston M, DeLisa JA. Gabapentin in the treatment of neuropathic pain after spinal cord injury: a prospective, randomized, double-blind, crossover trial. J Spinal Cord Med. 2002;25:100–5.

    Article  PubMed  Google Scholar 

  61. Levendoglu F, Ogun CO, Ozerbil O, Ogun TC, Ugurlu H. Gabapentin is a first line drug for the treatment of neuropathic pain in spinal cord injury. Spine. 2004;29:743–51.

    Article  PubMed  Google Scholar 

  62. Rintala DH, Holmes SA, Courtade D, Fiess RN, Tastard LV, Loubser PG. Comparison of the effectiveness of amitriptyline and gabapentin on chronic neuropathic pain in persons with spinal cord injury. Arch Phys Med Rehabil. 2007;88:1547–60.

    Article  PubMed  Google Scholar 

  63. Yalcin I, Choucair-Jaafar N, Benbouzid M, Tessier LH, Muller A, Hein L, et al. β2-adrenoceptors are critical for antidepressant treatment of neuropathic pain. Ann Neurol. 2009;65:218–25.

    Article  CAS  PubMed  Google Scholar 

  64. Hughes S, Hickey L, Donaldson LF, Lumb BM, Pickering AE. Intrathecal reboxetine suppresses evoked and ongoing neuropathic pain behaviours by restoring spinal noradrenergic inhibitory tone. Pain. 2015;156:328–34.

    Article  CAS  PubMed  Google Scholar 

  65. Llorca-Torralba M, Borges G, Neto F, Mico JA, Berrocoso E. Noradrenergic locus coeruleus pathways in pain modulation. Neuroscience. 2016;338:93–113.

    Article  CAS  PubMed  Google Scholar 

  66. Yoshimura M, Furue H. Mechanisms for the anti-nociceptive actions of the descending noradrenergic and serotonergic systems in the spinal cord. J Pharmacol Sci. 2006;101:107–17.

    Article  CAS  PubMed  Google Scholar 

  67. Üçel Uİ, Can ÖD, Demir Özkay Ü, Öztürk Y. Antihyperalgesic and antiallodynic effects of mianserin on diabetic neuropathic pain: a study on mechanism of action. Eur J Pharmacol. 2015;756:92–106.

    Article  PubMed  CAS  Google Scholar 

  68. McLachlan EM, Jänig W, Devor M, Michaelis M. Peripheral nerve injury triggers noradrenergic sprouting within dorsal root ganglia. Nature. 1993;363:543–6.

    Article  CAS  PubMed  Google Scholar 

  69. Jefferies K. Treatment of neuropathic pain. Semin Neurol. 2010;30:425–32.

    Article  PubMed  Google Scholar 

  70. Cardenas DD, Warms CA, Turner JA, Marshall H, Brooke MM, Loeser JD. Efficacy of amitriptyline for relief of pain in spinal cord injury: results of a randomized controlled trial. Pain. 2002;96:365–73.

    Article  CAS  PubMed  Google Scholar 

  71. Norrbrink C, Lundeberg T. Tramadol in neuropathic pain after spinal cord injury: a randomized, double-blind, placebo-controlled trial. Clin J Pain. 2009;25:177–84.

    Article  PubMed  Google Scholar 

  72. Finnerup NB, Sindrup SH, Bach FW, Johannesen IL, Jensen TS. Lamotrigine in spinal cord injury pain: a randomized controlled trial. Pain. 2002;96:375–83.

    Article  CAS  PubMed  Google Scholar 

  73. Rogawski M, Löscher W. The neurobiology of antiepileptic drugs. Nat Rev Neurosci. 2004;5:553–64.

    Article  CAS  PubMed  Google Scholar 

  74. Fregni F, Gimenes R, Valle AC, Ferreira MJ, Rocha RR, Natalle L, et al. A randomized, sham-controlled, proof of principle study of transcranial direct current stimulation for the treatment of pain in fibromyalgia. Arthritis Rheum. 2006;54:3988–98.

    Article  PubMed  Google Scholar 

  75. Ngernyam N, Jensen MP, Arayawichanon P, Auvichayapat N, Tiamkao S, Janjarasjitt S, et al. The effects of transcranial direct current stimulation in patients with neuropathic pain from spinal cord injury. Clin Neurophysiol. 2015;126:382–90.

    Article  PubMed  Google Scholar 

  76. Soler MD, Kumru H, Pelayo R, Vidal J, Tormos JM, Fregni F, et al. Effectiveness of transcranial direct current stimulation and visual illusion on neuropathic pain in spinal cord injury. Brain. 2010;133:2565–77.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Davis R, Lentini R. Transcutaneous nerve stimulation for treatment of pain in patients with spinal cord injury. Surg Neurol. 1975;4:100–1.

    CAS  PubMed  Google Scholar 

  78. Barrera-Chacon JM, Mendez-Suarez JL, Jauregui-Abrisqueta ML, Palazon R, Barbara-Bataller E, Garcia-Obrero I. Oxycodone improves pain control and quality of life in anticonvulsant-pretreated spinal cord-injured patients with neuropathic pain. Spinal Cord. 2011;49:36–42.

    Article  CAS  PubMed  Google Scholar 

  79. Falci S, Best L, Bayles R, Lammertse D, Starnes C. Dorsal root entry zone microcoagulation for spinal cord injury—related central pain: operative intramedullary electrophysiological guidance and clinical outcome. J Neurosurg Spine. 2002;97:193–200.

    Article  Google Scholar 

  80. Chun HJ, Kim YS, Yi HJ. A modified microsurgical DREZotomy procedure for refractory neuropathic pain. World Neurosurg. 2011;75:551–7.

    Article  PubMed  Google Scholar 

  81. Spaić M, Marković N, Tadić R. Microsurgical DREZotomy for pain of spinal cord and cauda equina injury origin: clinical characteristics of pain and implications for surgery in a series of 26 patients. Acta Neurochir. 2002;144:453–62.

    Article  PubMed  Google Scholar 

  82. Chivukula S, Tempel ZJ, Chen CJ, Shin SS, Gande AV, Moossy JJ. Spinal and nucleus caudalis dorsal root entry zone lesioning for chronic pain: efficacy and outcomes. World Neurosurg. 2015;84:494–504.

    Article  PubMed  Google Scholar 

  83. Sindou M, Mertens P, Wael M. Microsurgical DREZotomy for pain due to spinal cord and/or cauda equina injuries: long-term results in a series of 44 patients. Pain. 2001;92:159–71.

    Article  CAS  PubMed  Google Scholar 

  84. Widerström-Noga E, Anderson KD, Perez S, Hunter JP, Martinez-Arizala A, Adcock JP, et al. Living with chronic pain after spinal cord injury: a mixed-methods study. Arch Phys Med Rehabil. 2016. doi:10.1016/j.apmr.2016.10.018.

  85. Baron R, Förster M, Binder A. Subgrouping of patients with neuropathic pain according to pain-related sensory abnormalities: a first step to a stratified treatment approach. Lancet Neurol. 2012;11:999–1005.

    Article  PubMed  Google Scholar 

  86. Baron R, Maier C, Attal N, Binder A, Bouhassira D, Cruccu G, et al. Peripheral neuropathic pain : a mechanism-related organizing principle based on sensory profiles. Pain. 2017;158:261–72.

    Article  PubMed  Google Scholar 

  87. Attal N, Fermanian C, Fermanian J, Lanteri-Minet M, Alchaar H, Bouhassira D. Neuropathic pain: are there distinct subtypes depending on the aetiology or anatomical lesion? Pain. 2008;138:343–53.

    Article  CAS  PubMed  Google Scholar 

  88. Jensen TS, Baron R. Translation of symptoms and signs into mechanisms in neuropathic pain. Pain. 2003;102(1–2):1–8.

    Article  PubMed  Google Scholar 

  89. Rolke R, Magerl W, Campbell KA, Schalber C, Caspari S, Birklein F, et al. Quantitative sensory testing: a comprehensive protocol for clinical trials. Eur J Pain. 2006;10:77–88.

    Article  CAS  PubMed  Google Scholar 

  90. Backonja MM, Attal N, Baron R, Bouhassira D, Drangholt M, Dyck PJ, et al. Value of quantitative sensory testing in neurological and pain disorders: NeuPSIG consensus. Pain. 2013;154:1807–19.

    Article  PubMed  Google Scholar 

  91. Geber C, Klein T, Azad S, Birklein F, Gierthmühlen J, Huge V, et al. Test-retest and interobserver reliability of quantitative sensory testing according to the protocol of the German Research Network onNeuropathic Pain (DFNS): a multi-centre study. Pain. 2011;152:548–56.

    Article  PubMed  Google Scholar 

  92. Freeman R, Baron R, Bouhassira D, Cabrera J, Emir B. Sensory profiles of patients with neuropathic pain based on the neuropathic pain symptoms and signs. Pain. 2014;155:367–76.

    Article  PubMed  Google Scholar 

  93. Rabey M, Slater H, O’Sullivan P, Beales D, Smith A. Somatosensory nociceptive characteristics differentiate subgroups in people with chronic low back pain: a cluster analysis. Pain. 2015;156:1874–84.

    Article  PubMed  Google Scholar 

  94. Koroschetz J, Rehm SE, Gockel U, Brosz M, Freynhagen R, Tölle TR, et al. Fibromyalgia and neuropathic pain–differences and similarities. A comparison of 3057 patients with diabetic painful neuropathy and fibromyalgia. BMC Neurol. 2011;11:55.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Maier C, Baron R, Tölle TR, Binder A, Birbaumer N, Birklein F, et al. Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): Somatosensory abnormalities in 1236 patients with different neuropathic pain syndromes. Pain. 2010;150:439–50.

    Article  CAS  PubMed  Google Scholar 

  96. Eide PK, Jørum E, Stenehjem AE. Somatosensory findings in patients with spinal cord injury and central dysaesthesia pain. J Neurol Neurosurg Psychiatry. 1996;60:411–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Finnerup NB, Johannesen IL, Fuglsang-Frederiksen A, Bach FW, Jensen TS. Sensory function in spinal cord injury patients with and without central pain. Brain. 2003;126:57–70.

    Article  CAS  PubMed  Google Scholar 

  98. Milhorat TH, Kotzen RM, Mu HTM, Capocelli AL, Milhorat RH, Long DM, et al. Dysesthetic pain in patients with syringomyelia. Neurosurgery. 1996;38:940–7.

    Article  CAS  PubMed  Google Scholar 

  99. Finnerup NB, Sørensen L, Biering-Sørensen F, Johannesen IL, Jensen TS. Segmental hypersensitivity and spinothalamic function in spinal cord injury pain. Exp Neurol. 2007;207:139–49.

    Article  PubMed  Google Scholar 

  100. Berić A, Dimitrijević MR, Lindblom U. Central dysesthesia syndrome in spinal cord injury patients. Pain. 1988;34:109–16.

    Article  PubMed  Google Scholar 

  101. Wasner G, Lee BB, Engel S, McLachlan E. Residual spinothalamic tract pathways predict development of central pain after spinal cord injury. Brain. 2008;131:2387–400.

    Article  PubMed  Google Scholar 

  102. Cruz-Almeida Y, Felix ER, Martinez-Arizala A, Widerström-Noga EG. Decreased spinothalamic and dorsal column–medial lemniscus-mediated function is associated with neuropathic pain after spinal cord injury. J Neurotrauma. 2012;29:2706–15.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Defrin R, Ohry A, Blumen N, Urca G. Characterization of chronic pain and somatosensory function in spinal cord injury subjects. Pain. 2001;89:253–63.

    Article  CAS  PubMed  Google Scholar 

  104. Felix ER, Widerstrom-Noga EG. Reliability and validity of quantitative sensory testing in persons with spinal cord injury and neuropathic pain. J Rehabil Res Dev. 2009;46:69–83.

    Article  PubMed  Google Scholar 

  105. Widerström-Noga E, Cruz-Almeida Y, Felix ER, Pattany PM. Somatosensory phenotype is associated with thalamic metabolites and pain intensity after spinal cord injury. Pain. 2015;156:166–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Kumru H, Soler D, Vidal J, Tormos JM, Pascual-Leone A, Valls-Sole J. Evoked potentials and quantitative thermal testing in spinal cord injury patients with chronic neuropathic pain. Clin Neurophysiol. 2012;123:598–604.

    Article  PubMed  Google Scholar 

  107. Hari AR, Wydenkeller S, Dokladal P, Halder P. Enhanced recovery of human spinothalamic function is associated with central neuropathic pain after SCI. Exp Neurol. 2009;216:428–30.

    Article  PubMed  Google Scholar 

  108. Zeilig G, Enosh S, Rubin-Asher D, Lehr B, Defrin R. The nature and course of sensory changes following spinal cord injury: predictive properties and implications on the mechanism of central pain. Brain. 2012;135:418–30.

    Article  PubMed  Google Scholar 

  109. Crown ED, Ye Z, Johnson KM, Xu GY, McAdoo DJ, Hulsebosch CE. Increases in the activated forms of ERK 1/2, p38 MAPK, and CREB are correlated with the expression of at-level mechanical allodynia following spinal cord injury. Exp Neurol. 2006;199:397–407.

    Article  CAS  PubMed  Google Scholar 

  110. Gwak YS, Crown ED, Unabia GC, Hulsebosch CE. Propentofylline attenuates allodynia, glial activation and modulates GABAergic tone after spinal cord injury in the rat. Pain. 2008;138:410–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zhuang ZY, Gerner P, Woolf CJ, Ji RR. ERK is sequentially activated in neurons, microglia, and astrocytes by spinal nerve ligation and contributes to mechanical allodynia in this neuropathic pain model. Pain. 2005;114:149–59.

    Article  PubMed  Google Scholar 

  112. Hulsebosch CE. Gliopathy ensures persistent inflammation and chronic pain after spinal cord injury. Exp Neurol. 2008;214:6–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Yarnitsky D. Conditioned pain modulation (the diffuse noxious inhibitory control-like effect): its relevance for acute and chronic pain states. Curr Opin Anaesthesiol. 2010;23:611–5.

    Article  PubMed  Google Scholar 

  114. Albu S, Gómez-Soriano J, Avila-Martin G, Taylor J. Deficient conditioned pain modulation after spinal cord injury correlates with clinical spontaneous pain measures. Pain. 2015;156:260–72.

    Article  PubMed  Google Scholar 

  115. Gruener H, Zeilig G, Laufer Y, Blumen N, Defrin R. Differential pain modulation properties in central neuropathic pain after spinal cord injury. Pain. 2016;157:1415–24.

    Article  PubMed  Google Scholar 

  116. Wydenkeller S, Maurizio S, Dietz V, Halder P. Neuropathic pain in spinal cord injury: significance of clinical and electrophysiological measures. Eur J Neurosci. 2009;30:91–9.

    Article  PubMed  Google Scholar 

  117. Kumru H, Soler D, Vidal J, Navarro X, Tormos JM, Pascual-Leone A, et al. The effects of transcranial direct current stimulation with visual illusion in neuropathic pain due to spinal cord injury: an evoked potentials and quantitative thermal testing study. Eur J Pain. 2013;17:55–66.

    Article  CAS  PubMed  Google Scholar 

  118. Apkarian AV, Bushnell MC, Treede RD, Zubieta JK. Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain. 2005;9:463–84.

    Article  PubMed  Google Scholar 

  119. Apkarian AV, Baliki MN, Geha PY. Towards a theory of chronic pain. Prog Neurobiol. 2009;87:81–97.

    Article  PubMed  Google Scholar 

  120. Salt TE. Gamma-aminobutyric acid and afferent inhibition in the cat and rat ventrobasal thalamus. Neuroscience. 1989;28:17–26.

    Article  CAS  PubMed  Google Scholar 

  121. Roberts WA, Eaton SA, Salt TE. Widely distributed GABA-mediated afferent inhibition processes within the ventrobasal thalamus of rat and their possible relevance to pathological pain states and somatotopic plasticity. Exp Brain Res. 1992;89:363–72.

    Article  CAS  PubMed  Google Scholar 

  122. Davis KD, Taylor SJ, Crawley AP, Wood ML, Mikulis DJ. Functional MRI of pain- and attention-related activations in the human cingulate cortex functional MRI of pain- and attention-related activations in the human cingulate cortex. J Neurophysiol. 1997;77:3370–80.

    CAS  PubMed  Google Scholar 

  123. Friebel U, Eickhoff SB, Lotze M. Coordinate-based meta-analysis of experimentally induced and chronic persistent neuropathic pain. Neuroimage. 2011;58:1070–80.

    Article  PubMed  Google Scholar 

  124. Sawamoto N, Honda M, Okada T, Hanakawa T, Kanda M, Fukuyama H, et al. Expectation of pain enhances responses to nonpainful somatosensory stimulation in the anterior cingulate cortex and parietal operculum/posterior insula: an event-related functional magnetic resonance imaging study. J Neurosci. 2000;20:7438–45.

    CAS  PubMed  Google Scholar 

  125. Zubieta J, Smith Y, Bueller J, Xu Y, Kilbourn M, Jewett D, et al. Regional mu opioid receptor regulation of sensory and affective dimensions of pain. Science. 2001;293:311–5.

    Article  CAS  PubMed  Google Scholar 

  126. LaGraize SC, Fuchs PN. GABAA but not GABAB receptors in the rostral anterior cingulate cortex selectively modulate pain-induced escape/avoidance behavior. Exp Neurol. 2007;204:182–94.

    Article  CAS  PubMed  Google Scholar 

  127. Metz AE, Yau H-J, Centeno MV, Apkarian AV, Martina M. Morphological and functional reorganization of rat medial prefrontal cortex in neuropathic pain. Proc Natl Acad Sci. 2009;106:2423–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Baliki MN, Chialvo DR, Geha PY, Levy RM, Harden RN, Parrish TB, et al. Chronic pain and the emotional brain: specific brain activity associated with spontaneous fluctuations of intensity of chronic back pain. J Neurosci. 2006;26:12165–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Baliki MN, Geha PY, Apkarian AV, Chialvo DR. Beyond feeling: chronic pain hurts the brain, disrupting the default-mode network dynamics. J Neurosci. 2008;28:1398–403.

    Article  CAS  PubMed  Google Scholar 

  130. Apkarian AV, Sosa Y, Sonty S, Levy RM, Harden RN, Parrish TB, et al. Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. J Neurosci. 2004;24:10410–5.

    Article  CAS  PubMed  Google Scholar 

  131. Li X-Y, Ko H-G, Chen T, Descalzi G, Koga K, Wang H, et al. Alleviating neuropathic pain hypersensitivity by inhibiting PKMzeta in the anterior cingulate cortex. Science. 2010;330:1400–4.

    Article  CAS  PubMed  Google Scholar 

  132. Chang L, Munsaka SM, Kraft-Terry S, Ernst T. Magnetic resonance spectroscopy to assess neuroinflammation and neuropathic pain. J Neuroimmune Pharmacol. 2013;8(3):576–93.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Pattany PM, Yezierski RP, Widerström-Noga EG, Bowen BC, Martinez-Arizala A, Garcia BR, et al. Proton magnetic resonance spectroscopy of the thalamus in patients with chronic neuropathic pain after spinal cord injury. AJNR Am J Neuroradiol. 2002;23:901–5.

    PubMed  Google Scholar 

  134. Gustin SM, Wrigley PJ, Siddall PJ, Henderson LA. Brain anatomy changes associated with persistent neuropathic pain following spinal cord injury. Cereb Cortex. 2010;20:1409–19.

    Article  CAS  PubMed  Google Scholar 

  135. Widerström-Noga E, Pattany PM, Cruz-Almeida Y, Felix ER, Perez S, Cardenas DD, et al. Metabolite concentrations in the anterior cingulate cortex predict high neuropathic pain impact after spinal cord injury. Pain. 2013;154:204–12.

    Article  PubMed  CAS  Google Scholar 

  136. Govindaraju V, Young K, Maudsley AA. Proton NMR chemical shifts and coupling constants for brain metabolites. NMR Biomed. 2000;13:129–53.

    Article  CAS  PubMed  Google Scholar 

  137. Sorensen L, Siddall PJ, Trenell MI, Yue DK. Differences in metabolites in pain-processing brain regions in patients with diabetes and painful neuropathy. Diabetes Care. 2008;31:980–1.

    Article  PubMed  Google Scholar 

  138. Fukui S, Matsuno M, Inubushi T, Nosaka S. N-Acetylaspartate concentrations in the thalami of neuropathic pain patients and healthy comparison subjects measured with 1H-MRS. Magn Reson Imaging. 2006;24:75–9.

    Article  CAS  PubMed  Google Scholar 

  139. Gustin SM, Wrigley PJ, Youssef AM, McIndoe L, Wilcox SL, Rae CD, et al. Thalamic activity and biochemical changes in individuals with neuropathic pain after spinal cord injury. Pain. 2014;155:1027–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Widerström-Noga E, Govind V, Adcock JP, Levin BE, Maudsley AA. Subacute pain after traumatic brain injury is associated with lower insular N-acetylaspartate concentrations. J Neurotrauma. 2016;15;33(14):1380–9.

  141. Isaacks RE, Bender AS, Kim CY, Norenberg MD. Effect of osmolality and myo-inositol deprivation on the transport properties of myo-inositol in primary astrocyte cultures. Neurochem Res. 1997;22:1461–9.

    Article  CAS  PubMed  Google Scholar 

  142. Stanwell P, Siddall P, Keshava N, Cocuzzo D, Ramadan S, Lin A, et al. Neuro magnetic resonance spectroscopy using wavelet decomposition and statistical testing identifies biochemical changes in people with spinal cord injury and pain. Neuroimage. 2010;53:544–52.

    Article  PubMed  Google Scholar 

  143. Struzyńska L, Sulkowski G. Relationships between glutamine, glutamate, and GABA in nerve endings under Pb-toxicity conditions. J Inorg Biochem. 2004;98:951–8.

    Article  PubMed  CAS  Google Scholar 

  144. Hertz L, Rothman DL.Glutamine-glutamate cycle flux is similar in cultured astrocytes and brain and both glutamate production and oxidation are mainly catalyzed by aspartate aminotransferase. Biology (Basel). 2017;6(1):pii: E17.

  145. Beaulieu C. The basis of anisotropic water diffusion in the nervous system: a technical review. NMR Biomed. 2002;15:435–55.

    Article  PubMed  Google Scholar 

  146. Mori S, Zhang J. Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron. 2006;51:527–39.

    Article  CAS  PubMed  Google Scholar 

  147. Chenevert TL, Brunberg J, Pipe JG. Anisotropic diffusion in human white matter: demonstration with MR techniques in vivo. Radiology. 1990;177:401–5.

    Article  CAS  PubMed  Google Scholar 

  148. Moseley ME, Cohen Y, Mintorovitch J, Chileuitt L, Shimizu H, Kucharczyk J, et al. Early detection of regional cerebral ischemia in cats: comparison of diffusion- and T2-weighted MRI and spectroscopy. Magn Reson Med. 1990;14:330–46.

    Article  CAS  PubMed  Google Scholar 

  149. Douek P, Turner R, Pekar J, Patronas N, Le Bihan D. MR color mapping of myelin fiber orientation. J Comput Assist Tomogr. 1991;15:923–9.

    Article  CAS  PubMed  Google Scholar 

  150. Basser PJ, Mattiello J, Lebihan D. Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B. 1994;103(3):247–54.

  151. Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Di Chiro G. Diffusion tensor MR imaging of the human brain. Radiology. 1996;201:637–48.

    Article  CAS  PubMed  Google Scholar 

  152. Stevenson V, Parker G, Barker G, Birnie K, Tofts P, Miller D, et al. Variations in T1 and T2 relaxation times of normal appearing white matter and lesions in multiple sclerosis. J Neurol Sci. 2000;178:81–7.

    Article  CAS  PubMed  Google Scholar 

  153. Iannucci G, Rovaris M, Giacomotti L, Comi G, Filippi M. Correlation of multiple sclerosis measures derived from T2-weighted, T1-weighted, magnetization transfer, and diffusion tensor MR imaging. Am J Neuroradiol. 2001;22:1462–7.

    CAS  PubMed  Google Scholar 

  154. Hagmann P, Jonasson L, Maeder P, Thiran JP, Wedeen VJ, Meuli R. Understanding diffusion MR imaging techniques: from scalar diffusion-weighted imaging to diffusion tensor imaging and beyond. Radiographics. 2006;26(Suppl 1):S205–23.

    Article  PubMed  Google Scholar 

  155. Yoon EJ, Kim YK, Shin HI, Lee Y, Kim SE. Cortical and white matter alterations in patients with neuropathic pain after spinal cord injury. Brain Res. 2013;1540:64–73.

    Article  CAS  PubMed  Google Scholar 

  156. Hatem SM, Attal N, Ducreux D, Gautron M, Parker F, Plaghki L, et al. Clinical, functional and structural determinants of central pain in syringomyelia. Brain. 2010;133:3409–22.

    Article  PubMed  Google Scholar 

  157. Campbell CM, Jamison RN, Edwards RR. Psychological screening/phenotyping as predictors for spinal cord stimulation. Curr Pain Headache Rep. 2013;17:307.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Edwards RR, Fillingim RB, Maixner W, Sigurdsson A, Haythornthwaite J. Catastrophizing predicts changes in thermal pain responses after resolution of acute dental pain. J Pain. 2004;5:164–70.

    Article  PubMed  Google Scholar 

  159. Keogh E, Mansoor L. Investigating the effects of anxiety sensitivity and coping on the perception of cold pressor pain in healthy women. Eur J Pain. 2001;5:11–22.

    Article  CAS  PubMed  Google Scholar 

  160. Ramírez-Maestre C, Esteve R. Disposition and adjustment to chronic pain. Curr Pain Headache Rep. 2013;17(3):312.

    Article  PubMed  Google Scholar 

  161. DeGood DE, Tait RC. Assessment of pain beliefs and pain coping. In: Melzack R, Turk DC, editors. Handbook of Pain Assessment. 2nd ed. Guilford Press; 2001. p. 320–45.

  162. Hirsh AT, Bockow TB, Jensen MP. Catastrophizing, pain, and pain interference in individuals with disabilities. Am J Phys Med Rehabil. 2011;90:713–22.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Heutink M, Post MW, Overdulve CW, Pfennings LE, van de Vis W, Vrijens NL, et al. Which pain coping strategies and cognitions are associated with outcomes of a cognitive behavioral intervention for neuropathic pain after spinal cord injury? Top Spinal Cord Inj Rehabil. 2013;19:330–40.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Müller R, Gertz KJ, Molton IR, Terrill AL, Bombardier CH, Ehde DM, et al. Effects of a tailored positive psychology intervention on well-being and pain in individuals with chronic pain and a physical disability. Clin J Pain. 2015;32:32–44.

    Article  Google Scholar 

  165. Grachev ID, Fredrickson BE, Apkarian AV. Abnormal brain chemistry in chronic back pain: an in vivo proton magnetic resonance spectroscopy study. Pain. 2000;89:7–18.

    Article  CAS  PubMed  Google Scholar 

  166. Demant DT, Lund K, Vollert J, Maier C, Segerdahl M, Finnerup NB, et al. The effect of oxcarbazepine in peripheral neuropathic pain depends on pain phenotype: a randomised, double-blind, placebo-controlled phenotype-stratified study. Pain. 2014;155:2263–73.

    Article  CAS  PubMed  Google Scholar 

  167. Min K, Oh Y, Lee S-H, Ryu JS. Symptom-based treatment of neuropathic pain in spinal cord-injured patients: a randomized crossover clinical trial. Am J Phys Med Rehabil. 2016;95(5):330–8.

    PubMed  Google Scholar 

  168. Bouhassira D, Wilhelm S, Schacht A, Perrot S, Kosek E, Cruccu G, et al. Neuropathic pain phenotyping as a predictor of treatment response in painful diabetic neuropathy: data from the randomized, double-blind, COMBO-DN study. Pain. 2014;155:2171–9.

    Article  PubMed  Google Scholar 

  169. Steigerwald I, Müller M, Davies A, Samper D, Sabatowski R, Baron R, et al. Effectiveness and safety of tapentadol prolonged release for severe, chronic low back pain with or without a neuropathic pain component: results of an open-label, phase 3b study. Curr Med Res Opin. 2012;28:911–36.

    Article  CAS  PubMed  Google Scholar 

  170. Soler MD, Moriña D, Rodríguez N, Saurí J, Vidal J, Navarro A, et al. Sensory symptom profiles of patients with neuropathic pain after spinal cord injury. Clin J Pain. 2016. doi:10.1097/AJP.0000000000000467

    PubMed  Google Scholar 

  171. Patel R, Dickenson AH. Mechanisms of the gabapentinoids and α 2 δ-1 calcium channel subunit in neuropathic pain. Pharmacol Res Perspect. 2016;4(2):e00205.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Dworkin RH, Edwards RR. Phenotypes and treatment response: it’s difficult to make predictions, especially about the future. Pain. 2017;158:187–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Widerström-Noga.

Ethics declarations

Conflict of interest

Eva Widerstrom-Noga has no conflicts of interest to declare relating to the present article.

Funding

The author has no specific funding to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Widerström-Noga, E. Neuropathic Pain and Spinal Cord Injury: Phenotypes and Pharmacological Management. Drugs 77, 967–984 (2017). https://doi.org/10.1007/s40265-017-0747-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-017-0747-8

Keywords

Navigation