Skip to main content
Log in

Bringing Stability to the Chronic Obstructive Pulmonary Disease Patient: Clinical and Pharmacological Considerations for Frequent Exacerbators

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Acute exacerbations of chronic obstructive pulmonary disease (AECOPD) are critical events associated with an accelerated loss of lung function, increased morbidity, and excess mortality. AECOPD are heterogeneous in nature and this may directly impact clinical decision making, specifically in patients with frequent exacerbations. A ‘frequent exacerbator’ is a sub-phenotype of chronic obstructive pulmonary disease (COPD) and is defined as an individual who experiences two or more moderate-to-severe exacerbations per year. This distinct subgroup has higher mortality and accounts for more than half of COPD-related hospitalizations annually. Thus, it is imperative to identify individuals at risk for frequent exacerbations and choose optimal strategies to minimize risk for these events. New paradigms for using combination inhalers and the introduction of novel oral compounds provide expanded treatment options to reduce the risk and frequency of exacerbations. The goals of managing frequent exacerbators or patients at risk for AECOPD are: (1) maximizing bronchodilation; (2) reducing inflammation; and (3) targeting specific molecular pathways implicated in COPD and AECOPD pathogenesis. Novel inhaler therapies including combination long-acting muscarinic agents plus long-acting beta agonists show promising results compared with monotherapy or a long-acting beta agonist inhaled corticosteroid combination in reducing exacerbation risk among individuals at risk for exacerbations and among frequent exacerbators. Likewise, oral medications including macrolides and phosphodiesterase-4 inhibitors reduce the risk for AECOPD in select groups of individuals at high risk for exacerbation. Future direction in COPD management is based on the identification of various subtypes or ‘endotypes’ and targeting therapies based on their pathophysiology. This review describes the impact of AECOPD and the challenges posed by frequent exacerbators, and explores the rationale for different pharmacologic approaches to preventing AECOPD in these individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miniño AM, Xu J, Kochanek KD. Deaths: preliminary data for 2008. Natl Vital Stat Rep. 2010;59:1–52.

    PubMed  Google Scholar 

  2. Yu AP, Yang H, Wu EQ, et al. Incremental third-party costs associated with COPD exacerbations: a retrospective claims analysis. J Med Econ. 2011;14:315–23. doi:10.3111/13696998.2011.576295.

    Article  PubMed  Google Scholar 

  3. Dransfield MT, Kunisaki KM, Strand MJ, et al. Acute exacerbations and lung function loss in smokers with and without COPD. Am J Respir Crit Care Med. 2017;195:324–30. doi:10.1164/rccm.201605-1014OC.

    PubMed  Google Scholar 

  4. Vestbo J, Edwards LD, Scanlon PD, et al. Changes in forced expiratory volume in 1 second over time in COPD. N Engl J Med. 2011;365:1184–92. doi:10.1056/NEJMoa1105482.

    Article  CAS  PubMed  Google Scholar 

  5. Donaldson GC, Law M, Kowlessar B, et al. Impact of prolonged exacerbation recovery in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2015;192:943–50. doi:10.1164/rccm.201412-2269OC.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Seemungal TA, Donaldson GC, Paul EA, et al. Effect of exacerbation on quality of life in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1998;157:1418–22. doi:10.1164/ajrccm.157.5.9709032.

    Article  CAS  PubMed  Google Scholar 

  7. Müllerova H, Maselli DJ, Locantore N, et al. Hospitalized exacerbations of COPD: risk factors and outcomes in the ECLIPSE cohort. Chest. 2015;147:999–1007. doi:10.1378/chest.14-0655.

    Article  PubMed  Google Scholar 

  8. Piquet J, Chavaillon J-M, David P, et al. High-risk patients following hospitalisation for an acute exacerbation of COPD. Eur Respir J. 2013;42:946–55. doi:10.1183/09031936.00180312.

    Article  PubMed  Google Scholar 

  9. Rodriguez-Roisin R. Toward a consensus definition for COPD exacerbations. Chest. 2000;117:398S–401S.

    Article  CAS  PubMed  Google Scholar 

  10. Burge c, Wedzicha JA. COPD exacerbations: definitions and classifications. Eur Respir J. 2003;21(Suppl. 41):46s–53s

    Article  Google Scholar 

  11. Anthonisen NR, Manfreda J, Warren CP, et al. Antibiotic therapy in exacerbations of chronic obstructive pulmonary disease. Ann Intern Med. 1987;106:196–204.

    Article  CAS  PubMed  Google Scholar 

  12. Aaron SD, Angel JB, Lunau M, et al. Granulocyte inflammatory markers and airway infection during acute exacerbation of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2001;163:349–55. doi:10.1164/ajrccm.163.2.2003122.

    Article  CAS  PubMed  Google Scholar 

  13. Seneff MG, Wagner DP, Wagner RP, et al. Hospital and 1-year survival of patients admitted to intensive care units with acute exacerbation of chronic obstructive pulmonary disease. JAMA. 1995;274:1852–7.

    Article  CAS  PubMed  Google Scholar 

  14. Hurst JR, Vestbo J, Anzueto A, et al. Susceptibility to exacerbation in chronic obstructive pulmonary disease. N Engl J Med. 2010;363:1128–38. doi:10.1056/NEJMoa0909883.

    Article  CAS  PubMed  Google Scholar 

  15. Beeh KM, Glaab T, Stowasser S, et al. Characterisation of exacerbation risk and exacerbator phenotypes in the POET-COPD trial. Respir Res. 2013;14:116. doi:10.1186/1465-9921-14-116.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bhowmik A, Seemungal T, Sapsford R, Wedzicha J. Relation of sputum inflammatory markers to symptoms and lung function changes in COPD exacerbations. Thorax. 2000;55:114–20. doi:10.1136/thorax.55.2.114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Perera WR, Hurst JR, Wilkinson TMA, et al. Inflammatory changes, recovery and recurrence at COPD exacerbation. Eur Respir J. 2007;29:527–34. doi:10.1183/09031936.00092506.

    Article  CAS  PubMed  Google Scholar 

  18. Anderson GP. Endotyping asthma: new insights into key pathogenic mechanisms in a complex, heterogeneous disease. Lancet. 2008;372:1107–19. doi:10.1016/S0140-6736(08)61452-X.

    Article  PubMed  Google Scholar 

  19. Russell DW, Wells JM, Blalock JE. Disease phenotyping in chronic obstructive pulmonary disease: the neutrophilic endotype. Curr Opin Pulm Med. 2016;22:91–9. doi:10.1097/MCP.0000000000000238.

    Article  PubMed  Google Scholar 

  20. Woodruff PG, Agusti A, Roche N, et al. Current concepts in targeting chronic obstructive pulmonary disease pharmacotherapy: making progress towards personalised management. Lancet. 2015;385:1789–98. doi:10.1016/S0140-6736(15)60693-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Papi A, Bellettato CM, Braccioni F, et al. Infections and airway inflammation in chronic obstructive pulmonary disease severe exacerbations. Am J Respir Crit Care Med. 2006;173:1114–21. doi:10.1164/rccm.200506-859OC.

    Article  PubMed  Google Scholar 

  22. Kang HS, Rhee CK, Kim SK, et al. Comparison of the clinical characteristics and treatment outcomes of patients requiring hospital admission to treat eosinophilic and neutrophilic exacerbations of COPD. Int J Chron Obstr Pulm Dis. 2016;11:2467–73. doi:10.2147/COPD.S116072.

    Article  Google Scholar 

  23. Saetta M, Di Stefano A, Maestrelli P, et al. Airway eosinophilia in chronic bronchitis during exacerbations. Am J Respir Crit Care Med. 1994;150:1646–52. doi:10.1164/ajrccm.150.6.7952628.

    Article  CAS  PubMed  Google Scholar 

  24. Pizzichini E, Pizzichini MM, Gibson P, et al. Sputum eosinophilia predicts benefit from prednisone in smokers with chronic obstructive bronchitis. Am J Respir Crit Care Med. 1998;158:1511–7. doi:10.1164/ajrccm.158.5.9804028.

    Article  CAS  PubMed  Google Scholar 

  25. Saha S, Brightling CE. Eosinophilic airway inflammation in COPD. Int J Chron Obstr Pulm Dis. 2006;1:39–47.

    Google Scholar 

  26. Pavord ID, Lettis S, Locantore N, et al. Blood eosinophils and inhaled corticosteroid/long-acting β-2 agonist efficacy in COPD. Thorax. 2016;71:118–25. doi:10.1136/thoraxjnl-2015-207021.

    Article  PubMed  Google Scholar 

  27. Wedzicha JA. Role of viruses in exacerbations of chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2004;1:115–20. doi:10.1513/pats.2306030.

    Article  PubMed  Google Scholar 

  28. Seemungal T, Harper-Owen R, Bhowmik A, et al. Respiratory viruses, symptoms, and inflammatory markers in acute exacerbations and stable chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2001;164:1618–23. doi:10.1164/ajrccm.164.9.2105011.

    Article  CAS  PubMed  Google Scholar 

  29. Cabello H, Torres A, Celis R, et al. Bacterial colonization of distal airways in healthy subjects and chronic lung disease: a bronchoscopic study. Eur Respir J. 1997;10:1137–44.

    Article  CAS  PubMed  Google Scholar 

  30. Sethi S, Murphy TF. Bacterial infection in chronic obstructive pulmonary disease in 2000: a state-of-the-art review. Clin Microbiol Rev. 2001;14:336–63. doi:10.1128/CMR.14.2.336-363.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Patel IS, Seemungal TA, Wilks M, et al. Relationship between bacterial colonisation and the frequency, character, and severity of COPD exacerbations. Thorax. 2002;57:759–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Huang YJ, Sethi S, Murphy T, et al. Airway microbiome dynamics in exacerbations of chronic obstructive pulmonary disease. J Clin Microbiol. 2014;52:2813–23. doi:10.1128/JCM.00035-14.

    Article  PubMed  PubMed Central  Google Scholar 

  33. O’Donnell DE, Laveneziana P. The clinical importance of dynamic lung hyperinflation in COPD. COPD. 2006;3:219–32.

    Article  PubMed  Google Scholar 

  34. O’Donnell DE, Parker CM. COPD exacerbations. 3: pathophysiology. Thorax. 2006;61:354–61. doi:10.1136/thx.2005.041830.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bhatt SP, Dransfield MT. Chronic obstructive pulmonary disease and cardiovascular disease. Transl Res J Lab Clin Med. 2013;162:237–51. doi:10.1016/j.trsl.2013.05.001.

    Article  Google Scholar 

  36. Mills NL, Miller JJ, Anand A, et al. Increased arterial stiffness in patients with chronic obstructive pulmonary disease: a mechanism for increased cardiovascular risk. Thorax. 2008;63:306–11. doi:10.1136/thx.2007.083493.

    Article  CAS  PubMed  Google Scholar 

  37. Patel ARC, Kowlessar BS, Donaldson GC, et al. Cardiovascular risk, myocardial injury, and exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2013;188:1091–9. doi:10.1164/rccm.201306-1170OC.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Andreas S, Herrmann-Lingen C, Raupach T, et al. Angiotensin II blockers in obstructive pulmonary disease: a randomised controlled trial. Eur Respir J. 2006;27:972–9. doi:10.1183/09031936.06.00098105.

    CAS  PubMed  Google Scholar 

  39. Criner GJ, Connett JE, Aaron SD, et al. Simvastatin for the prevention of exacerbations in moderate-to-severe COPD. N Engl J Med. 2014;370:2201–10. doi:10.1056/NEJMoa1403086.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Bhatt SP, Wells JM, Kinney GL, et al. β-Blockers are associated with a reduction in COPD exacerbations. Thorax. 2016;71:8–14. doi:10.1136/thoraxjnl-2015-207251.

    Article  PubMed  Google Scholar 

  41. McGraw DW, Forbes SL, Mak JCW, et al. Transgenic overexpression of β2-adrenergic receptors in airway epithelial cells decreases bronchoconstriction. Am J Physiol Lung Cell Mol Physiol. 2000;279:L379–89.

    CAS  PubMed  Google Scholar 

  42. Nguyen LP, Omoluabi O, Parra S, et al. Chronic exposure to beta-blockers attenuates inflammation and mucin content in a murine asthma model. Am J Respir Cell Mol Biol. 2008;38:256–62. doi:10.1165/rcmb.2007-0279RC.

    Article  CAS  PubMed  Google Scholar 

  43. Bhatt SP, Connett JE, Voelker H, et al. β-Blockers for the prevention of acute exacerbations of chronic obstructive pulmonary disease (βLOCK COPD): a randomised controlled study protocol. BMJ Open. 2016;6:e012292. doi:10.1136/bmjopen-2016-012292.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Parker CM, Voduc N, Aaron SD, et al. Physiological changes during symptom recovery from moderate exacerbations of COPD. Eur Respir J. 2005;26:420–8. doi:10.1183/09031936.05.00136304.

    Article  CAS  PubMed  Google Scholar 

  45. Niewoehner DE, Rice K, Cote C, et al. Prevention of exacerbations of chronic obstructive pulmonary disease with tiotropium, a once-daily inhaled anticholinergic bronchodilator: a randomized trial. Ann Intern Med. 2005;143:317–26.

    Article  CAS  PubMed  Google Scholar 

  46. Tashkin DP, Celli B, Senn S, et al. A 4-year trial of tiotropium in chronic obstructive pulmonary disease. N Engl J Med. 2008;359:1543–54. doi:10.1056/NEJMoa0805800.

    Article  CAS  PubMed  Google Scholar 

  47. Celli BR, Decramer M, Asijee GM, Kupas K, Tashkin DP. Effects of tiotropium on exacerbations in patients with COPD with low or high risk of exacerbations: A post-hoc analysis from the 4-year UPLIFT® trial. J COPD Found. 2015;2(2): 122–130. doi:10.15326/jcopdf.2.2.2014.0155

    Article  Google Scholar 

  48. Wise RA, Anzueto A, Cotton D, et al. Tiotropium Respimat inhaler and the risk of death in COPD. N Engl J Med. 2013;369:1491–501. doi:10.1056/NEJMoa1303342.

    Article  CAS  PubMed  Google Scholar 

  49. Anzueto A, Wise R, Calverley P, et al. The tiotropium safety and performance in Respimat® (TIOSPIR®) trial: spirometry outcomes. Respir Res. 2015;16:107. doi:10.1186/s12931-015-0269-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Beier J, Kirsten A-M, Mróz R, et al. Efficacy and safety of aclidinium bromide compared with placebo and tiotropium in patients with moderate-to-severe chronic obstructive pulmonary disease: results from a 6-week, randomized, controlled phase IIIb study. COPD. 2013;10:511–22. doi:10.3109/15412555.2013.814626.

    Article  PubMed  PubMed Central  Google Scholar 

  51. D’Urzo A, Kerwin E, Rennard S, et al. One-year extension study of ACCORD COPD I: safety and efficacy of two doses of twice-daily aclidinium bromide in patients with COPD. COPD. 2013;10:500–10. doi:10.3109/15412555.2013.791809.

    Article  PubMed  Google Scholar 

  52. Fuhr R, Magnussen H, Sarem K, et al. Efficacy of aclidinium bromide 400 μg twice daily compared with placebo and tiotropium in patients with moderate to severe COPD. Chest. 2012;141:745–52. doi:10.1378/chest.11-0406.

    Article  CAS  PubMed  Google Scholar 

  53. Feldman G, Maltais F, Khindri S, et al. A randomized, blinded study to evaluate the efficacy and safety of umeclidinium 62.5 μg compared with tiotropium 18 μg in patients with COPD. Int J Chron Obstruct Pulmon Dis. 2016;11:719–30. doi:10.2147/COPD.S102494.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Rheault T, Khindri S, Vahdati-Bolouri M, et al. A randomised, open-label study of umeclidinium versus glycopyrronium in patients with COPD. ERJ Open Res. 2016;2. doi: 10.1183/23120541.00101-2015.

  55. Rennard SI, Scanlon PD, Ferguson GT, et al. ACCORD COPD II: a randomized clinical trial to evaluate the 12-week efficacy and safety of twice-daily aclidinium bromide in chronic obstructive pulmonary disease patients. Clin Drug Investig. 2013;33:893–904. doi:10.1007/s40261-013-0138-1.

    Article  CAS  PubMed  Google Scholar 

  56. D’Urzo A, Ferguson GT, van Noord JA, et al. Efficacy and safety of once-daily NVA237 in patients with moderate-to-severe COPD: the GLOW1 trial. Respir Res. 2011;12:156. doi:10.1186/1465-9921-12-156.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Kerwin E, Hébert J, Gallagher N, et al. Efficacy and safety of NVA237 versus placebo and tiotropium in patients with COPD: the GLOW2 study. Eur Respir J. 2012;40:1106–14. doi:10.1183/09031936.00040712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sin DD, McAlister FA, Man SFP, Anthonisen NR. Contemporary management of chronic obstructive pulmonary disease: scientific review. JAMA. 2003;290:2301–12. doi:10.1001/jama.290.17.2301.

    Article  CAS  PubMed  Google Scholar 

  59. Vogelmeier C, Hederer B, Glaab T, et al. Tiotropium versus salmeterol for the prevention of exacerbations of COPD. N Engl J Med. 2011;364:1093–103. doi:10.1056/NEJMoa1008378.

    Article  CAS  PubMed  Google Scholar 

  60. Decramer ML, Chapman KR, Dahl R, et al. Once-daily indacaterol versus tiotropium for patients with severe chronic obstructive pulmonary disease (INVIGORATE): a randomised, blinded, parallel-group study. Lancet Respir Med. 2013;1:524–33. doi:10.1016/S2213-2600(13)70158-9.

    Article  CAS  PubMed  Google Scholar 

  61. Agarwal R, Aggarwal AN, Gupta D, Jindal SK. Inhaled corticosteroids vs placebo for preventing COPD exacerbations: a systematic review and metaregression of randomized controlled trials. Chest. 2010;137:318–25. doi:10.1378/chest.09-1305.

    Article  CAS  PubMed  Google Scholar 

  62. Alsaeedi A, Sin DD, McAlister FA. The effects of inhaled corticosteroids in chronic obstructive pulmonary disease: a systematic review of randomized placebo-controlled trials. Am J Med. 2002;113:59–65.

    Article  CAS  PubMed  Google Scholar 

  63. Wilt TJ, Niewoehner D, MacDonald R, Kane RL. Management of stable chronic obstructive pulmonary disease: a systematic review for a clinical practice guideline. Ann Intern Med. 2007;147:639–53.

    Article  PubMed  Google Scholar 

  64. Puhan MA, Bachmann LM, Kleijnen J, et al. Inhaled drugs to reduce exacerbations in patients with chronic obstructive pulmonary disease: a network meta-analysis. BMC Med. 2009;7:2. doi:10.1186/1741-7015-7-2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Wilt TJ, Niewoehner D, Kim C, et al. Use of spirometry for case finding, diagnosis, and management of chronic obstructive pulmonary disease (COPD). Evid Rep Technol Assess (Summ). 2005;121:1–7.

    Google Scholar 

  66. Burge PS, Calverley PMA, Jones PW, et al. Randomised, double blind, placebo controlled study of fluticasone propionate in patients with moderate to severe chronic obstructive pulmonary disease: the ISOLDE trial. BMJ. 2000;320:1297–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Suissa S, Patenaude V, Lapi F, Ernst P. Inhaled corticosteroids in COPD and the risk of serious pneumonia. Thorax. 2013;68:1029–36. doi:10.1136/thoraxjnl-2012-202872.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Crim C, Calverley PMA, Anderson JA, et al. Pneumonia risk in COPD patients receiving inhaled corticosteroids alone or in combination: TORCH study results. Eur Respir J. 2009;34:641–7. doi:10.1183/09031936.00193908.

    Article  CAS  PubMed  Google Scholar 

  69. Magnussen H, Disse B, Rodriguez-Roisin R, et al. Withdrawal of inhaled glucocorticoids and exacerbations of COPD. N Engl J Med. 2014;371:1285–94. doi:10.1056/NEJMoa1407154.

    Article  PubMed  CAS  Google Scholar 

  70. Vogelmeier CF, Criner GJ, Martinez FJ, Anzueto A, Barnes PJ, Bourbeau J, Celli BR, Chen R, Decramer M, Fabbri LM, Frith P, Halpin DM, López Varela MV, Nishimura M, Roche N, Rodriguez-Roisin R, Sin DD, Singh D, Stockley R, Vestbo J, Wedzicha JA, Agusti A.  Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease 2017 Report: GOLD Executive Summary.  Am J Respir Crit Care Med. doi:10.1164/rccm.201701-0218PP.

  71. Barnes NC, Qiu Y-S, Pavord ID, et al. Antiinflammatory effects of salmeterol/fluticasone propionate in chronic obstructive lung disease. Am J Respir Crit Care Med. 2006;173:736–43. doi:10.1164/rccm.200508-1321OC.

    Article  CAS  PubMed  Google Scholar 

  72. Calverley P, Pauwels R, Vestbo J, et al. Combined salmeterol and fluticasone in the treatment of chronic obstructive pulmonary disease: a randomised controlled trial. Lancet. 2003;361:449–56. doi:10.1016/S0140-6736(03)12459-2.

    Article  CAS  PubMed  Google Scholar 

  73. Calverley PMA, Anderson JA, Celli B, et al. Salmeterol and fluticasone propionate and survival in chronic obstructive pulmonary disease. N Engl J Med. 2007;356:775–89. doi:10.1056/NEJMoa063070.

    Article  CAS  PubMed  Google Scholar 

  74. Szafranski W, Cukier A, Ramirez A, et al. Efficacy and safety of budesonide/formoterol in the management of chronic obstructive pulmonary disease. Eur Respir J. 2003;21:74–81.

    Article  CAS  PubMed  Google Scholar 

  75. Calverley PM, Boonsawat W, Cseke Z, et al. Maintenance therapy with budesonide and formoterol in chronic obstructive pulmonary disease. Eur Respir J. 2003;22:912–9.

    Article  CAS  PubMed  Google Scholar 

  76. Vestbo J, Leather D, Diar Bakerly N, et al. Effectiveness of fluticasone furoate-vilanterol for COPD in clinical practice. N Engl J Med. 2016;375:1253–60. doi:10.1056/NEJMoa1608033.

    Article  CAS  PubMed  Google Scholar 

  77. Cazzola M, Santus P, Di Marco F, et al. Bronchodilator effect of an inhaled combination therapy with salmeterol + fluticasone and formoterol + budesonide in patients with COPD. Respir Med. 2003;97:453–7.

    Article  CAS  PubMed  Google Scholar 

  78. Pascoe S, Locantore N, Dransfield MT, et al. Blood eosinophil counts, exacerbations, and response to the addition of inhaled fluticasone furoate to vilanterol in patients with chronic obstructive pulmonary disease: a secondary analysis of data from two parallel randomised controlled trials. Lancet Respir Med. 2015;3:435–42. doi:10.1016/S2213-2600(15)00106-X.

    Article  CAS  PubMed  Google Scholar 

  79. Cazzola M, Molimard M. The scientific rationale for combining long-acting beta2-agonists and muscarinic antagonists in COPD. Pulm Pharmacol Ther. 2010;23:257–67. doi:10.1016/j.pupt.2010.03.003.

    Article  CAS  PubMed  Google Scholar 

  80. Maltais F, Singh S, Donald AC, et al. Effects of a combination of umeclidinium/vilanterol on exercise endurance in patients with chronic obstructive pulmonary disease: two randomized, double-blind clinical trials. Ther Adv Respir Dis. 2014;8:169–81. doi:10.1177/1753465814559209.

    Article  PubMed  CAS  Google Scholar 

  81. Celli B, Crater G, Kilbride S, et al. Once-daily umeclidinium/vilanterol 125/25 mcg in COPD: a randomized, controlled study. Chest. 2014;145:981–91. doi:10.1378/chest.13-1579.

    Article  CAS  PubMed  Google Scholar 

  82. Donohue JF, Worsley S, Zhu C-Q, et al. Improvements in lung function with umeclidinium/vilanterol versus fluticasone propionate/salmeterol in patients with moderate-to-severe COPD and infrequent exacerbations. Respir Med. 2015;109:870–81. doi:10.1016/j.rmed.2015.04.018.

    Article  PubMed  Google Scholar 

  83. Siler TM, Kerwin E, Sousa AR, et al. Efficacy and safety of umeclidinium added to fluticasone furoate/vilanterol in chronic obstructive pulmonary disease: results of two randomized studies. Respir Med. 2015;109:1155–63. doi:10.1016/j.rmed.2015.06.006.

    Article  PubMed  Google Scholar 

  84. Wedzicha JA, Banerji D, Chapman KR, et al. Indacaterol-glycopyrronium versus salmeterol-fluticasone for COPD. N Engl J Med. 2016;374:2222–34. doi:10.1056/NEJMoa1516385.

    Article  CAS  PubMed  Google Scholar 

  85. Buhl R, Maltais F, Abrahams R, et al. Tiotropium and olodaterol fixed-dose combination versus mono-components in COPD (GOLD 2–4). Eur Respir J. 2015;45:969–79. doi:10.1183/09031936.00136014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Radovanovic D, Mantero M, Sferrazza Papa GF, et al. Formoterol fumarate + glycopyrrolate for the treatment of chronic obstructive pulmonary disease. Expert Rev Respir Med. 2016;10:1045–55. doi:10.1080/17476348.2016.1227247.

    Article  CAS  PubMed  Google Scholar 

  87. Lode H, Eller J, Linnhoff A, et al. Levofloxacin versus clarithromycin in COPD exacerbation: focus on exacerbation-free interval. Eur Respir J. 2004;24:947–53. doi:10.1183/09031936.04.00009604.

    Article  CAS  PubMed  Google Scholar 

  88. Dimopoulos G, Siempos II, Korbila IP, et al. Comparison of first-line with second-line antibiotics for acute exacerbations of chronic bronchitis: a metaanalysis of randomized controlled trials. Chest. 2007;132:447–55. doi:10.1378/chest.07-0149.

    Article  CAS  PubMed  Google Scholar 

  89. Segal LN, Clemente JC, Wu BG, et al. Randomised, double-blind, placebo-controlled trial with azithromycin selects for anti-inflammatory microbial metabolites in the emphysematous lung. Thorax. 2017;72:13–22. doi:10.1136/thoraxjnl-2016-208599.

    Article  PubMed  Google Scholar 

  90. Martinez FJ, Curtis JL, Albert R. Role of macrolide therapy in chronic obstructive pulmonary disease. Int J Chron Obstr Pulm Dis. 2008;3:331–50.

    Article  CAS  Google Scholar 

  91. Seemungal TAR, Wilkinson TMA, Hurst JR, et al. Long-term erythromycin therapy is associated with decreased chronic obstructive pulmonary disease exacerbations. Am J Respir Crit Care Med. 2008;178:1139–47. doi:10.1164/rccm.200801-145OC.

    Article  CAS  PubMed  Google Scholar 

  92. Albert RK, Connett J, Bailey WC, et al. Azithromycin for prevention of exacerbations of COPD. N Engl J Med. 2011;365:689–98. doi:10.1056/NEJMoa1104623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. O’Reilly PJ, Jackson PL, Wells JM, et al. Sputum PGP is reduced by azithromycin treatment in patients with COPD and correlates with exacerbations. BMJ Open. 2013;3:e004140. doi:10.1136/bmjopen-2013-004140.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Simpson JL, Powell H, Baines KJ, et al. The effect of azithromycin in adults with stable neutrophilic COPD: a double blind randomised, placebo controlled trial. PLoS One. 2014;9:e105609. doi:10.1371/journal.pone.0105609.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Han MK, Tayob N, Murray S, et al. Predictors of chronic obstructive pulmonary disease exacerbation reduction in response to daily azithromycin therapy. Am J Respir Crit Care Med. 2014;189:1503–8. doi:10.1164/rccm.201402-0207OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Uzun S, Djamin RS, Kluytmans JAJW, et al. Azithromycin maintenance treatment in patients with frequent exacerbations of chronic obstructive pulmonary disease (COLUMBUS): a randomised, double-blind, placebo-controlled trial. Lancet Respir Med. 2014;2:361–8. doi:10.1016/S2213-2600(14)70019-0.

    Article  CAS  PubMed  Google Scholar 

  97. Herath SC, Poole P. Prophylactic antibiotic therapy for chronic obstructive pulmonary disease (COPD). Cochrane Database Syst Rev. 2013;(11):CD009764. doi:10.1002/14651858.CD009764.pub2.

  98. Ray WA, Murray KT, Hall K, et al. Azithromycin and the risk of cardiovascular death. N Engl J Med. 2012;366:1881–90. doi:10.1056/NEJMoa1003833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Spina D. PDE4 inhibitors: current status. Br J Pharmacol. 2008;155:308–15. doi:10.1038/bjp.2008.307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Grootendorst DC, Gauw SA, Verhoosel RM, et al. Reduction in sputum neutrophil and eosinophil numbers by the PDE4 inhibitor roflumilast in patients with COPD. Thorax. 2007;62:1081–7. doi:10.1136/thx.2006.075937.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Rabe KF, Bateman ED, O’Donnell D, et al. Roflumilast: an oral anti-inflammatory treatment for chronic obstructive pulmonary disease: a randomised controlled trial. Lancet. 2005;366:563–71. doi:10.1016/S0140-6736(05)67100-0.

    Article  CAS  PubMed  Google Scholar 

  102. Calverley PMA, Rabe KF, Goehring U-M, et al. Roflumilast in symptomatic chronic obstructive pulmonary disease: two randomised clinical trials. Lancet. 2009;374:685–94. doi:10.1016/S0140-6736(09)61255-1.

    Article  CAS  PubMed  Google Scholar 

  103. Fabbri LM, Calverley PMA, Izquierdo-Alonso JL, et al. Roflumilast in moderate-to-severe chronic obstructive pulmonary disease treated with longacting bronchodilators: two randomised clinical trials. Lancet. 2009;374:695–703. doi:10.1016/S0140-6736(09)61252-6.

    Article  CAS  PubMed  Google Scholar 

  104. Rennard SI, Calverley PM, Goehring UM, et al. Reduction of exacerbations by the PDE4 inhibitor roflumilast: the importance of defining different subsets of patients with COPD. Respir Res. 2011;12:18. doi:10.1186/1465-9921-12-18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Martinez FJ, Calverley PMA, Goehring U-M, et al. Effect of roflumilast on exacerbations in patients with severe chronic obstructive pulmonary disease uncontrolled by combination therapy (REACT): a multicentre randomised controlled trial. Lancet. 2015;385:857–66. doi:10.1016/S0140-6736(14)62410-7.

    Article  CAS  PubMed  Google Scholar 

  106. Martinez FJ, Rabe KF, Sethi S, et al. Effect of roflumilast and inhaled corticosteroid/long-acting β2-agonist on chronic obstructive pulmonary disease exacerbations (RE2SPOND): a randomized clinical trial. Am J Respir Crit Care Med. 2016;194:559–67. doi:10.1164/rccm.201607-1349OC.

    Article  PubMed  Google Scholar 

  107. Worndl E, Hunt EB, Kennedy MP, et al. Roflumilast in COPD. Chest. 2015;148:e31. doi:10.1378/chest.15-0664.

    Article  PubMed  Google Scholar 

  108. Muñoz-Esquerre M, Diez-Ferrer M, Montón C, et al. Roflumilast added to triple therapy in patients with severe COPD: a real life study. Pulm Pharmacol Ther. 2015;30:16–21. doi:10.1016/j.pupt.2014.10.002.

    Article  PubMed  CAS  Google Scholar 

  109. Rabe KF. Update on roflumilast, a phosphodiesterase 4 inhibitor for the treatment of chronic obstructive pulmonary disease. Br J Pharmacol. 2011;163:53–67. doi:10.1111/j.1476-5381.2011.01218.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Decramer M, Rutten-van Mölken M, Dekhuijzen PNR, et al. Effects of N-acetylcysteine on outcomes in chronic obstructive pulmonary disease (Bronchitis Randomized on NAC Cost-Utility Study, BRONCUS): a randomised placebo-controlled trial. Lancet. 2005;365:1552–60. doi:10.1016/S0140-6736(05)66456-2.

    Article  CAS  PubMed  Google Scholar 

  111. Zheng J-P, Wen F-Q, Bai C-X, et al. Twice daily N-acetylcysteine 600 mg for exacerbations of chronic obstructive pulmonary disease (PANTHEON): a randomised, double-blind placebo-controlled trial. Lancet Respir Med. 2014;2:187–94. doi:10.1016/S2213-2600(13)70286-8.

    Article  CAS  PubMed  Google Scholar 

  112. Tse HN, Raiteri L, Wong KY, et al. Benefits of high-dose N-acetylcysteine to exacerbation-prone patients with COPD. Chest. 2014;146:611–23. doi:10.1378/chest.13-2784.

    Article  CAS  PubMed  Google Scholar 

  113. Cazzola M, Calzetta L, Page C, et al. Influence of N-acetylcysteine on chronic bronchitis or COPD exacerbations: a meta-analysis. Eur Respir Rev. 2015;24:451–61. doi:10.1183/16000617.00002215.

    Article  PubMed  Google Scholar 

  114. Zheng J-P, Kang J, Huang S-G, et al. Effect of carbocisteine on acute exacerbation of chronic obstructive pulmonary disease (PEACE Study): a randomised placebo-controlled study. Lancet. 2008;371:2013–8. doi:10.1016/S0140-6736(08)60869-7.

    Article  CAS  PubMed  Google Scholar 

  115. Camargo CA, Ginde AA, Clark S, et al. Viral pathogens in acute exacerbations of chronic obstructive pulmonary disease. Intern Emerg Med. 2008;3:355. doi:10.1007/s11739-008-0197-0.

    Article  PubMed  Google Scholar 

  116. Furumoto A, Ohkusa Y, Chen M, et al. Additive effect of pneumococcal vaccine and influenza vaccine on acute exacerbation in patients with chronic lung disease. Vaccine. 2008;26:4284–9. doi:10.1016/j.vaccine.2008.05.037.

    Article  CAS  PubMed  Google Scholar 

  117. Poole PJ, Chacko E, Wood-Baker RW, Cates CJ. Influenza vaccine for patients with chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2006;(1):CD002733. doi:10.1002/14651858.CD002733.pub2.

  118. Vestbo J, Hurd SS, Agustí AG, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med. 2013;187:347–65. doi:10.1164/rccm.201204-0596PP.

    Article  CAS  PubMed  Google Scholar 

  119. Anthonisen NR, Skeans MA, Wise RA, et al. The effects of a smoking cessation intervention on 14.5-year mortality: a randomized clinical trial. Ann Intern Med. 2005;142:233–9.

    Article  PubMed  Google Scholar 

  120. Anthonisen NR. Long-term oxygen therapy. Ann Intern Med. 1983;99:519–27.

    Article  CAS  PubMed  Google Scholar 

  121. Au DH, Bryson CL, Chien JW, et al. The effects of smoking cessation on the risk of chronic obstructive pulmonary disease exacerbations. J Gen Intern Med. 2009;24:457–63. doi:10.1007/s11606-009-0907-y.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Lacasse Y, Cates CJ, McCarthy B, Welsh EJ. This Cochrane review is closed: deciding what constitutes enough research and where next for pulmonary rehabilitation in COPD. Cochrane Database Syst Rev. 2015;(11):ED000107. doi:10.1002/14651858.ED000107.

  123. Puhan M, Scharplatz M, Troosters T, et al. Pulmonary rehabilitation following exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2009;(1):CD005305. doi:10.1002/14651858.CD005305.pub2.

  124. Bafadhel M, McKenna S, Terry S, et al. Acute exacerbations of chronic obstructive pulmonary disease: identification of biologic clusters and their biomarkers. Am J Respir Crit Care Med. 2011;184:662–71. doi:10.1164/rccm.201104-0597OC.

    Article  PubMed  Google Scholar 

  125. Barker BL, Brightling CE. Phenotyping the heterogeneity of chronic obstructive pulmonary disease. Clin Sci Lond Engl. 2013;124:371–87. doi:10.1042/CS20120340.

    Article  Google Scholar 

  126. Kolsum U, Brightling CE, Agusti A, et al. The prevalence and clinical characteristics associated with eosinophilic inflammation in COPD patients from the ECLIPSE (Evaluation Of COPD Longitudinally To Identify Predictive Surrogate Endpoints) cohort. In: B33 Granulocyte Act. Lung Dis. American Thoracic Society; 2014. p. A2745.

  127. Takatsu K, Takaki S, Hitoshi Y. Interleukin-5 and its receptor system: implications in the immune system and inflammation. Adv Immunol. 1994;57:145–90.

    Article  CAS  PubMed  Google Scholar 

  128. Brightling CE, Bleecker ER, Panettieri RA, et al. Benralizumab for chronic obstructive pulmonary disease and sputum eosinophilia: a randomised, double-blind, placebo-controlled, phase 2a study. Lancet Respir Med. 2014;2:891–901. doi:10.1016/S2213-2600(14)70187-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Walsh GM. Tralokinumab, an anti-IL-13 mAb for the potential treatment of asthma and COPD. Curr Opin Investig. 2010;11:1305–12.

    CAS  Google Scholar 

  130. Study to evaluate efficacy and safety of mepolizumab for frequently exacerbating chronic obstructive pulmonary disease (COPD) patients. Available from: http://www.ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT02105948. Accessed 15 Nov 2016.

  131. Barnes PJ. Mediators of chronic obstructive pulmonary disease. Pharmacol Rev. 2004;56:515–48. doi:10.1124/pr.56.4.2.

    Article  CAS  PubMed  Google Scholar 

  132. Rennard SI, Dale DC, Donohue JF, et al. CXCR2 antagonist MK-7123: a phase 2 proof-of-concept trial for chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2015;191:1001–11. doi:10.1164/rccm.201405-0992OC.

    Article  CAS  PubMed  Google Scholar 

  133. Kirsten AM, Förster K, Radeczky E, et al. The safety and tolerability of oral AZD5069, a selective CXCR2 antagonist, in patients with moderate-to-severe COPD. Pulm Pharmacol Ther. 2015;31:36–41. doi:10.1016/j.pupt.2015.02.001.

    Article  CAS  PubMed  Google Scholar 

  134. MacNee W, Allan RJ, Jones I, et al. Efficacy and safety of the oral p38 inhibitor PH-797804 in chronic obstructive pulmonary disease: a randomised clinical trial. Thorax. 2013;68:738–45. doi:10.1136/thoraxjnl-2012-202744.

    Article  PubMed  Google Scholar 

  135. Watz H, Barnacle H, Hartley BF, Chan R. Efficacy and safety of the p38 MAPK inhibitor losmapimod for patients with chronic obstructive pulmonary disease: a randomised, double-blind, placebo-controlled trial. Lancet Respir Med. 2014;2:63–72. doi:10.1016/S2213-2600(13)70200-5.

    Article  CAS  PubMed  Google Scholar 

  136. Marks-Konczalik J, Costa M, Robertson J, et al. A post-hoc subgroup analysis of data from a six month clinical trial comparing the efficacy and safety of losmapimod in moderate-severe COPD patients with ≤2% and >2% blood eosinophils. Respir Med. 2015;109:860–9. doi:10.1016/j.rmed.2015.05.003.

    Article  PubMed  Google Scholar 

  137. Braido F, Tarantini F, Ghiglione V, et al. Bacterial lysate in the prevention of acute exacerbation of COPD and in respiratory recurrent infections. Int J Chron Obstr Pulm Dis. 2007;2:335–45.

    CAS  Google Scholar 

  138. Huber M, Mossmann H, Bessler WG. Th1-orientated immunological properties of the bacterial extract OM-85-BV. Eur J Med Res. 2005;10:209–17.

    CAS  PubMed  Google Scholar 

  139. Rozy A, Chorostowska-Wynimko J. Bacterial immunostimulants–mechanism of action and clinical application in respiratory diseases. Pneumonol Alergol Pol. 2008;76:353–9.

    PubMed  Google Scholar 

  140. Steurer-Stey C, Bachmann LM, Steurer J, Tramèr MR. Oral purified bacterial extracts in chronic bronchitis and COPD: systematic review. Chest. 2004;126:1645–55. doi:10.1378/chest.126.5.1645.

    Article  PubMed  Google Scholar 

  141. Koatz AM, Coe NA, Cicerán A, Alter AJ. Clinical and immunological benefits of OM-85 bacterial lysate in patients with allergic rhinitis, asthma, and COPD and recurrent respiratory infections. Lung. 2016;194:687–97. doi:10.1007/s00408-016-9880-5.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Michael Wells.

Ethics declarations

Funding

No financial assistance was provided to assist with the preparation of this article.

Conflict of interest

S.G. has no conflict of interest to disclose. J.M.W. receives grant funding from the National Institutes of Health/National Heart, Lung, and Blood Institute (K08 123940) and the Cystic Fibrosis Foundation; has contracts to conduct clinical trials from GlaxoSmithKline, AstraZeneca, and Gilead; and is a consultant for Mylan and Quintiles.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gulati, S., Wells, J.M. Bringing Stability to the Chronic Obstructive Pulmonary Disease Patient: Clinical and Pharmacological Considerations for Frequent Exacerbators. Drugs 77, 651–670 (2017). https://doi.org/10.1007/s40265-017-0713-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-017-0713-5

Keywords

Navigation