Skip to main content
Log in

Ketamine and Beyond: Investigations into the Potential of Glutamatergic Agents to Treat Depression

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Clinical and preclinical studies suggest that dysfunction of the glutamatergic system is implicated in mood disorders such as major depressive disorder and bipolar depression. In clinical studies of individuals with major depressive disorder and bipolar depression, rapid reductions in depressive symptoms have been observed in response to subanesthetic-dose ketamine, an agent whose mechanism of action involves the modulation of glutamatergic signaling. The findings from these studies have prompted the repurposing and/or development of other glutamatergic modulators for antidepressant efficacy, both as monotherapy or as an adjunct to conventional monoaminergic antidepressants. This review highlights the evidence supporting the antidepressant effects of subanesthetic-dose ketamine as well as other glutamatergic modulators, such as d-cycloserine, riluzole, CP-101,606, CERC-301 (previously known as MK-0657), basimglurant, JNJ-40411813, dextromethorphan, nitrous oxide, GLYX-13, and esketamine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kohrs R, Durieux ME. Ketamine: teaching an old drug new tricks. Anesth Analg. 1998;87(5):1186–93.

    CAS  PubMed  Google Scholar 

  2. Berman RM, Cappiello A, Anand A, et al. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry. 2000;47(4):351–4.

    Article  CAS  PubMed  Google Scholar 

  3. Zarate CA Jr, Singh JB, Carlson PJ, et al. A randomized trial of an N-methyl-d-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry. 2006;63(8):856–64.

    Article  CAS  PubMed  Google Scholar 

  4. Zarate CA Jr, Du J, Quiroz J, et al. Regulation of cellular plasticity cascades in the pathophysiology and treatment of mood disorders: role of the glutamatergic system. Ann N Y Acad Sci. 2003;1003:273–91.

    Article  CAS  PubMed  Google Scholar 

  5. Trivedi MH, Rush AJ, Wisniewski SR, et al. Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D: implications for clinical practice. Am J Psychiatry. 2006;163(1):28–40.

    Article  PubMed  Google Scholar 

  6. Mathew SJ, Murrough JW, aan het Rot M, et al. Riluzole for relapse prevention following intravenous ketamine in treatment-resistant depression: a pilot randomized, placebo-controlled continuation trial. Int J Neuropsychopharmacol. 2010;13(1):71–82.

    Article  CAS  PubMed  Google Scholar 

  7. Murrough JW, Iosifescu DV, Chang LC, et al. Antidepressant efficacy of ketamine in treatment-resistant major depression: a two-site randomized controlled trial. Am J Psychiatry. 2013;170(10):1134–42.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Messer M, Haller IV, Larson P, et al. The use of a series of ketamine infusions in two patients with treatment-resistant depression. J Neuropsychiatry Clin Neurosci. 2010;22(4):442–4.

    Article  PubMed  Google Scholar 

  9. Singh JB, Fedgchin M, Daly EJ, et al. A double-blind, randomized, placebo-controlled, dose-frequency study of intravenous ketamine in patients with treatment-resistant depression. Am J Psychiatry. 2016;173(8):816–26.

    Article  PubMed  Google Scholar 

  10. Niciu MJ, Mathews DC, Nugent AC, et al. Developing biomarkers in mood disorders research through the use of rapid-acting antidepressants. Depress Anxiety. 2014;31(4):297–307.

    Article  CAS  PubMed  Google Scholar 

  11. Lener MS, Iosifescu DV. In pursuit of neuroimaging biomarkers to guide treatment selection in major depressive disorder: a review of the literature. Ann N Y Acad Sci. 2015;1344:50–65.

    Article  CAS  PubMed  Google Scholar 

  12. Sanacora G, Smith MA, Pathak S, et al. Lanicemine: a low-trapping NMDA channel blocker produces sustained antidepressant efficacy with minimal psychotomimetic adverse effects. Mol Psychiatry. 2014;19(9):978–85.

    Article  CAS  PubMed  Google Scholar 

  13. Insel TR. The NIMH Research Domain Criteria (RDoC) Project: precision medicine for psychiatry. Am J Psychiatry. 2014;171(4):395–7.

    Article  PubMed  Google Scholar 

  14. Park M, Niciu MJ, Zarate CA Jr. Novel glutamatergic treatments for severe mood disorders. Curr Behav Neurosci Rep. 2015;2(4):198–208.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Newport DJ, Carpenter LL, McDonald WM, et al. Ketamine and other NMDA antagonists: early clinical trials and possible mechanisms in depression. Am J Psychiatry. 2015;172(10):950–66.

    Article  PubMed  Google Scholar 

  16. Niciu MJ, Ionescu DF, Richards EM, Zarate CA Jr. Glutamate and its receptors in the pathophysiology and treatment of major depressive disorder. J Neural Transm (Vienna). 2014;121(8):907–24.

    Article  CAS  Google Scholar 

  17. Trullas R, Skolnick P. Functional antagonists at the NMDA receptor complex exhibit antidepressant actions. Eur J Pharmacol. 1990;185(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  18. Maeng S, Zarate CA Jr, Du J, et al. Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol Psychiatry. 2008;63(4):349–52.

    Article  CAS  PubMed  Google Scholar 

  19. Musazzi L, Racagni G, Popoli M. Stress, glucocorticoids and glutamate release: effects of antidepressant drugs. Neurochem Int. 2011;59(2):138–49.

    Article  CAS  PubMed  Google Scholar 

  20. Gerhard DM, Wohleb ES, Duman RS. Emerging treatment mechanisms for depression: focus on glutamate and synaptic plasticity. Drug Discov Today. 2016;21(3):454–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yuan TF, Hou G. The effects of stress on glutamatergic transmission in the brain. Mol Neurobiol. 2015;51(3):1139–43.

    Article  CAS  PubMed  Google Scholar 

  22. Joels M, Sarabdjitsingh RA, Karst H. Unraveling the time domains of corticosteroid hormone influences on brain activity: rapid, slow, and chronic modes. Pharmacol Rev. 2012;64(4):901–38.

    Article  CAS  PubMed  Google Scholar 

  23. Popoli M, Yan Z, McEwen BS, Sanacora G. The stressed synapse: the impact of stress and glucocorticoids on glutamate transmission. Nat Rev Neurosci. 2011;13(1):22–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Muller HK, Wegener G, Liebenberg N, et al. Ketamine regulates the presynaptic release machinery in the hippocampus. J Psychiatr Res. 2013;47(7):892–9.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Arnsten AF. Stress signalling pathways that impair prefrontal cortex structure and function. Nat Rev Neurosci. 2009;10(6):410–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Joels M, Pasricha N, Karst H. The interplay between rapid and slow corticosteroid actions in brain. Eur J Pharmacol. 2013;719(1–3):44–52.

    Article  CAS  PubMed  Google Scholar 

  27. Sanacora G, Treccani G, Popoli M. Towards a glutamate hypothesis of depression: an emerging frontier of neuropsychopharmacology for mood disorders. Neuropharmacology. 2012;62(1):63–77.

    Article  CAS  PubMed  Google Scholar 

  28. Groeneweg FL, Karst H, de Kloet ER, Joels M. Mineralocorticoid and glucocorticoid receptors at the neuronal membrane, regulators of nongenomic corticosteroid signalling. Mol Cell Endocrinol. 2012;350(2):299–309.

    Article  CAS  PubMed  Google Scholar 

  29. Radley J, Morilak D, Viau V, Campeau S. Chronic stress and brain plasticity: mechanisms underlying adaptive and maladaptive changes and implications for stress-related CNS disorders. Neurosci Biobehav Rev. 2015;58:79–91.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Blaveri E, Kelly F, Mallei A, et al. Expression profiling of a genetic animal model of depression reveals novel molecular pathways underlying depressive-like behaviours. PLoS One. 2010;5(9):e12596.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Skolnick P, Layer RT, Popik P, et al. Adaptation of N-methyl-d-aspartate (NMDA) receptors following antidepressant treatment: implications for the pharmacotherapy of depression. Pharmacopsychiatry. 1996;29(1):23–6.

    Article  CAS  PubMed  Google Scholar 

  32. Nowak G, Trullas R, Layer RT, et al. Adaptive changes in the N-methyl-d-aspartate receptor complex after chronic treatment with imipramine and 1-aminocyclopropanecarboxylic acid. J Pharmacol Exp Ther. 1993;265(3):1380–6.

    CAS  PubMed  Google Scholar 

  33. Duman CH, Duman RS. Spine synapse remodeling in the pathophysiology and treatment of depression. Neurosci Lett. 2015;05(601):20–9.

    Article  CAS  Google Scholar 

  34. Li N, Liu RJ, Dwyer JM, et al. Glutamate N-methyl-d-aspartate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure. Biol Psychiatry. 2011;69(8):754–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Grieve SM, Korgaonkar MS, Koslow SH, et al. Widespread reductions in gray matter volume in depression. Neuroimage Clin. 2013;3:332–9.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kang HJ, Voleti B, Hajszan T, et al. Decreased expression of synapse-related genes and loss of synapses in major depressive disorder. Nat Med. 2012;18(9):1413–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hasler G, van der Veen JW, Tumonis T, et al. Reduced prefrontal glutamate/glutamine and gamma-aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy. Arch Gen Psychiatry. 2007;64(2):193–200.

    Article  CAS  PubMed  Google Scholar 

  38. Zanos P, Moaddel R, Morris PJ, et al. NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature. 2016;533(7604):481–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Reich DL, Silvay G. Ketamine: an update on the first twenty-five years of clinical experience. Can J Anaesth. 1989;36(2):186–97.

    Article  CAS  PubMed  Google Scholar 

  40. Green SM, Rothrock SG, Lynch EL, et al. Intramuscular ketamine for pediatric sedation in the emergency department: safety profile in 1,022 cases. Ann Emerg Med. 1998;31(6):688–97.

    Article  CAS  PubMed  Google Scholar 

  41. Green SM, Rothrock SG, Harris T, et al. Intravenous ketamine for pediatric sedation in the emergency department: safety profile with 156 cases. Acad Emerg Med. 1998;5(10):971–6.

    Article  CAS  PubMed  Google Scholar 

  42. Kishimoto T, Chawla JM, Hagi K, et al. Single-dose infusion ketamine and non-ketamine N-methyl-d-aspartate receptor antagonists for unipolar and bipolar depression: a meta-analysis of efficacy, safety and time trajectories. Psychol Med. 2016;46(7):1459–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Singh JB, Fedgchin M, Daly E, et al. Intravenous esketamine in adult treatment-resistant depression: a double-blind, double-randomization, placebo-controlled study. Biol Psychiatry. 2015;3(80):424–31.

    Google Scholar 

  44. Ionescu DF, Luckenbaugh DA, Niciu MJ, et al. A single infusion of ketamine improves depression scores in patients with anxious bipolar depression. Bipolar Disord. 2015;17(4):438–43.

    Article  CAS  PubMed  Google Scholar 

  45. Sos P, Klirova M, Novak T, et al. Relationship of ketamine’s antidepressant and psychotomimetic effects in unipolar depression. Neuro Endocrinol Lett. 2013;34(4):287–93.

    CAS  PubMed  Google Scholar 

  46. Hamilton M. A rating scale for depression. J Neurol Neurosurg Psychiatry. 1960;23:56–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Montgomery SA, Asberg M. A new depression scale designed to be sensitive to change. Br J Psychiatry. 1979;134:382–9.

    Article  CAS  PubMed  Google Scholar 

  48. Zarate CA Jr, Brutsche NE, Ibrahim L, et al. Replication of ketamine’s antidepressant efficacy in bipolar depression: a randomized controlled add-on trial. Biol Psychiatry. 2012;71(11):939–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. aan het Rot M, Collins KA, Murrough JW, et al. Safety and efficacy of repeated-dose intravenous ketamine for treatment-resistant depression. Biol Psychiatry. 2010;67(2):139–45.

    Article  CAS  PubMed  Google Scholar 

  50. Diazgranados N, Ibrahim L, Brutsche NE, et al. A randomized add-on trial of an N-methyl-d-aspartate antagonist in treatment-resistant bipolar depression. Arch Gen Psychiatry. 2010;67(8):793–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kantrowitz JT, Halberstam B, Gangwisch J. Single-dose ketamine followed by daily d-cycloserine in treatment-resistant bipolar depression. J Clin Psychiatry. 2015;76(6):737–8.

    Article  PubMed  Google Scholar 

  52. Abdallah CG, Fasula M, Kelmendi B, et al. Rapid antidepressant effect of ketamine in the electroconvulsive therapy setting. J ECT. 2012;28(3):157–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Loo CK, Katalinic N, Garfield JB, et al. Neuropsychological and mood effects of ketamine in electroconvulsive therapy: a randomised controlled trial. J Affect Disord. 2012;142(1–3):233–40.

    Article  CAS  PubMed  Google Scholar 

  54. McGirr A, Berlim MT, Bond DJ, et al. A systematic review and meta-analysis of randomized controlled trials of adjunctive ketamine in electroconvulsive therapy: efficacy and tolerability. J Psychiatr Res. 2015;62:23–30.

    Article  PubMed  Google Scholar 

  55. Niciu MJ, Luckenbaugh DA, Ionescu DF, et al. Subanesthetic dose ketamine does not induce an affective switch in three independent samples of treatment-resistant major depression. Biol Psychiatry. 2013;74(10):e23–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Price RB, Nock MK, Charney DS, Mathew SJ. Effects of intravenous ketamine on explicit and implicit measures of suicidality in treatment-resistant depression. Biol Psychiatry. 2009;66(5):522–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. DiazGranados N, Ibrahim LA, Brutsche NE, et al. Rapid resolution of suicidal ideation after a single infusion of an N-methyl-d-aspartate antagonist in patients with treatment-resistant major depressive disorder. J Clin Psychiatry. 2010;71(12):1605–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Larkin GL, Beautrais AL. A preliminary naturalistic study of low-dose ketamine for depression and suicide ideation in the emergency department. Int J Neuropsychopharmacol. 2011;14(8):1127–31.

    Article  CAS  PubMed  Google Scholar 

  59. Xu Y, Hackett M, Carter G, et al. Effects of low-dose and very low-dose ketamine among patients with major depression: a systematic review and meta-analysis. Int J Neuropsychopharmacol. 2016;19(4):pyv124.

    Article  PubMed  Google Scholar 

  60. Ballard ED, Ionescu DF, Vande Voort JL, et al. Improvement in suicidal ideation after ketamine infusion: relationship to reductions in depression and anxiety. J Psychiatr Res. 2014;58:161–6.

    Article  PubMed  Google Scholar 

  61. Ionescu DF, Luckenbaugh DA, Niciu MJ, et al. Effect of baseline anxious depression on initial and sustained antidepressant response to ketamine. J Clin Psychiatry. 2014;75(9):e932–8.

    Article  CAS  PubMed  Google Scholar 

  62. Price RB, Iosifescu DV, Murrough JW, et al. Effects of ketamine on explicit and implicit suicidal cognition: a randomized controlled trial in treatment-resistant depression. Depress Anxiety. 2014;31(4):335–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Murrough JW, Soleimani L, DeWilde KE, et al. Ketamine for rapid reduction of suicidal ideation: a randomized controlled trial. Psychol Med. 2015;45(16):3571–80.

    Article  CAS  PubMed  Google Scholar 

  64. Sanacora G, Schatzberg AF. Ketamine: promising path or false prophecy in the development of novel therapeutics for mood disorders? Neuropsychopharmacology. 2015;40(5):1307.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Newport DJ, Schatzberg AF, Nemeroff CB. Whither ketamine as an antidepressant: panacea or toxin? Depress Anxiety. 2016;33(8):685–8.

    Article  CAS  PubMed  Google Scholar 

  66. Schatzberg AF. A word to the wise about ketamine. Am J Psychiatry. 2014;171(3):262–4.

    Article  PubMed  Google Scholar 

  67. Ellison G, Switzer RC 3rd. Dissimilar patterns of degeneration in brain following four different addictive stimulants. Neuroreport. 1993;5(1):17–20.

    Article  CAS  PubMed  Google Scholar 

  68. Horvath ZC, Czopf J, Buzsaki G. MK-801-induced neuronal damage in rats. Brain Res. 1997;753(2):181–95.

    Article  CAS  PubMed  Google Scholar 

  69. Morgan CJ, Mofeez A, Brandner B, et al. Acute effects of ketamine on memory systems and psychotic symptoms in healthy volunteers. Neuropsychopharmacology. 2004;29(1):208–18.

    Article  CAS  PubMed  Google Scholar 

  70. Morgan CJ, Monaghan L, Curran HV. Beyond the K-hole: a 3-year longitudinal investigation of the cognitive and subjective effects of ketamine in recreational users who have substantially reduced their use of the drug. Addiction. 2004;99(11):1450–61.

    Article  PubMed  Google Scholar 

  71. Morgan CJ, Riccelli M, Maitland CH, Curran HV. Long-term effects of ketamine: evidence for a persisting impairment of source memory in recreational users. Drug Alcohol Depend. 2004;75(3):301–8.

    Article  CAS  PubMed  Google Scholar 

  72. Krystal JH, Karper LP, Seibyl JP, et al. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans: psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry. 1994;51(3):199–214.

    Article  CAS  PubMed  Google Scholar 

  73. Murrough JW, Wan LB, Iacoviello B, et al. Neurocognitive effects of ketamine in treatment-resistant major depression: association with antidepressant response. Psychopharmacology (Berl) 2014;231:481–8.

    Article  CAS  Google Scholar 

  74. Murrough JW, Burdick KE, Levitch CF, et al. Neurocognitive effects of ketamine and association with antidepressant response in individuals with treatment-resistant depression: a randomized controlled trial. Neuropsychopharmacology. 2015;40(5):1084–90.

    Article  CAS  PubMed  Google Scholar 

  75. Murrough JW, Perez AM, Pillemer S, et al. Rapid and longer-term antidepressant effects of repeated ketamine infusions in treatment-resistant major depression. Biol Psychiatry. 2013;74(4):250–6.

    Article  CAS  PubMed  Google Scholar 

  76. Lai R, Katalinic N, Glue P, et al. Pilot dose-response trial of i.v. ketamine in treatment-resistant depression. World J Biol Psychiatry. 2014;15(7):579–84.

    Article  PubMed  Google Scholar 

  77. Loo CK, Galvez V, O’Keefe E, et al. Placebo-controlled pilot trial testing dose titration and intravenous, intramuscular and subcutaneous routes for ketamine in depression. Acta Psychiatr Scand. 2016;134(1):48–56.

    Article  CAS  PubMed  Google Scholar 

  78. Shiroma PR, Johns B, Kuskowski M, et al. Augmentation of response and remission to serial intravenous subanesthetic ketamine in treatment resistant depression. J Affect Disord. 2014;155:123–9.

    Article  CAS  PubMed  Google Scholar 

  79. Rasmussen KG, Lineberry TW, Galardy CW, et al. Serial infusions of low-dose ketamine for major depression. J Psychopharmacol. 2013;27(5):444–50.

    Article  CAS  PubMed  Google Scholar 

  80. Ghasemi M, Kazemi MH, Yoosefi A, et al. Rapid antidepressant effects of repeated doses of ketamine compared with electroconvulsive therapy in hospitalized patients with major depressive disorder. Psychiatry Res. 2014;215(2):355–61.

    Article  CAS  PubMed  Google Scholar 

  81. Britt GC, McCance-Katz EF. A brief overview of the clinical pharmacology of “club drugs”. Subst Use Misuse. 2005;40(9–10):1189–201.

    Article  PubMed  Google Scholar 

  82. Cho HS, D’Souza DC, Gueorguieva R, et al. Absence of behavioral sensitization in healthy human subjects following repeated exposure to ketamine. Psychopharmacology (Berl). 2005;179(1):136–43.

    Article  CAS  Google Scholar 

  83. Bachhuber MA, Maughan BC, Mitra N, et al. Prescription monitoring programs and emergency department visits involving benzodiazepine misuse: early evidence from 11 United States metropolitan areas. Int J Drug Policy. 2016;28:120–3.

    Article  PubMed  Google Scholar 

  84. Volkow ND, Frieden TR, Hyde PS, Cha SS. Medication-assisted therapies: tackling the opioid-overdose epidemic. N Engl J Med. 2014;370(22):2063–6.

    Article  PubMed  Google Scholar 

  85. Lapidus KA, Levitch CF, Perez AM, et al. A randomized controlled trial of intranasal ketamine in major depressive disorder. Biol Psychiatry. 2014;76(12):970–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lara DR, Bisol LW, Munari LR. Antidepressant, mood stabilizing and procognitive effects of very low dose sublingual ketamine in refractory unipolar and bipolar depression. Int J Neuropsychopharmacol. 2013;16(9):2111–7.

    Article  CAS  PubMed  Google Scholar 

  87. Jarventausta K, Chrapek W, Kampman O, et al. Effects of S-ketamine as an anesthetic adjuvant to propofol on treatment response to electroconvulsive therapy in treatment-resistant depression: a randomized pilot study. J ECT. 2013;29(3):158–61.

    Article  PubMed  CAS  Google Scholar 

  88. Wang X, Chen Y, Zhou X, et al. Effects of propofol and ketamine as combined anesthesia for electroconvulsive therapy in patients with depressive disorder. J ECT. 2012;28(2):128–32.

    Article  PubMed  CAS  Google Scholar 

  89. Yoosefi A, Sepehri AS, Kargar M, et al. Comparing effects of ketamine and thiopental administration during electroconvulsive therapy in patients with major depressive disorder: a randomized, double-blind study. J ECT. 2014;30(1):15–21.

    Article  CAS  PubMed  Google Scholar 

  90. Shams Alizadeh N, Maroufi A, Nasseri K, et al. Antidepressant effect of combined ketamine and electroconvulsive therapy on patients with major depressive disorder: a randomized trial. Iran J Psychiatry Behav Sci. 2015;9(3):e1578.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Hu YD, Xiang YT, Fang JX, et al. Single i.v. ketamine augmentation of newly initiated escitalopram for major depression: results from a randomized, placebo-controlled 4-week study. Psychol Med. 2016;46(3):623–35.

    Article  PubMed  Google Scholar 

  92. Ibrahim L, Diazgranados N, Franco-Chaves J, et al. Course of improvement in depressive symptoms to a single intravenous infusion of ketamine vs add-on riluzole: results from a 4-week, double-blind, placebo-controlled study. Neuropsychopharmacology. 2012;37(6):1526–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Beurel E, Song L, Jope RS. Inhibition of glycogen synthase kinase-3 is necessary for the rapid antidepressant effect of ketamine in mice. Mol Psychiatry. 2011;16(11):1068–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zarate CA Jr, Machado-Vieira R. GSK-3: a key regulatory target for ketamine’s rapid antidepressant effects mediated by enhanced AMPA to NMDA throughput. Bipolar Disord. 2016;18(8):702–5.

    Article  CAS  PubMed  Google Scholar 

  95. Salehi B, Mohammadbeigi A, Kamali AR, et al. Impact comparison of ketamine and sodium thiopental on anesthesia during electroconvulsive therapy in major depression patients with drug-resistant; a double-blind randomized clinical trial. Ann Card Anaesth. 2015;18(4):486–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Rybakowski JK, Bodnar A, Krzywotulski M, et al. Ketamine anesthesia, efficacy of electroconvulsive therapy, and cognitive functions in treatment-resistant depression. J ECT. 2016;32(3):164–8.

    Article  CAS  PubMed  Google Scholar 

  97. Kuscu OO, Karacaer F, Biricik E, et al. Effect of ketamine, thiopental and ketamine-thiopental combination during electroconvulsive therapy for depression. Turk J Anaesthesiol Reanim. 2015;43(5):313–7.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Zhong X, He H, Zhang C, et al. Mood and neuropsychological effects of different doses of ketamine in electroconvulsive therapy for treatment-resistant depression. J Affect Disord. 2016;1(201):124–30.

    Article  CAS  Google Scholar 

  99. Fond G, Bennabi D, Haffen E, et al. A Bayesian framework systematic review and meta-analysis of anesthetic agents effectiveness/tolerability profile in electroconvulsive therapy for major depression. Sci Rep. 2016;25(6):19847.

    Article  CAS  Google Scholar 

  100. Ibrahim L, Diazgranados N, Luckenbaugh DA, et al. Rapid decrease in depressive symptoms with an N-methyl-d-aspartate antagonist in ECT-resistant major depression. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35(4):1155–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Finnegan M, Ryan K, Shanahan E, et al. Ketamine for depression relapse prevention following electroconvulsive therapy: protocol for a randomised pilot trial (the KEEP-WELL trial). Pilot Feasibility Stud. 2016;2:38.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Rodriguez CI, Wheaton M, Zwerling J, et al. Can exposure-based CBT extend the effects of intravenous ketamine in obsessive-compulsive disorder? An open-label trial. J Clin Psychiatry. 2016;77(3):408–9.

    Article  PubMed  Google Scholar 

  103. Heresco-Levy U, Javitt DC, Gelfin Y, et al. Controlled trial of d-cycloserine adjuvant therapy for treatment-resistant major depressive disorder. J Affect Disord. 2006;93(1–3):239–43.

    Article  CAS  PubMed  Google Scholar 

  104. Heresco-Levy U, Gelfin G, Bloch B, et al. A randomized add-on trial of high-dose d-cycloserine for treatment-resistant depression. Int J Neuropsychopharmacol. 2013;16(3):501–6.

    Article  CAS  PubMed  Google Scholar 

  105. Banasr M, Chowdhury GM, Terwilliger R, et al. Glial pathology in an animal model of depression: reversal of stress-induced cellular, metabolic and behavioral deficits by the glutamate-modulating drug riluzole. Mol Psychiatry. 2010;15(5):501–11.

    Article  CAS  PubMed  Google Scholar 

  106. Zarate CA Jr, Payne JL, Quiroz J, et al. An open-label trial of riluzole in patients with treatment-resistant major depression. Am J Psychiatry. 2004;161(1):171–4.

    Article  PubMed  Google Scholar 

  107. Sanacora G, Kendell SF, Fenton L, et al. Riluzole augmentation for treatment-resistant depression. Am J Psychiatry. 2004;161(11):2132.

    Article  PubMed  Google Scholar 

  108. Sanacora G, Kendell SF, Levin Y, et al. Preliminary evidence of riluzole efficacy in antidepressant-treated patients with residual depressive symptoms. Biol Psychiatry. 2007;61(6):822–5.

    Article  CAS  PubMed  Google Scholar 

  109. Zarate CA Jr, Quiroz JA, Singh JB, et al. An open-label trial of the glutamate-modulating agent riluzole in combination with lithium for the treatment of bipolar depression. Biol Psychiatry. 2005;57(4):430–2.

    Article  CAS  PubMed  Google Scholar 

  110. Niciu MJ, Luckenbaugh DA, Ionescu DF, et al. Riluzole likely lacks antidepressant efficacy in ketamine non-responders. J Psychiatr Res. 2014;58:197–9.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Preskorn SH, Baker B, Kolluri S, et al. An innovative design to establish proof of concept of the antidepressant effects of the NR2B subunit selective N-methyl-d-aspartate antagonist, CP-101,606, in patients with treatment-refractory major depressive disorder. J Clin Psychopharmacol. 2008;28(6):631–7.

    Article  CAS  PubMed  Google Scholar 

  112. Hashimoto K. Comments on “An innovative design to establish proof of concept of the antidepressant effects of the NR2B subunit selective N-methyl-d-aspartate antagonist, CP-101,606 in patients with treatment-refractory major depressive disorder”. J Clin Psychopharmacol. 2009;29(4):411–2 (author reply 2).

    Article  PubMed  Google Scholar 

  113. Ibrahim L, Diaz Granados N, Jolkovsky L, et al. A randomized, placebo-controlled, crossover pilot trial of the oral selective NR2B antagonist MK-0657 in patients with treatment-resistant major depressive disorder. J Clin Psychopharmacol. 2012;32(4):551–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lujan R, Roberts JD, Shigemoto R, et al. Differential plasma membrane distribution of metabotropic glutamate receptors mGluR1 alpha, mGluR2 and mGluR5, relative to neurotransmitter release sites. J Chem Neuroanat. 1997;13(4):219–41.

    Article  CAS  PubMed  Google Scholar 

  115. Kuwajima M, Hall RA, Aiba A, Smith Y. Subcellular and subsynaptic localization of group I metabotropic glutamate receptors in the monkey subthalamic nucleus. J Comp Neurol. 2004;474(4):589–602.

    Article  CAS  PubMed  Google Scholar 

  116. Shigemoto R, Kinoshita A, Wada E, et al. Differential presynaptic localization of metabotropic glutamate receptor subtypes in the rat hippocampus. J Neurosci. 1997;17(19):7503–22.

    CAS  PubMed  Google Scholar 

  117. Aronica E, Gorter JA, Ijlst-Keizers H, et al. Expression and functional role of mGluR3 and mGluR5 in human astrocytes and glioma cells: opposite regulation of glutamate transporter proteins. Eur J Neurosci. 2003;17(10):2106–18.

    Article  PubMed  Google Scholar 

  118. Quiroz JA, Tamburri P, Deptula D, et al. Efficacy and safety of basimglurant as adjunctive therapy for major depression: a randomized clinical trial. JAMA Psychiatry. 2016;73(7):675–84.

    Article  PubMed  Google Scholar 

  119. Kent JM, Daly E, Kezic I, et al. Efficacy and safety of an adjunctive mGlu2 receptor positive allosteric modulator to a SSRI/SNRI in anxious depression. Prog Neuropsychopharmacol Biol Psychiatry. 2016;3(67):66–73.

    Article  CAS  Google Scholar 

  120. Lee SY, Chen SL, Chang YH, et al. The DRD2/ANKK1 gene is associated with response to add-on dextromethorphan treatment in bipolar disorder. J Affect Disord. 2012;138(3):295–300.

    Article  CAS  PubMed  Google Scholar 

  121. Kelly TF, Lieberman DZ. The utility of the combination of dextromethorphan and quinidine in the treatment of bipolar II and bipolar NOS. J Affect Disord. 2014;167:333–5.

    Article  CAS  PubMed  Google Scholar 

  122. Nagele P, Duma A, Kopec M, et al. Nitrous oxide for treatment-resistant major depression: a proof-of-concept trial. Biol Psychiatry. 2015;78(1):10–8.

    Article  CAS  PubMed  Google Scholar 

  123. Preskorn S, Macaluso M, Mehra DO, et al. Randomized proof of concept trial of GLYX-13, an N-methyl-d-aspartate receptor glycine site partial agonist, in major depressive disorder nonresponsive to a previous antidepressant agent. J Psychiatr Pract. 2015;21(2):140–9.

    Article  PubMed  Google Scholar 

  124. Moskal JR, Burch R, Burgdorf JS, et al. GLYX-13, an NMDA receptor glycine site functional partial agonist enhances cognition and produces antidepressant effects without the psychotomimetic side effects of NMDA receptor antagonists. Expert Opin Investig Drugs. 2014;23(2):243–54.

    Article  CAS  PubMed  Google Scholar 

  125. Liu RJ, Duman C, Kato T, et al. GLYX-13 produces rapid antidepressant responses with key synaptic and behavioral effects distinct from ketamine. Neuropsychopharmacology. 2016. doi:10.1038/npp.2016.202 (Epub ahead of print).

    Google Scholar 

  126. Daly E, Singh JB, Fedgchin M, et al. Intranasal esketamine in treatment-resistant depression, a dose response study: double-blind and open-label extension data. 54th Annual Meeting of the American College of Neuropsychopharmacology; 6–10 Dec 2015; Hollywood (FL): p. 74.

  127. Canuso CM, Singh JB, Fedgchin M, et al. PeRSEVERe: a study of esketamine for the rapid reduction of the symptoms of major depressive disorder, including suicidal ideation, in patients assessed to be at imminent risk for sucide. American Society of Clinical Psychopharmacology; 30 May-3 Jun 2016; Scottsdale (AZ).

Download references

Acknowledgements

The authors thank the 7SE research unit and staff for their support. We also thank Ioline Henter (National Institute of Mental Health) for providing invaluable editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc S. Lener.

Ethics declarations

Funding

Funding for this work was supported by the Intramural Research Program at the National Institute of Mental Health, National Institutes of Health (IRP-NIMH-NIH; ZIA-MH002857), by a NARSAD Independent Investigator to Dr. Zarate, and by a Brain and Behavior Mood Disorders Research Award to Dr. Zarate.

Conflict of interest

Dr. Zarate is listed as a co-inventor on a patent for the use of (2R,6R)-hydroxynorketamine, (S)-dehydronorketamine, and other stereoisomeric dehydro and hydroxylated metabolites of (R,S)-ketamine metabolites in the treatment of depression and neuropathic pain. Dr. Zarate is listed as a co-inventor on a patent application for the use of (2R,6R)-hydroxynorketamine and (2S,6S)-hydroxynorketamine in the treatment of depression, anxiety, anhedonia, suicidal ideation, and post-traumatic stress disorders. Dr. Zarate has assigned his patent rights to the US Government but will share a percentage of any royalties received by the government. Drs. Lener and Kadriu have no conflict of interest to disclose, financial or otherwise.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lener, M.S., Kadriu, B. & Zarate, C.A. Ketamine and Beyond: Investigations into the Potential of Glutamatergic Agents to Treat Depression. Drugs 77, 381–401 (2017). https://doi.org/10.1007/s40265-017-0702-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-017-0702-8

Keywords

Navigation