, Volume 77, Issue 1, pp 1–15 | Cite as

Engaging Natural Killer T Cells as ‘Universal Helpers’ for Vaccination

  • Mary Speir
  • Ian F. HermansEmail author
  • Robert WeinkoveEmail author
Leading Article
Part of the following topical collections:
  1. Topical Collection on Immuno-Oncology


Conventional vaccine adjuvants enhance peptide-specific T-cell and B-cell responses by modifying peptide stability or uptake or by binding to pattern-recognition receptors on antigen-presenting cells (APCs). This article discusses the application of a distinct mechanism of adjuvant activity: the activation of type I, or invariant, natural killer T (iNKT) cells to drive cellular and humoral immune responses. Using a semi-invariant T-cell receptor (TCR), iNKT cells recognize glycolipid antigens presented on cluster of differentiation (CD)-1d molecules. When their ligands are presented in concert with peptides, iNKT cells can provide T-cell help, ‘licensing’ APCs to augment peptide-specific T-cell and antibody responses. We discuss the potential benefits and limitations of exploiting iNKT cells as ‘universal helpers’ to enhance vaccine responses for the treatment and prevention of cancer and infectious diseases.


Major Histocompatibility Complex Class Simian Immunodeficiency Viral Conjugate Vaccine iNKT Cell Glycolipid Antigen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Compliance with Ethical Standards


The writing of this manuscript was supported by Genesis Oncology Trust (NZ) (grant number GOT-1352-RPG to RW).

Conflict of interest

IH: Proprietary interest and member of management team of Avalia Immunotherapies. RW: Scientific Advisory Board member for Avalia Immunotherapies; part-time employee of the Malaghan Institute of Medical Research, which has an interest in Avalia Immunotherapies. MS: Employed by the Malaghan Institute of Medical Research, which has an interest in Avalia Immunotherapies.


  1. 1.
    Andre FE, et al. Vaccination greatly reduces disease, disability, death and inequity worldwide. Bull World Health Organ. 2008;86:140–6.PubMedCrossRefGoogle Scholar
  2. 2.
    Reed SG, et al. Key roles of adjuvants in modern vaccines. Nat Med. 2013;19:1597–608.PubMedCrossRefGoogle Scholar
  3. 3.
    Kantoff PW, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363:411–22.PubMedCrossRefGoogle Scholar
  4. 4.
    Jeanbart L, Swartz MA. Engineering opportunities in cancer immunotherapy. Proc Natl Acad Sci USA. 2015;112:14467–72.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Tan HX, Gilbertson BP, Jegaskanda S, et al. Recombinant influenza virus expressing HIV-1 p24 capsid protein induces mucosal HIV-specific CD8 T-cell responses. Vaccine. 2016;34(9):1172–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Wilson NS, et al. ISCOMATRIX vaccines mediate CD8+ T-cell cross-priming by a MyD88-dependent signaling pathway. Immunol Cell Biol. 2012;90:540–52.PubMedCrossRefGoogle Scholar
  7. 7.
    Leroux-Roels G, et al. Vaccine adjuvant systems containing monophosphoryl lipid A and QS-21 induce strong humoral and cellular immune responses against hepatitis B surface antigen which persist for at least 4 years after vaccination. Vaccine. 2015;33:1084–91.PubMedCrossRefGoogle Scholar
  8. 8.
    Lambrecht BN, et al. Mechanism of action of clinically approved adjuvants. Curr Opin Immunol. 2009;21:23–9.PubMedCrossRefGoogle Scholar
  9. 9.
    De Gregorio E, et al. Immunology of TLR-independent vaccine adjuvants. Curr Opin Immunol. 2009;21:339–45.PubMedCrossRefGoogle Scholar
  10. 10.
    Apostolico Jde S, et al. Adjuvants: classification, modus operandi, and licensing. J Immunol Res. 2016;2016:1459394.PubMedGoogle Scholar
  11. 11.
    Temizoz B, et al. Vaccine adjuvants as potential cancer immunotherapeutics. Int Immunol. 2016;28:329–38.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Banday AH, et al. Cancer vaccine adjuvants: recent clinical progress and future perspectives. Immunopharmacol Immunotoxicol. 2015;37:1–11.PubMedCrossRefGoogle Scholar
  13. 13.
    Akondy RS, et al. The yellow fever virus vaccine induces a broad and polyfunctional human memory CD8+ T cell response. J Immunol. 2009;183:7919–30.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Querec T, et al. Yellow fever vaccine YF-17D activates multiple dendritic cell subsets via TLR2, 7, 8, and 9 to stimulate polyvalent immunity. J Exp Med. 2006;203:413–24.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Sei JJ, et al. Effector and central memory poly-functional CD4(+) and CD8(+) T cells are boosted upon ZOSTAVAX (R) vaccination. Front Immunol. 2015;6:553.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Larkin J, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373:1270–1.PubMedCrossRefGoogle Scholar
  17. 17.
    Small EJ, et al. Immunotherapy of hormone-refractory prostate cancer with antigen-loaded dendritic cells. J Clin Oncol. 2000;18:3894–903.PubMedGoogle Scholar
  18. 18.
    Gulley JL, et al. Immune impact induced by PROSTVAC (PSA-TRICOM), a therapeutic vaccine for prostate cancer. Cancer Immunol Res. 2014;2:133–41.PubMedCrossRefGoogle Scholar
  19. 19.
    Mandl SJ, et al. PROSTVAC, PSA-targeted immunotherapy: new evidence for mechanism of action. J Clin Oncol. 2014;32:5 Suppl (abstract 3080).Google Scholar
  20. 20.
    Larocca C, Schlom J. Viral vector-based therapeutic cancer vaccines. Cancer J. 2011;17:359–71.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Leroux-Roels I, et al. Adjuvant system AS02 V enhances humoral and cellular immune responses to pneumococcal protein PhtD vaccine in healthy young and older adults: randomised, controlled trials. Vaccine. 2015;33:577–84.PubMedCrossRefGoogle Scholar
  22. 22.
    Orr MT, et al. Adjuvant formulation structure and composition are critical for the development of an effective vaccine against tuberculosis. J Control Release. 2013;172:190–200.PubMedCrossRefGoogle Scholar
  23. 23.
    van Dissel JT, et al. A novel liposomal adjuvant system, CAF01, promotes long-lived Mycobacterium tuberculosis-specific T-cell responses in human. Vaccine. 2014;32:7098–107.PubMedCrossRefGoogle Scholar
  24. 24.
    Navabi H, et al. A clinical grade poly I:C-analogue (Ampligen) promotes optimal DC maturation and Th1-type T cell responses of healthy donors and cancer patients in vitro. Vaccine. 2009;27:107–15.PubMedCrossRefGoogle Scholar
  25. 25.
    Joffre OP, et al. Cross-presentation by dendritic cells. Nat Rev Immunol. 2012;12:557–69.PubMedCrossRefGoogle Scholar
  26. 26.
    Hemmi H, et al. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol. 2002;3:196–200.PubMedCrossRefGoogle Scholar
  27. 27.
    Miller RL, et al. Imiquimod applied topically: a novel immune response modifier and new class of drug. Int J Immunopharmacol. 1999;21:1–14.PubMedCrossRefGoogle Scholar
  28. 28.
    MacLeod MK, et al. Vaccine adjuvants aluminum and monophosphoryl lipid A provide distinct signals to generate protective cytotoxic memory CD8 T cells. Proc Natl Acad Sci USA. 2011;108:7914–9.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Cluff CW. Monophosphoryl lipid A (MPL) as an adjuvant for anti-cancer vaccines: clinical results. In: Jeannin J-F, editor. Lipid A in cancer therapy. Advances in experimental medicine and biology, vol. 667. New York: Springer Science + Business Media; 2009. p. 111–23.CrossRefGoogle Scholar
  30. 30.
    Chavez-Galan L, et al. Cell death mechanisms induced by cytotoxic lymphocytes. Cell Mol Immunol. 2009;6:15–25.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Quezada SA, et al. Tumor-reactive CD4(+) T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts. J Exp Med. 2010;207:637–50.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Janssen EM, et al. CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature. 2003;421:852–6.PubMedCrossRefGoogle Scholar
  33. 33.
    Bourgeois C, et al. A role for CD40 expression on CD8+ T cells in the generation of CD8+ T cell memory. Science. 2002;297:2060–3.PubMedCrossRefGoogle Scholar
  34. 34.
    Wiesel M, et al. Type I IFN substitutes for T cell help during viral infections. J Immunol. 2011;186:754–63.PubMedCrossRefGoogle Scholar
  35. 35.
    Greyer M, et al. T cell help amplifies innate signals in CD8(+) DCs for optimal CD8(+) T cell priming. Cell Rep. 2016;14:586–97.PubMedCrossRefGoogle Scholar
  36. 36.
    Kim J, et al. Memory programming in CD8(+) T-cell differentiation is intrinsic and is not determined by CD4 help. Nat Commun. 2015;6:7994.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Ridge JP, et al. A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature. 1998;393:474–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Shedlock DJ, Shen H. Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science. 2003;300:337–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Sun JC, Bevan MJ. Defective CD8 T cell memory following acute infection without CD4 T cell help. Science. 2003;300:339–42.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Lipsky PE, et al. Analysis of CD40–CD40 ligand interactions in the regulation of human B cell function. Ann NY Acad Sci. 1997;815:372–83.PubMedCrossRefGoogle Scholar
  41. 41.
    Bennett SR, et al. Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature. 1998;393:478–80.PubMedCrossRefGoogle Scholar
  42. 42.
    Schoenberger SP, et al. T-cell help for cytotoxic T lymphocytes is mediated by CD40–CD40L interactions. Nature. 1998;393:480–3.PubMedCrossRefGoogle Scholar
  43. 43.
    Smith CM, et al. Cognate CD4(+) T cell licensing of dendritic cells in CD8(+) T cell immunity. Nat Immunol. 2004;5:1143–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Scherle PA, Gerhard W. Functional analysis of influenza-specific helper T cell clones in vivo. T cells specific for internal viral proteins provide cognate help for B cell responses to hemagglutinin. J Exp Med. 1986;164:1114–28.PubMedCrossRefGoogle Scholar
  45. 45.
    Russell AS, et al. Antibody dependent cell-mediated cytotoxicity to herpes simplex virus in man: the influence of drugs on polymorphonuclear leucocyte and mononuclear effector cells. Prostaglandins Med. 1979;3:147–58.PubMedCrossRefGoogle Scholar
  46. 46.
    Eickhoff S, et al. Robust anti-viral immunity requires multiple distinct T cell–dendritic cell interactions. Cell. 2015;162:1322–37.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Hor JL, et al. Spatiotemporally distinct interactions with dendritic cell subsets facilitates CD4+ and CD8+ T cell activation to localized viral infection. Immunity. 2015;43:554–65.PubMedCrossRefGoogle Scholar
  48. 48.
    Dorner BG, et al. Selective expression of the chemokine receptor XCR1 on cross-presenting dendritic cells determines cooperation with CD8+ T cells. Immunity. 2009;31:823–33.PubMedCrossRefGoogle Scholar
  49. 49.
    Zhang H, et al. Comparing pooled peptides with intact protein for accessing cross-presentation pathways for protective CD8+ and CD4+ T cells. J Biol Chem. 2009;284:9184–91.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Wang P, et al. A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. PLoS Comput Biol. 2008;4:e1000048.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Moon JJ, et al. Naive CD4(+) T cell frequency varies for different epitopes and predicts repertoire diversity and response magnitude. Immunity. 2007;27:203–13.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Britanova OV, et al. Age-related decrease in TCR repertoire diversity measured with deep and normalized sequence profiling. J Immunol. 2014;192:2689–98.PubMedCrossRefGoogle Scholar
  53. 53.
    Haynes BF, et al. The human thymus during aging. Immunol Res. 2000;22:253–61.PubMedCrossRefGoogle Scholar
  54. 54.
    Yager EJ, et al. Age-associated decline in T cell repertoire diversity leads to holes in the repertoire and impaired immunity to influenza virus. J Exp Med. 2008;205:711–23.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Lee JB, et al. Decline of influenza-specific CD8+ T cell repertoire in healthy geriatric donors. Immun Ageing. 2011;8:6.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Fraser CC, et al. Generation of a universal CD4 memory T cell recall peptide effective in humans, mice and non-human primates. Vaccine. 2014;32:2896–903.PubMedCrossRefGoogle Scholar
  57. 57.
    Wen X, et al. Inclusion of a universal tetanus toxoid CD4(+) T cell epitope P2 significantly enhanced the immunogenicity of recombinant rotavirus DeltaVP8* subunit parenteral vaccines. Vaccine. 2014;32:4420–7.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Bijker MS, et al. CD8+ CTL priming by exact peptide epitopes in incomplete Freund’s adjuvant induces a vanishing CTL response, whereas long peptides induce sustained CTL reactivity. J Immunol. 2007;179:5033–40.PubMedCrossRefGoogle Scholar
  59. 59.
    Kenter GG, et al. Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. N Engl J Med. 2009;361:1838–47.PubMedCrossRefGoogle Scholar
  60. 60.
    Brossay L, et al. CD1d-mediated recognition of an alpha-galactosylceramide by natural killer T cells is highly conserved through mammalian evolution. J Exp Med. 1998;188:1521–8.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Kawano T, et al. CD1d-restricted and TCR-mediated activation of valpha14 NKT cells by glycosylceramides. Science. 1997;278:1626–9.PubMedCrossRefGoogle Scholar
  62. 62.
    Rhost S, et al. Immunomodulatory type II natural killer T lymphocytes in health and disease. Scand J Immunol. 2012;76:246–55.PubMedCrossRefGoogle Scholar
  63. 63.
    Godfrey DI, et al. NKT cells: what’s in a name? Nat Rev Immunol. 2004;4:231–7.PubMedCrossRefGoogle Scholar
  64. 64.
    Jahng A, et al. Prevention of autoimmunity by targeting a distinct, noninvariant CD1d-reactive T cell population reactive to sulfatide. J Exp Med. 2004;199:947–57.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Chang DH, et al. Inflammation-associated lysophospholipids as ligands for CD1d-restricted T cells in human cancer. Blood. 2008;112:1308–16.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Zeissig S, et al. Hepatitis B virus-induced lipid alterations contribute to natural killer T cell-dependent protective immunity. Nat Med. 2012;18:1060–8.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Leon L, et al. Saposins utilize two strategies for lipid transfer and CD1 antigen presentation. Proc Natl Acad Sci USA. 2012;109:4357–64.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Wolf BJ, et al. Identification of a potent microbial lipid antigen for diverse NKT cells. J Immunol. 2015;195:2540–51.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Van Rhijn I, et al. CD1d-restricted T cell activation by nonlipidic small molecules. Proc Natl Acad Sci USA. 2004;101:13578–83.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Le Nours J, et al. Atypical natural killer T-cell receptor recognition of CD1d-lipid antigens. Nat Commun. 2016;7:10570.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Uldrich AP, et al. A semi-invariant Valpha10+ T cell antigen receptor defines a population of natural killer T cells with distinct glycolipid antigen-recognition properties. Nat Immunol. 2011;12:616–23.PubMedCrossRefGoogle Scholar
  72. 72.
    Exley M, et al. CD161 (NKR-P1A) costimulation of CD1d-dependent activation of human T cells expressing invariant Vα24JαQ T cell receptor alpha chains. J Exp Med. 1998;188:867–76.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Vilarinho S, et al. Blockade of NKG2D on NKT cells prevents hepatitis and the acute immune response to hepatitis B virus. Proc Natl Acad Sci USA. 2007;104:18187–92.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Kawamura T, et al. NKG2A inhibits invariant NKT cell activation in hepatic injury. J Immunol. 2009;182:250–8.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Sandberg JK, et al. Dominant effector memory characteristics, capacity for dynamic adaptive expansion, and sex bias in the innate Valpha24 NKT cell compartment. Eur J Immunol. 2003;33:588–96.PubMedCrossRefGoogle Scholar
  76. 76.
    Yang S, et al. The shedding of CD62L (L-selectin) regulates the acquisition of lytic activity in human tumor reactive T lymphocytes. PLoS One. 2011;6:e22560.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Sallusto F, et al. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol. 2004;22:745–63.PubMedCrossRefGoogle Scholar
  78. 78.
    Stetson DB, et al. Constitutive cytokine mRNAs mark natural killer (NK) and NK T cells poised for rapid effector function. J Exp Med. 2003;198:1069–76.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Holzapfel KL, et al. Antigen-dependent versus -independent activation of invariant NKT cells during infection. J Immunol. 2014;192:5490–8.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Montoya CJ, et al. Characterization of human invariant natural killer T subsets in health and disease using a novel invariant natural killer T cell-clonotypic monoclonal antibody, 6B11. Immunology. 2007;122:1–14.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Gumperz JE, et al. Functionally distinct subsets of CD1d-restricted natural killer T cells revealed by CD1d tetramer staining. J Exp Med. 2002;195:625–36.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Chan AC, et al. Immune characterization of an individual with an exceptionally high natural killer T cell frequency and her immediate family. Clin Exp Immunol. 2009;156:238–45.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Jing Y, et al. Aging is associated with a rapid decline in frequency, alterations in subset composition, and enhanced Th2 response in CD1d-restricted NKT cells from human peripheral blood. Exp Gerontol. 2007;42:719–32.PubMedCrossRefGoogle Scholar
  84. 84.
    Berzins SP, et al. Systemic NKT cell deficiency in NOD mice is not detected in peripheral blood: implications for human studies. Immunol Cell Biol. 2004;82:247–52.PubMedCrossRefGoogle Scholar
  85. 85.
    Long HM, et al. MHC II tetramers visualize human CD4+ T cell responses to Epstein–Barr virus infection and demonstrate atypical kinetics of the nuclear antigen EBNA1 response. J Exp Med. 2013;210:933–49.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Kenna T, et al. NKT cells from normal and tumor-bearing human livers are phenotypically and functionally distinct from murine NKT cells. J Immunol. 2003;171:1775–9.PubMedCrossRefGoogle Scholar
  87. 87.
    Artiaga BL, et al. Adjuvant effects of therapeutic glycolipids administered to a cohort of NKT cell-diverse pigs. Vet Immunol Immunopathol. 2014;162:1–13.PubMedCrossRefGoogle Scholar
  88. 88.
    Kinjo Y, et al. The role of invariant natural killer T cells in microbial immunity. J Infect Chemother. 2013;19:560–70.PubMedCrossRefGoogle Scholar
  89. 89.
    Kinjo Y, et al. Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria. Nat Immunol. 2006;7:978–86.PubMedCrossRefGoogle Scholar
  90. 90.
    Kinjo Y, et al. Recognition of bacterial glycosphingolipids by natural killer T cells. Nature. 2005;434:520–5.PubMedCrossRefGoogle Scholar
  91. 91.
    Mattner J, et al. Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature. 2005;434:525–9.PubMedCrossRefGoogle Scholar
  92. 92.
    Sriram V, et al. Cell wall glycosphingolipids of Sphingomonas paucimobilis are CD1d-specific ligands for NKT cells. Eur J Immunol. 2005;35:1692–701.PubMedCrossRefGoogle Scholar
  93. 93.
    Berzins SP, et al. Presumed guilty: natural killer T cell defects and human disease. Nat Rev Immunol. 2011;11:131–42.PubMedCrossRefGoogle Scholar
  94. 94.
    van der Vliet HJ, et al. The immunoregulatory role of CD1d-restricted natural killer T cells in disease. Clin Immunol. 2004;112:8–23.PubMedCrossRefGoogle Scholar
  95. 95.
    Weinkove R, et al. Functional invariant natural killer T-cell and CD1d axis in chronic lymphocytic leukemia: implications for immunotherapy. Haematologica. 2013;98:376–84.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Rubio MT, et al. Early posttransplantation donor-derived invariant natural killer T-cell recovery predicts the occurrence of acute graft-versus-host disease and overall survival. Blood. 2012;120:2144–54.PubMedCrossRefGoogle Scholar
  97. 97.
    Smyth MJ, et al. Differential tumor surveillance by natural killer (NK) and NKT cells. J Exp Med. 2000;191:661–8.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Swann JB, et al. Type I natural killer T cells suppress tumors caused by p53 loss in mice. Blood. 2009;113:6382–5.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    McEwen-Smith RM, et al. The regulatory role of invariant NKT cells in tumor immunity. Cancer Immunol Res. 2015;3:425–35.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Schneiders FL, et al. Circulating invariant natural killer T-cell numbers predict outcome in head and neck squamous cell carcinoma: updated analysis with 10-year follow-up. J Clin Oncol. 2012;30:567–70.PubMedCrossRefGoogle Scholar
  101. 101.
    Tachibana T, et al. Increased intratumor Valpha24-positive natural killer T cells: a prognostic factor for primary colorectal carcinomas. Clin Cancer Res. 2005;11:7322–7.PubMedCrossRefGoogle Scholar
  102. 102.
    Metelitsa LS, et al. Natural killer T cells infiltrate neuroblastomas expressing the chemokine CCL2. J Exp Med. 2004;199:1213–21.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Lee PT, et al. Distinct functional lineages of human V(alpha)24 natural killer T cells. J Exp Med. 2002;195:637–41.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Lawson V. Turned on by danger: activation of CD1d-restricted invariant natural killer T cells. Immunology. 2012;137:20–7.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Stanic AK, et al. Another view of T cell antigen recognition: cooperative engagement of glycolipid antigens by Va14Ja18 natural T(iNKT) cell receptor [corrected]. J Immunol. 2003;171:4539–51.PubMedCrossRefGoogle Scholar
  106. 106.
    Oki S, et al. The clinical implication and molecular mechanism of preferential IL-4 production by modified glycolipid-stimulated NKT cells. J Clin Invest. 2004;113:1631–40.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Kitamura H, et al. The natural killer T (NKT) cell ligand alpha-galactosylceramide demonstrates its immunopotentiating effect by inducing interleukin (IL)-12 production by dendritic cells and IL-12 receptor expression on NKT cells. J Exp Med. 1999;189:1121–8.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Hayakawa Y, et al. Differential regulation of Th1 and Th2 functions of NKT cells by CD28 and CD40 costimulatory pathways. J Immunol. 2001;166:6012–8.PubMedCrossRefGoogle Scholar
  109. 109.
    Arora P, et al. A single subset of dendritic cells controls the cytokine bias of natural killer T cell responses to diverse glycolipid antigens. Immunity. 2014;40:105–16.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Molano A, et al. Modulation of invariant natural killer T cell cytokine responses by indoleamine 2,3-dioxygenase. Immunol Lett. 2008;117:81–90.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Smyth MJ, et al. Sequential activation of NKT cells and NK cells provides effective innate immunotherapy of cancer. J Exp Med. 2005;201:1973–85.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Smyth MJ, et al. Sequential production of interferon-gamma by NK1.1(+) T cells and natural killer cells is essential for the antimetastatic effect of alpha-galactosylceramide. Blood. 2002;99:1259–66.PubMedCrossRefGoogle Scholar
  113. 113.
    Eberl G, MacDonald HR. Selective induction of NK cell proliferation and cytotoxicity by activated NKT cells. Eur J Immunol. 2000;30:985–92.PubMedCrossRefGoogle Scholar
  114. 114.
    Wingender G, et al. Antigen-specific cytotoxicity by invariant NKT cells in vivo is CD95/CD178-dependent and is correlated with antigenic potency. J Immunol. 2010;185:2721–9.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Nakagawa R, et al. Mechanisms of the antimetastatic effect in the liver and of the hepatocyte injury induced by alpha-galactosylceramide in mice. J Immunol. 2001;166:6578–84.PubMedCrossRefGoogle Scholar
  116. 116.
    Nieda M, et al. TRAIL expression by activated human CD4(+)V alpha 24NKT cells induces in vitro and in vivo apoptosis of human acute myeloid leukemia cells. Blood. 2001;97:2067–74.PubMedCrossRefGoogle Scholar
  117. 117.
    Metelitsa LS, et al. Expression of CD1d by myelomonocytic leukemias provides a target for cytotoxic NKT cells. Leukemia. 2003;17:1068–77.PubMedCrossRefGoogle Scholar
  118. 118.
    Osmond TL, et al. Activated NKT cells can condition different splenic dendritic cell subsets to respond more effectively to TLR engagement and enhance cross-priming. J Immunol. 2015;195:821–31.PubMedCrossRefGoogle Scholar
  119. 119.
    Mebius RE, Kraal G. Structure and function of the spleen. Nat Rev Immunol. 2005;5:606–16.PubMedCrossRefGoogle Scholar
  120. 120.
    King IL, et al. The mechanism of splenic invariant NKT cell activation dictates localization in vivo. J Immunol. 2013;191:572–82.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Barral P, et al. The location of splenic NKT cells favours their rapid activation by blood-borne antigen. EMBO J. 2012;31:2378–90.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Bialecki E, et al. Role of marginal zone B lymphocytes in invariant NKT cell activation. J Immunol. 2009;182:6105–13.PubMedCrossRefGoogle Scholar
  123. 123.
    Barral P, et al. CD169(+) macrophages present lipid antigens to mediate early activation of iNKT cells in lymph nodes. Nat Immunol. 2010;11:303–12.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Fujii S, et al. Activation of natural killer T cells by alpha-galactosylceramide rapidly induces the full maturation of dendritic cells in vivo and thereby acts as an adjuvant for combined CD4 and CD8 T cell immunity to a coadministered protein. J Exp Med. 2003;198:267–79.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Hermans IF, et al. NKT cells enhance CD4+ and CD8+ T cell responses to soluble antigen in vivo through direct interaction with dendritic cells. J Immunol. 2003;171:5140–7.PubMedCrossRefGoogle Scholar
  126. 126.
    Galli G, et al. Invariant NKT cells sustain specific B cell responses and memory. Proc Natl Acad Sci USA. 2007;104:3984–9.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Leadbetter EA, et al. NK T cells provide lipid antigen-specific cognate help for B cells. Proc Natl Acad Sci USA. 2008;105:8339–44.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Tomura M, et al. A novel function of Valpha14+ CD4+ NKT cells: stimulation of IL-12 production by antigen-presenting cells in the innate immune system. J Immunol. 1999;163:93–101.PubMedGoogle Scholar
  129. 129.
    Vincent MS, et al. CD1-dependent dendritic cell instruction. Nat Immunol. 2002;3:1163–8.PubMedCrossRefGoogle Scholar
  130. 130.
    Brigl M, et al. Mechanism of CD1d-restricted natural killer T cell activation during microbial infection. Nat Immunol. 2003;4:1230–7.PubMedCrossRefGoogle Scholar
  131. 131.
    Gottschalk C, et al. The role of invariant natural killer T cells in dendritic cell licensing, cross-priming, and memory CD8(+) T cell generation. Front Immunol. 2015;6:379.PubMedPubMedCentralGoogle Scholar
  132. 132.
    Castellino F, et al. Chemokines enhance immunity by guiding naive CD8+ T cells to sites of CD4+ T cell-dendritic cell interaction. Nature. 2006;440:890–5.PubMedCrossRefGoogle Scholar
  133. 133.
    Semmling V, et al. Alternative cross-priming through CCL17-CCR4-mediated attraction of CTLs toward NKT cell-licensed DCs. Nat Immunol. 2010;11:313–20.PubMedCrossRefGoogle Scholar
  134. 134.
    Shimizu K, et al. Invariant NKT cells induce plasmacytoid dendritic cell (DC) cross-talk with conventional DCs for efficient memory CD8+ T cell induction. J Immunol. 2013;190:5609–19.PubMedCrossRefGoogle Scholar
  135. 135.
    Murphy K, Travers P, Walport M, Janeway C. Janeway’s immunobiology. 8th ed. New York: Garland Science; 2012.Google Scholar
  136. 136.
    Ando T, et al. Toll-like receptor agonists and alpha-galactosylceramide synergistically enhance the production of interferon-gamma in murine splenocytes. Sci Rep. 2013;3:2559.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Hermans IF, et al. Dendritic cell function can be modulated through cooperative actions of TLR ligands and invariant NKT cells. J Immunol. 2007;178:2721–9.PubMedCrossRefGoogle Scholar
  138. 138.
    Cui J, et al. Requirement for Valpha14 NKT cells in IL-12-mediated rejection of tumors. Science. 1997;278:1623–6.PubMedCrossRefGoogle Scholar
  139. 139.
    Nakagawa R, et al. Treatment of hepatic metastasis of the colon26 adenocarcinoma with an alpha-galactosylceramide, KRN7000. Cancer Res. 1998;58:1202–7.PubMedGoogle Scholar
  140. 140.
    Giaccone G, et al. A phase I study of the natural killer T-cell ligand alpha-galactosylceramide (KRN7000) in patients with solid tumors. Clin Cancer Res. 2002;8:3702–9.PubMedGoogle Scholar
  141. 141.
    Schneiders FL, et al. Clinical experience with alpha-galactosylceramide (KRN7000) in patients with advanced cancer and chronic hepatitis B/C infection. Clin Immunol. 2011;140:130–41.PubMedCrossRefGoogle Scholar
  142. 142.
    Burdin N, et al. Immunization with alpha-galactosylceramide polarizes CD1-reactive NK T cells towards Th2 cytokine synthesis. Eur J Immunol. 1999;29:2014–25.PubMedCrossRefGoogle Scholar
  143. 143.
    Parekh VV, et al. Glycolipid antigen induces long-term natural killer T cell anergy in mice. J Clin Invest. 2005;115:2572–83.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Sag D, et al. IL-10-producing NKT10 cells are a distinct regulatory invariant NKT cell subset. J Clin Invest. 2014;124:3725–40.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Huang Y, et al. Enhancement of HIV DNA vaccine immunogenicity by the NKT cell ligand, alpha-galactosylceramide. Vaccine. 2008;26:1807–16.PubMedCrossRefGoogle Scholar
  146. 146.
    Gonzalez-Aseguinolaza G, et al. Natural killer T cell ligand alpha-galactosylceramide enhances protective immunity induced by malaria vaccines. J Exp Med. 2002;195:617–24.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Fernandez CS, et al. In-vivo stimulation of macaque natural killer T cells with alpha-galactosylceramide. Clin Exp Immunol. 2013;173:480–92.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Chang DH, et al. Sustained expansion of NKT cells and antigen-specific T cells after injection of alpha-galactosyl-ceramide loaded mature dendritic cells in cancer patients. J Exp Med. 2005;201:1503–17.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Ishikawa A, et al. A phase I study of alpha-galactosylceramide (KRN7000)-pulsed dendritic cells in patients with advanced and recurrent non-small cell lung cancer. Clin Cancer Res. 2005;11:1910–7.PubMedCrossRefGoogle Scholar
  150. 150.
    Nieda M, et al. Therapeutic activation of Valpha24+ Vbeta11+ NKT cells in human subjects results in highly coordinated secondary activation of acquired and innate immunity. Blood. 2004;103:383–9.PubMedCrossRefGoogle Scholar
  151. 151.
    Fujii S, et al. Prolonged IFN-gamma-producing NKT response induced with alpha-galactosylceramide-loaded DCs. Nat Immunol. 2002;3:867–74.PubMedCrossRefGoogle Scholar
  152. 152.
    Toura I, et al. Cutting edge: inhibition of experimental tumor metastasis by dendritic cells pulsed with alpha-galactosylceramide. J Immunol. 1999;163:2387–91.PubMedGoogle Scholar
  153. 153.
    Moreno M, et al. IFN-gamma-producing human invariant NKT cells promote tumor-associated antigen-specific cytotoxic T cell responses. J Immunol. 2008;181:2446–54.PubMedCrossRefGoogle Scholar
  154. 154.
    Shimizu K, et al. Vaccination with antigen-transfected, NKT cell ligand-loaded, human cells elicits robust in situ immune responses by dendritic cells. Cancer Res. 2013;73:62–73.PubMedCrossRefGoogle Scholar
  155. 155.
    Petersen TR, et al. Exploiting the role of endogenous lymphoid-resident dendritic cells in the priming of NKT cells and CD8+ T cells to dendritic cell-based vaccines. PLoS One. 2011;6:e17657.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Shimizu K, et al. Cross-presentation of glycolipid from tumor cells loaded with alpha-galactosylceramide leads to potent and long-lived T cell mediated immunity via dendritic cells. J Exp Med. 2007;204:2641–53.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Liu K, et al. Innate NKT lymphocytes confer superior adaptive immunity via tumor-capturing dendritic cells. J Exp Med. 2005;202:1507–16.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Shimizu K, et al. Tumor cells loaded with alpha-galactosylceramide induce innate NKT and NK cell-dependent resistance to tumor implantation in mice. J Immunol. 2007;178:2853–61.PubMedCrossRefGoogle Scholar
  159. 159.
    Chung Y, et al. An NKT-mediated autologous vaccine generates CD4 T-cell dependent potent antilymphoma immunity. Blood. 2007;110:2013–9.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Mattarollo SR, et al. NKT cell adjuvant-based tumor vaccine for treatment of myc oncogene-driven mouse B-cell lymphoma. Blood. 2012;120:3019–29.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Gibbins JD, et al. An autologous leukemia cell vaccine prevents murine acute leukemia relapse after cytarabine treatment. Blood. 2014;124:2953–63.PubMedCrossRefGoogle Scholar
  162. 162.
    Hunn MK, et al. Vaccination with irradiated tumor cells pulsed with an adjuvant that stimulates NKT cells is an effective treatment for glioma. Clin Cancer Res. 2012;18:6446–59.PubMedCrossRefGoogle Scholar
  163. 163.
    Neumann S, et al. Synthetic TRP2 long-peptide and alpha-galactosylceramide formulated into cationic liposomes elicit CD8(+) T-cell responses and prevent tumour progression. Vaccine. 2015;33:5838–44.PubMedCrossRefGoogle Scholar
  164. 164.
    McKee SJ, et al. Virus-like particles and alpha-galactosylceramide form a self-adjuvanting composite particle that elicits anti-tumor responses. J Control Release. 2012;159:338–45.PubMedCrossRefGoogle Scholar
  165. 165.
    Dolen Y, et al. Co-delivery of PLGA encapsulated invariant NKT cell agonist with antigenic protein induce strong T cell-mediated antitumor immune responses. Oncoimmunology. 2016;5:e1068493.PubMedCrossRefGoogle Scholar
  166. 166.
    Singh M, et al. Direct incorporation of the NKT-cell activator alpha-galactosylceramide into a recombinant Listeria monocytogenes improves breast cancer vaccine efficacy. Br J Cancer. 2014;111:1945–54.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Venkataswamy MM, et al. Improving Mycobacterium bovis bacillus Calmette–Guerin as a vaccine delivery vector for viral antigens by incorporation of glycolipid activators of NKT cells. PLoS One. 2014;9:e108383.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Hailemichael Y, et al. Persistent antigen at vaccination sites induces tumor-specific CD8(+) T cell sequestration, dysfunction and deletion. Nat Med. 2013;19:465–72.PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Savage PB. Vaccine development: NKT-cell adjuvants in conjugate. Nat Chem Biol. 2014;10:882–3.PubMedCrossRefGoogle Scholar
  170. 170.
    Flechtner JB, et al. High-affinity interactions between peptides and heat shock protein 70 augment CD8+ T lymphocyte immune responses. J Immunol. 2006;177:1017–27.PubMedCrossRefGoogle Scholar
  171. 171.
    Anderson RJ, et al. A self-adjuvanting vaccine induces cytotoxic T lymphocytes that suppress allergy. Nat Chem Biol. 2014;10:943–9.PubMedCrossRefGoogle Scholar
  172. 172.
    Anderson RJ, et al. NKT cell-dependent glycolipid-peptide vaccines with potent anti-tumour activity. Chem Sci. 2015;6:5120–7.CrossRefGoogle Scholar
  173. 173.
    Cavallari M, et al. A semisynthetic carbohydrate-lipid vaccine that protects against S. pneumoniae in mice. Nat Chem Biol. 2014;10:950–6.PubMedCrossRefGoogle Scholar
  174. 174.
    Vigneron N, et al. Database of T cell-defined human tumor antigens: the 2013 update. Cancer Immun. 2013;13:15.PubMedPubMedCentralGoogle Scholar
  175. 175.
    Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. 2015;348:69–74.PubMedCrossRefGoogle Scholar
  176. 176.
    Galli G, et al. CD1d-restricted help to B cells by human invariant natural killer T lymphocytes. J Exp Med. 2003;197:1051–7.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Dellabona P, et al. iNKT-cell help to B cells: a cooperative job between innate and adaptive immune responses. Eur J Immunol. 2014;44:2230–7.PubMedCrossRefGoogle Scholar
  178. 178.
    Chang PP, et al. Identification of Bcl-6-dependent follicular helper NKT cells that provide cognate help for B cell responses. Nat Immunol. 2012;13:35–43.CrossRefGoogle Scholar
  179. 179.
    Barral P, et al. B cell receptor-mediated uptake of CD1d-restricted antigen augments antibody responses by recruiting invariant NKT cell help in vivo. Proc Natl Acad Sci USA. 2008;105:8345–50.PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Ko SY, et al. alpha-Galactosylceramide can act as a nasal vaccine adjuvant inducing protective immune responses against viral infection and tumor. J Immunol. 2005;175:3309–17.PubMedCrossRefGoogle Scholar
  181. 181.
    Lang GA, et al. Requirement for CD1d expression by B cells to stimulate NKT cell-enhanced antibody production. Blood. 2008;111:2158–62.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    King IL, et al. Invariant natural killer T cells direct B cell responses to cognate lipid antigen in an IL-21-dependent manner. Nat Immunol. 2012;13:44–50.CrossRefGoogle Scholar
  183. 183.
    Tonti E, et al. Follicular helper NKT cells induce limited B cell responses and germinal center formation in the absence of CD4(+) T cell help. J Immunol. 2012;188:3217–22.PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Bai L, et al. Natural killer T (NKT)-B-cell interactions promote prolonged antibody responses and long-term memory to pneumococcal capsular polysaccharides. Proc Natl Acad Sci USA. 2013;110:16097–102.PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Tonti E, et al. NKT-cell help to B lymphocytes can occur independently of cognate interaction. Blood. 2009;113:370–6.PubMedCrossRefGoogle Scholar
  186. 186.
    Scanlon ST, et al. Airborne lipid antigens mobilize resident intravascular NKT cells to induce allergic airway inflammation. J Exp Med. 2011;208:2113–24.PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Youn HJ, et al. A single intranasal immunization with inactivated influenza virus and alpha-galactosylceramide induces long-term protective immunity without redirecting antigen to the central nervous system. Vaccine. 2007;25:5189–98.PubMedCrossRefGoogle Scholar
  188. 188.
    Kopecky-Bromberg SA, et al. Alpha-C-galactosylceramide as an adjuvant for a live attenuated influenza virus vaccine. Vaccine. 2009;27:3766–74.PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Devera TS, et al. CD1d-dependent B-cell help by NK-like T cells leads to enhanced and sustained production of Bacillus anthracis lethal toxin-neutralizing antibodies. Infect Immun. 2010;78:1610–7.PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Kamijuku H, et al. Mechanism of NKT cell activation by intranasal coadministration of alpha-galactosylceramide, which can induce cross-protection against influenza viruses. Mucosal Immunol. 2008;1:208–18.PubMedCrossRefGoogle Scholar
  191. 191.
    Tefit JN, et al. Efficacy of ABX196, a new NKT agonist, in prophylactic human vaccination. Vaccine. 2014;32:6138–45.PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Iyoda T, et al. Invariant NKT cell anergy is induced by a strong TCR-mediated signal plus co-stimulation. Int Immunol. 2010;22:905–13.PubMedCrossRefGoogle Scholar
  193. 193.
    Wang J, et al. Cutting edge: CD28 engagement releases antigen-activated invariant NKT cells from the inhibitory effects of PD-1. J Immunol. 2009;182:6644–7.PubMedCrossRefGoogle Scholar
  194. 194.
    Godfrey DI, Kronenberg M. Going both ways: immune regulation via CD1d-dependent NKT cells. J Clin Invest. 2004;114:1379–88.PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Lehuen A, et al. Overexpression of natural killer T cells protects Valpha14- Jalpha281 transgenic nonobese diabetic mice against diabetes. J Exp Med. 1998;188:1831–9.PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Hammond KJ, et al. alpha/beta-T cell receptor (TCR) + CD4-CD8- (NKT) thymocytes prevent insulin-dependent diabetes mellitus in nonobese diabetic (NOD)/Lt mice by the influence of interleukin (IL)-4 and/or IL-10. J Exp Med. 1998;187:1047–56.PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Jahng AW, et al. Activation of natural killer T cells potentiates or prevents experimental autoimmune encephalomyelitis. J Exp Med. 2001;194:1789–99.PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Mars LT, et al. Cutting edge: V alpha 14-J alpha 281 NKT cells naturally regulate experimental autoimmune encephalomyelitis in nonobese diabetic mice. J Immunol. 2002;168:6007–11.PubMedCrossRefGoogle Scholar
  199. 199.
    Matarollo SR, et al. NKT cells inhibit antigen-specific effector CD8 T cell induction to skin viral proteins. J Immunol. 2011;187:1601–8.CrossRefGoogle Scholar
  200. 200.
    McKee SJ, et al. Immunosuppressive roles of natural killer T (NKT) cells in the skin. J Leukoc Biol. 2014;96:49–54.PubMedCrossRefGoogle Scholar
  201. 201.
    Mattarollo SR, et al. Invariant NKT cells in hyperplastic skin induce a local immune suppressive environment by IFN-gamma production. J Immunol. 2010;184:1242–50.PubMedCrossRefGoogle Scholar
  202. 202.
    Sonoda KH, et al. CD1-reactive natural killer T cells are required for development of systemic tolerance through an immune-privileged site. J Exp Med. 1999;190:1215–26.PubMedPubMedCentralCrossRefGoogle Scholar
  203. 203.
    Araki M, et al. Synthetic glycolipid ligands for human iNKT cells as potential therapeutic agents for immunotherapy. Curr Med Chem. 2008;15:2337–45.PubMedCrossRefGoogle Scholar
  204. 204.
    Guillaume J, et al. Synthesis of C-5″ and C-6″-modified alpha-GalCer analogues as iNKT-cell agonists. Bioorg Med Chem. 2015;23:3175–82.PubMedPubMedCentralCrossRefGoogle Scholar
  205. 205.
    Motohashi S, et al. A phase I-II study of alpha-galactosylceramide-pulsed IL-2/GM-CSF-cultured peripheral blood mononuclear cells in patients with advanced and recurrent non-small cell lung cancer. J Immunol. 2009;182:2492–501.PubMedCrossRefGoogle Scholar
  206. 206.
    Nicol AJ, et al. Comparison of clinical and immunological effects of intravenous and intradermal administration of alpha-galactosylceramide (KRN7000)-pulsed dendritic cells. Clin Cancer Res. 2011;17:5140–51.PubMedCrossRefGoogle Scholar
  207. 207.
    Yamasaki K, et al. Induction of NKT cell-specific immune responses in cancer tissues after NKT cell-targeted adoptive immunotherapy. Clin Immunol. 2011;138:255–65.PubMedCrossRefGoogle Scholar
  208. 208.
    Artiaga BL, et al. alpha-Galactosylceramide protects swine against influenza infection when administered as a vaccine adjuvant. Sci Rep. 2016;6:23593.PubMedPubMedCentralCrossRefGoogle Scholar
  209. 209.
    Uchida T, et al. Phase I study of alpha-galactosylceramide-pulsed antigen presenting cells administration to the nasal submucosa in unresectable or recurrent head and neck cancer. Cancer Immunol Immunother. 2008;57:337–45.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Malaghan Institute of Medical ResearchWellingtonNew Zealand
  2. 2.School of Biological SciencesVictoria University WellingtonWellingtonNew Zealand
  3. 3.Maurice Wilkins CentreAucklandNew Zealand
  4. 4.Wellington Blood and Cancer CentreWellington HospitalWellingtonNew Zealand
  5. 5.Department of Pathology and Molecular MedicineUniversity of Otago WellingtonWellingtonNew Zealand

Personalised recommendations