Skip to main content
Log in

Co-stimulation Blockade Plus T-Cell Depletion in Transplant Patients: Towards a Steroid- and Calcineurin Inhibitor-Free Future?

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Long-term survival of solid allografts depends on both immunosuppressive efficacy and reducing the side effects associated with these therapies. Immunotherapies developed over the past 15 years to prevent organ rejection have greatly improved cardiovascular and renal function compared with classical therapies, such as calcineurin inhibitors and corticosteroids. Immunotherapies that target T cells through the co-stimulation blockade (CTLA-4-Ig) improve renal function and the survival of grafts and patients, but are associated with higher rates of T-cell-mediated acute rejection. Improvements to safe and efficacious therapeutic options could combine a co-stimulation blockade with a depleting immunotherapy. Herein, we describe the clinical outcomes and the likely causes of defects in the co-stimulation blockade, and comment on new therapeutic strategies to overcome these. Great progress has been made to optimize immunotherapy using the co-stimulation blockade, but the therapeutic combinations should be assessed further.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Medzhitov R, Janeway CA. Innate immunity: impact on the adaptive immune response. Curr Opin Immunol. 1997;9:4–9.

    Article  CAS  PubMed  Google Scholar 

  2. Wyburn KR, Jose MD, Wu H, et al. The role of macrophages in allograft rejection. Transplantation. 2005;80:1641–7.

    Article  PubMed  Google Scholar 

  3. He H, Stone JR, Perkins DL. Analysis of robust innate immune response after transplantation in the absence of adaptive immunity. Transplantation. 2002;73:853–61.

    Article  PubMed  Google Scholar 

  4. Ioannidis I, Hellinger A, Dehmlow C, et al. Evidence for increased nitric oxide production after liver transplantation in humans. Transplantation. 1995;59:1293–7.

    Article  CAS  PubMed  Google Scholar 

  5. Wood KJ, Goto R. Mechanisms of rejection: current perspectives. Transplantation. 2012;93:1–10.

    Article  PubMed  Google Scholar 

  6. Meier-Kriesche H-U, Schold JD, Srinivas TR, Kaplan B. Lack of improvement in renal allograft survival despite a marked decrease in acute rejection rates over the most recent era. Am J Transplant. 2004;4:378–83.

    Article  PubMed  Google Scholar 

  7. Cohen DJ, Loertscher R, Rubin MF, et al. Cyclosporine: a new immunosuppressive agent for organ transplantation. Ann Intern Med. 1984;101:667–82.

    Article  CAS  PubMed  Google Scholar 

  8. Sander M, Lyson T, Thomas GD, Victor RG. Sympathetic neural mechanisms of cyclosporine-induced hypertension. Am J Hypertens. 1996;9:121S–38S.

    Article  CAS  PubMed  Google Scholar 

  9. Kobashigawa JA, Kasiske BL. Hyperlipidemia in solid organ transplantation. Transplantation. 1997;63:331–8.

    Article  CAS  PubMed  Google Scholar 

  10. Cosio FG, Kudva Y, van der Velde M, et al. New onset hyperglycemia and diabetes are associated with increased cardiovascular risk after kidney transplantation. Kidney Int. 2005;67:2415–21.

    Article  PubMed  Google Scholar 

  11. Soleimanpour SA, Crutchlow MF, Ferrari AM, et al. Calcineurin signaling regulates human islet {beta}-cell survival. J Biol Chem. 2010;285:40050–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nankivell BJ, Borrows RJ, Fung CL-S, et al. The natural history of chronic allograft nephropathy. N Engl J Med. 2003;349:2326–33.

    Article  CAS  PubMed  Google Scholar 

  13. Palestine AG, Austin HA, Balow JE, et al. Renal histopathologic alterations in patients treated with cyclosporine for uveitis. N Engl J Med. 1986;314:1293–8.

    Article  CAS  PubMed  Google Scholar 

  14. Johnson RW, Kreis H, Oberbauer R, et al. Sirolimus allows early cyclosporine withdrawal in renal transplantation resulting in improved renal function and lower blood pressure. Transplantation. 2001;72:777–86.

    Article  CAS  PubMed  Google Scholar 

  15. Claes K, Meier-Kriesche H-U, Schold JD, et al. Effect of different immunosuppressive regimens on the evolution of distinct metabolic parameters: evidence from the Symphony study. Nephrol Dial Transplant. 2012;27:850–7.

    Article  CAS  PubMed  Google Scholar 

  16. Kasiske BL, Snyder JJ, Gilbertson D, Matas AJ. Diabetes mellitus after kidney transplantation in the United States. Am J Transplant. 2003;3:178–85.

    Article  PubMed  Google Scholar 

  17. Ojo AO, Held PJ, Port FK, et al. Chronic renal failure after transplantation of a nonrenal organ. N Engl J Med. 2003;349:931–40.

    Article  CAS  PubMed  Google Scholar 

  18. Ponticelli C, Montagnino G, Aroldi A, et al. Hypertension after renal transplantation. Am J Kidney Dis. 1993;21:73–8.

    Article  CAS  PubMed  Google Scholar 

  19. Roland M, Gatault P, Doute C, et al. Immunosuppressive medications, clinical and metabolic parameters in new-onset diabetes mellitus after kidney transplantation. Transpl Int. 2008;21:523–30.

    Article  PubMed  Google Scholar 

  20. Citterio F. Steroid side effects and their impact on transplantation outcome. Transplantation. 2001;72:S75–80.

    CAS  PubMed  Google Scholar 

  21. Vincenti F, Schena FP, Paraskevas S, et al. A randomized, multicenter study of steroid avoidance, early steroid withdrawal or standard steroid therapy in kidney transplant recipients. Am J Transplant. 2008;8:307–16.

    Article  CAS  PubMed  Google Scholar 

  22. Cole E, Landsberg D, Russell D, et al. A pilot study of steroid-free immunosuppression in the prevention of acute rejection in renal allograft recipients. Transplantation. 2001;72:845–50.

    Article  CAS  PubMed  Google Scholar 

  23. Knight SR, Morris PJ. Steroid avoidance or withdrawal after renal transplantation increases the risk of acute rejection but decreases cardiovascular risk: a meta-analysis. Transplantation. 2010;89:1–14.

    Article  PubMed  Google Scholar 

  24. Chon WJ, Desai A, Wing C, et al. Impact of maintenance steroids versus rapid steroid withdrawal in African-American kidney transplant recipients: comparison of two urban centers. Int J Clin Med. 2016;7:204–16.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Blum CB. Effects of sirolimus on lipids in renal allograft recipients: an analysis using the Framingham risk model. Am J Transplant. 2002;2:551–9.

    Article  CAS  PubMed  Google Scholar 

  26. Johnston O, Rose CL, Webster AC, Gill JS. Sirolimus is associated with new-onset diabetes in kidney transplant recipients. J Am Soc Nephrol. 2008;19:1411–8.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sayegh MH, Carpenter CB. Transplantation 50 years later: progress, challenges, and promises. N Engl J Med. 2004;351:2761–6.

    Article  CAS  PubMed  Google Scholar 

  28. Mueller DL, Jenkins MK, Schwartz RH. Clonal expansion versus functional clonal inactivation: a costimulatory signalling pathway determines the outcome of T cell antigen receptor occupancy. Annu Rev Immunol. 1989;7:445–80.

    Article  CAS  PubMed  Google Scholar 

  29. Jenkins MK, Johnson JG. Molecules involved in T-cell costimulation. Curr Opin Immunol. 1993;5:361–7.

    Article  CAS  PubMed  Google Scholar 

  30. Fu F, Li Y, Qian S, et al. Costimulatory molecule-deficient dendritic cell progenitors (MHC class II+, CD80dim, CD86−) prolong cardiac allograft survival in nonimmunosuppressed recipients. Transplantation. 1996;62:659–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen L, Flies DB. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol. 2013;13:227–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Butte MJ, Keir ME, Phamduy TB, et al. Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity. 2007;27:111–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yao S, Zhu Y, Zhu G, et al. B7-H2 is a costimulatory ligand for CD28 in human. Immunity. 2011;34:729–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dodson LF, Boomer JS, Deppong CM, et al. Targeted knock-in mice expressing mutations of CD28 reveal an essential pathway for costimulation. Mol Cell Biol. 2009;29:3710–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Salomon B, Lenschow DJ, Rhee L, et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+ CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity. 2000;12:431–40.

    Article  CAS  PubMed  Google Scholar 

  36. Tuosto L, Acuto O. CD28 affects the earliest signaling events generated by TCR engagement. Eur J Immunol. 1998;28:2131–42.

    Article  CAS  PubMed  Google Scholar 

  37. Michel F, Attal-Bonnefoy G, Mangino G, et al. CD28 as a molecular amplifier extending TCR ligation and signaling capabilities. Immunity. 2001;15:935–45.

    Article  CAS  PubMed  Google Scholar 

  38. Waibler Z, Sender LY, Merten C, et al. Signaling signatures and functional properties of anti-human CD28 superagonistic antibodies. PLoS One. 2008;3:e1708.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Tuosto L. NF-κB family of transcription factors: biochemical players of CD28 co-stimulation. Immunol Lett. 2011;135:1–9.

    Article  CAS  PubMed  Google Scholar 

  40. Wells AD. New insights into the molecular basis of T cell anergy: anergy factors, avoidance sensors, and epigenetic imprinting. J Immunol. 2009;182:7331–41.

    Article  CAS  PubMed  Google Scholar 

  41. Soskic B, Qureshi OS, Hou T, Sansom DM. A transendocytosis perspective on the CD28/CTLA-4 pathway. Adv Immunol. 2014;124:95–136.

    Article  PubMed  Google Scholar 

  42. Boussiotis VA, Freeman GJ, Gribben JG, Nadler LM. The role of B7-1/B7-2:CD28/CLTA-4 pathways in the prevention of anergy, induction of productive immunity and down-regulation of the immune response. Immunol Rev. 1996;153:5–26.

    Article  CAS  PubMed  Google Scholar 

  43. Egen JG, Allison JP. Cytotoxic T lymphocyte antigen-4 accumulation in the immunological synapse is regulated by TCR signal strength. Immunity. 2002;16:23–35.

    Article  CAS  PubMed  Google Scholar 

  44. Jago CB, Yates J, Câmara NO, et al. Differential expression of CTLA-4 among T cell subsets. Clin Exp Immunol. 2004;136:463–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Walker LSK, Sansom DM. Confusing signals: recent progress in CTLA-4 biology. Trends Immunol. 2015;36:63–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stumpf M, Zhou X, Chikuma S, Bluestone JA. Tyrosine 201 of the cytoplasmic tail of CTLA-4 critically affects T regulatory cell suppressive function. Eur J Immunol. 2014;44:1737–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kinnear G, Jones ND, Wood KJ. Costimulation blockade: current perspectives and implications for therapy. Transplantation. 2013;95:527–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ford ML, Adams AB, Pearson TC. Targeting co-stimulatory pathways: transplantation and autoimmunity. Nat Rev Nephrol. 2014;10:14–24.

    Article  CAS  PubMed  Google Scholar 

  49. Linsley PS, Greene JL, Brady W, et al. Human B7-1 (CD80) and B7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity. 1994;1:793–801.

    Article  CAS  PubMed  Google Scholar 

  50. Greene JL, Leytze GM, Emswiler J, et al. Covalent dimerization of CD28/CTLA-4 and oligomerization of CD80/CD86 regulate T cell costimulatory interactions. J Biol Chem. 1996;271:26762–71.

    Article  CAS  PubMed  Google Scholar 

  51. Lazar-Molnar E, Almo SC, Nathenson SG. The interchain disulfide linkage is not a prerequisite but enhances CD28 costimulatory function. Cell Immunol. 2006;244:125–9.

    Article  CAS  PubMed  Google Scholar 

  52. Damle NK, Doyle LV, Grosmaire LS, Ledbetter JA. Differential regulatory signals delivered by antibody binding to the CD28 (Tp44) molecule during the activation of human T lymphocytes. J Immunol. 1988;140:1753–61.

    CAS  PubMed  Google Scholar 

  53. Mary C, Coulon F, Poirier N, et al. Antagonist properties of monoclonal antibodies targeting human CD28. mAbs. 2013;5:47–55.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Herrington-Symes AP, Farys M, Khalili H, Brocchini S. Antibody fragments: prolonging circulation half-life special issue-antibody research. Adv Biosci Biotechnol. 2013;4:689–98.

    Article  CAS  Google Scholar 

  55. Azuma M, Ito D, Yagita H, et al. B70 antigen is a second ligand for CTLA-4 and CD28. Nature. 1993;366:76–9.

    Article  CAS  PubMed  Google Scholar 

  56. Grohmann U, Orabona C, Fallarino F, et al. CTLA-4-Ig regulates tryptophan catabolism in vivo. Nat Immunol. 2002;3:1097–101.

    Article  CAS  PubMed  Google Scholar 

  57. Freeman GJ, Boussiotis VA, Anumanthan A, et al. B7-1 and B7-2 do not deliver identical costimulatory signals, since B7-2 but not B7-1 preferentially costimulates the initial production of IL-4. Immunity. 1995;2:523–32.

    Article  CAS  PubMed  Google Scholar 

  58. Kuchroo VK, Das MP, Brown JA, et al. B7-1 and B7-2 costimulatory molecules activate differentially the Th1/Th2 developmental pathways: application to autoimmune disease therapy. Cell. 1995;80:707–18.

    Article  CAS  PubMed  Google Scholar 

  59. Kremer JM, Westhovens R, Leon M, et al. Treatment of rheumatoid arthritis by selective inhibition of T-cell activation with fusion protein CTLA4Ig. N Engl J Med. 2003;349:1907–15.

    Article  CAS  PubMed  Google Scholar 

  60. Kirk AD, Harlan DM, Armstrong NN, et al. CTLA4-Ig and anti-CD40 ligand prevent renal allograft rejection in primates. Proc Natl Acad Sci USA. 1997;94:8789–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sayegh MH, Akalin E, Hancock WW, et al. CD28-B7 blockade after alloantigenic challenge in vivo inhibits Th1 cytokines but spares Th2. J Exp Med. 1995;181:1869–74.

    Article  CAS  PubMed  Google Scholar 

  62. Larsen CP, Pearson TC, Adams AB, et al. Rational development of LEA29Y (belatacept), a high-affinity variant of CTLA4-Ig with potent immunosuppressive properties. Am J Transplant. 2005;5:443–53.

    Article  CAS  PubMed  Google Scholar 

  63. Tai X, Van Laethem F, Pobezinsky L, et al. Basis of CTLA-4 function in regulatory and conventional CD4(+) T cells. Blood. 2012;119:5155–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Waterhouse P, Penninger JM, Timms E, et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science. 1995;270:985–8.

    Article  CAS  PubMed  Google Scholar 

  65. Wing K, Onishi Y, Prieto-Martin P, et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science. 2008;322:271–5.

    Article  CAS  PubMed  Google Scholar 

  66. Jain N, Nguyen H, Chambers C, Kang J. Dual function of CTLA-4 in regulatory T cells and conventional T cells to prevent multiorgan autoimmunity. Proc Natl Acad Sci USA. 2010;107:1524–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bar-On L, Birnberg T, Kim K, Jung S. Dendritic cell-restricted CD80/86 deficiency results in peripheral regulatory T-cell reduction but is not associated with lymphocyte hyperactivation. Eur J Immunol. 2011;41:291–8.

    Article  CAS  PubMed  Google Scholar 

  68. Riella LV, Liu T, Yang J, et al. Deleterious effect of CTLA4-Ig on a Treg-dependent transplant model. Am J Transplant. 2012;12:846–55.

    Article  CAS  PubMed  Google Scholar 

  69. Charbonnier L-M, Vokaer B, Lemaître PH, et al. CTLA4-Ig restores rejection of MHC class-II mismatched allografts by disabling IL-2-expanded regulatory T cells. Am J Transplant. 2012;12:2313–21.

    Article  CAS  PubMed  Google Scholar 

  70. Yamazaki S, Iyoda T, Tarbell K, et al. Direct expansion of functional CD25+ CD4+ regulatory T cells by antigen-processing dendritic cells. J Exp Med. 2003;198:235–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tang Q, Henriksen KJ, Boden EK, et al. Cutting edge: CD28 controls peripheral homeostasis of CD4+ CD25+ regulatory T cells. J Immunol. 2003;171:3348–52.

    Article  CAS  PubMed  Google Scholar 

  72. Tai X, Van Laethem F, Sharpe AH, Singer A. Induction of autoimmune disease in CTLA-4−/− mice depends on a specific CD28 motif that is required for in vivo costimulation. Proc Natl Acad Sci USA. 2007;104:13756–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zheng SG, Wang JH, Koss MN, et al. CD4+ and CD8+ regulatory T cells generated ex vivo with IL-2 and TGF-beta suppress a stimulatory graft-versus-host disease with a lupus-like syndrome. J Immunol. 2004;172:1531–9.

    Article  CAS  PubMed  Google Scholar 

  74. Qureshi OS, Zheng Y, Nakamura K, et al. Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science. 2011;332:600–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Deppong CM, Bricker TL, Rannals BD, et al. CTLA4Ig inhibits effector T cells through regulatory T cells and TGF-β. J Immunol. 2013;191:3082–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Munn DH, Sharma MD, Mellor AL. Ligation of B7-1/B7-2 by human CD4+ T cells triggers indoleamine 2,3-dioxygenase activity in dendritic cells. J Immunol. 2004;172:4100–10.

    Article  CAS  PubMed  Google Scholar 

  77. Fallarino F, Grohmann U, Hwang KW, et al. Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol. 2003;4:1206–12.

    Article  CAS  PubMed  Google Scholar 

  78. Onishi Y, Fehervari Z, Yamaguchi T, Sakaguchi S. Foxp3+ natural regulatory T cells preferentially form aggregates on dendritic cells in vitro and actively inhibit their maturation. Proc Natl Acad Sci USA. 2008;105:10113–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Levitsky J, Miller J, Huang X, et al. Inhibitory effects of belatacept on allospecific regulatory T-cell generation in humans. Transplantation. 2013;96:689–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Pieper J, Herrath J, Raghavan S, et al. CTLA4-Ig (abatacept) therapy modulates T cell effector functions in autoantibody-positive rheumatoid arthritis patients. BMC Immunol. 2013;14:34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Hirose K, Posselt A, Stock P, et al. Treatment of kidney transplant with the novel co-stimulatory blocker (BMS-224818) and anti-IL2 receptor antibody does not impede the develepment of regulatory T cells [abstract no. 1036]. Am J Transplant. 2004;4:308–456.

    Article  Google Scholar 

  82. Ahmadi SM, Hölzl MA, Mayer E, et al. CTLA4-Ig preserves thymus-derived T regulatory cells. Transplantation. 2014;98:1158–64.

    Article  CAS  PubMed  Google Scholar 

  83. Razmara M, Hilliard B, Ziarani AK, et al. CTLA-4·Ig converts naive CD4+ CD25− T cells into CD4+ CD25+ regulatory T cells. Int Immunol. 2008;20:471–83.

    Article  CAS  PubMed  Google Scholar 

  84. Tsai M-K, Ho H-N, Chien HF, et al. The role of B7 ligands (CD80 and CD86) in CD152-mediated allograft tolerance: a crosscheck hypothesis. Transplantation. 2004;77:48–54.

    Article  CAS  PubMed  Google Scholar 

  85. Kirk AD, Tadaki DK, Celniker A, et al. Induction therapy with monoclonal antibodies specific for CD80 and CD86 delays the onset of acute renal allograft rejection in non-human primates. Transplantation. 2001;72:377–84.

    Article  CAS  PubMed  Google Scholar 

  86. Hausen B, Klupp J, Christians U, et al. Coadministration of either cyclosporine or steroids with humanized monoclonal antibodies against CD80 and CD86 successfully prolong allograft survival after life supporting renal transplantation in cynomolgus monkeys. Transplantation. 2001;72:1128–37.

    Article  CAS  PubMed  Google Scholar 

  87. Bîrsan T, Hausen B, Higgins JP, et al. Treatment with humanized monoclonal antibodies against CD80 and CD86 combined with sirolimus prolongs renal allograft survival in cynomolgus monkeys. Transplantation. 2003;75:2106–13.

    Article  PubMed  CAS  Google Scholar 

  88. Boulday G, Ashton-Chess J, Bernard P, et al. Association of rapamycin and co-stimulation blockade using anti-B7 antibodies in renal allotransplantation in baboons. Nephrol Dial Transplant. 2004;19:1752–60.

    Article  CAS  PubMed  Google Scholar 

  89. Todo S, Yamashita K, Goto R, et al. A pilot study of operational tolerance with a regulatory T-cell-based cell therapy in living donor liver transplantation. Hepatology. 2016;64(2):632–43.

    Article  CAS  PubMed  Google Scholar 

  90. Vincenti F, Larsen C, Durrbach A, et al. Costimulation blockade with belatacept in renal transplantation. N Engl J Med. 2005;353:770–81.

    Article  CAS  PubMed  Google Scholar 

  91. Vincenti F, Charpentier B, Vanrenterghem Y, et al. A phase III study of belatacept-based immunosuppression regimens versus cyclosporine in renal transplant recipients (BENEFIT study). Am J Transplant. 2010;10:535–46.

    Article  CAS  PubMed  Google Scholar 

  92. Durrbach A, Pestana JM, Pearson T, et al. A phase III study of belatacept versus cyclosporine in kidney transplants from extended criteria donors (BENEFIT-EXT study). Am J Transplant. 2010;10:547–57.

    Article  CAS  PubMed  Google Scholar 

  93. Vincenti F, Larsen CP, Alberu J, et al. Three-year outcomes from BENEFIT, a randomized, active-controlled, parallel-group study in adult kidney transplant recipients. Am J Transplant. 2012;12:210–7.

    Article  CAS  PubMed  Google Scholar 

  94. Pestana JOM, Grinyo JM, Vanrenterghem Y, et al. Three-year outcomes from BENEFIT-EXT: a phase III study of belatacept versus cyclosporine in recipients of extended criteria donor kidneys. Am J Transplant. 2012;12:630–9.

    Article  CAS  PubMed  Google Scholar 

  95. Rostaing L, Vincenti F, Grinyó J, et al. Long-term belatacept exposure maintains efficacy and safety at 5 years: results from the long-term extension of the BENEFIT study. Am J Transplant. 2013;13:2875–83.

    Article  CAS  PubMed  Google Scholar 

  96. Durrbach A, Pestana JM, Florman S, et al. Long-term outcomes in belatacept-treated vs. cyclosporine-treated recipients of extended criteria donor kidneys: final results from BENEFIT-EXT, a phase III randomized study. Am J Transplant. 2016. doi:10.1111/ajt.13830 (Epub ahead of print).

    Google Scholar 

  97. Vincenti F, Rostaing L, Grinyo J, et al. Belatacept and long-term outcomes in kidney transplantation. N Engl J Med. 2016;374:333–43.

    Article  CAS  PubMed  Google Scholar 

  98. Ville S, Poirier N, Branchereau J, et al. Anti-CD28 antibody and belatacept exert differential effects on mechanisms of renal allograft rejection. J Am Soc Nephrol. 2016. doi:10.1681/ASN.2015070774 (Epub ahead of print).

    PubMed  Google Scholar 

  99. Ekberg H, Tedesco-Silva H, Demirbas A, et al. Reduced exposure to calcineurin inhibitors in renal transplantation. N Engl J Med. 2007;357:2562–75.

    Article  CAS  PubMed  Google Scholar 

  100. Van Gelder T, Hesselink DA. Belatacept: a game changer? Transplantation. 2016;100:1390–2.

    Article  PubMed  Google Scholar 

  101. Rostaing L, Massari P, Garcia VD, et al. Switching from calcineurin inhibitor-based regimens to a belatacept-based regimen in renal transplant recipients: a randomized phase II study. Clin J Am Soc Nephrol. 2011;6:430–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Larsen CP, Grinyó J, Medina-Pestana J, et al. Belatacept-based regimens versus a cyclosporine A-based regimen in kidney transplant recipients: 2-year results from the BENEFIT and BENEFIT-EXT studies. Transplantation. 2010;90:1528–35.

    Article  CAS  PubMed  Google Scholar 

  103. Bigot J, Pilon C, Matignon M, et al. Transcriptomic signature of the CD24(hi) CD38(hi) transitional B cells associated with an immunoregulatory phenotype in renal transplant recipient. Am J Transplant. 2016. doi:10.1111/ajt.13904 (Epub ahead of print).

    PubMed  Google Scholar 

  104. Lombardi G, Sidhu S, Daly M, et al. Are primary alloresponses truly primary? Int Immunol. 1990;2:9–13.

    Article  CAS  PubMed  Google Scholar 

  105. Heeger PS, Greenspan NS, Kuhlenschmidt S, et al. Pretransplant frequency of donor-specific, IFN-gamma-producing lymphocytes is a manifestation of immunologic memory and correlates with the risk of posttransplant rejection episodes. J Immunol. 1999;163:2267–75.

    CAS  PubMed  Google Scholar 

  106. Weaver TA, Charafeddine AH, Agarwal A, et al. Alefacept promotes co-stimulation blockade based allograft survival in nonhuman primates. Nat Med. 2009;15:746–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lo DJ, Weaver TA, Stempora L, et al. Selective targeting of human alloresponsive CD8+ effector memory T cells based on CD2 expression. Am J Transplant. 2011;11:22–33.

    Article  CAS  PubMed  Google Scholar 

  108. Bertram EM, Lau P, Watts TH. Temporal segregation of 4-1BB versus CD28-mediated costimulation: 4-1BB ligand influences T cell numbers late in the primary response and regulates the size of the T cell memory response following influenza infection. J Immunol. 2002;168:3777–85.

    Article  CAS  PubMed  Google Scholar 

  109. Croft M, Bradley LM, Swain SL. Naive versus memory CD4 T cell response to antigen: memory cells are less dependent on accessory cell costimulation and can respond to many antigen-presenting cell types including resting B cells. J Immunol. 1994;152:2675–85.

    CAS  PubMed  Google Scholar 

  110. Flynn K, Müllbacher A. Memory alloreactive cytotoxic T cells do not require costimulation for activation in vitro. Immunol Cell Biol. 1996;74:413–20.

    Article  CAS  PubMed  Google Scholar 

  111. Ndejembi MP, Teijaro JR, Patke DS, et al. Control of memory CD4 T cell recall by the CD28/B7 costimulatory pathway. J Immunol. 2006;177:7698–706.

    Article  CAS  PubMed  Google Scholar 

  112. Espinosa J, Herr F, Tharp G, et al. CD57(+) CD4 T cells underlie belatacept-resistant allograft rejection. Am J Transplant. 2016;16:1102–12.

    Article  CAS  PubMed  Google Scholar 

  113. de Graav GN, Hesselink DA, Dieterich M, et al. An acute cellular rejection with detrimental outcome occurring under belatacept-based immunosuppressive therapy: an immunological analysis. Transplantation. 2016;100:1111–9.

    Article  PubMed  CAS  Google Scholar 

  114. Tarazona R, DelaRosa O, Alonso C, et al. Increased expression of NK cell markers on T lymphocytes in aging and chronic activation of the immune system reflects the accumulation of effector/senescent T cells. Mech Ageing Dev. 2000;121:77–88.

    Article  CAS  PubMed  Google Scholar 

  115. Palmer BE, Blyveis N, Fontenot AP, Wilson CC. Functional and phenotypic characterization of CD57+ CD4+ T cells and their association with HIV-1-induced T cell dysfunction. J Immunol. 2005;175:8415–23.

    Article  CAS  PubMed  Google Scholar 

  116. Pourgheysari B, Khan N, Best D, et al. The cytomegalovirus-specific CD4+ T-cell response expands with age and markedly alters the CD4+ T-cell repertoire. J Virol. 2007;81:7759–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Focosi D, Bestagno M, Burrone O, Petrini M. CD57+ T lymphocytes and functional immune deficiency. J Leukoc Biol. 2010;87:107–16.

    Article  CAS  PubMed  Google Scholar 

  118. Chong LK, Aicheler RJ, Llewellyn-Lacey S, et al. Proliferation and interleukin 5 production by CD8hi CD57+ T cells. Eur J Immunol. 2008;38:995–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Borowski AB, Boesteanu AC, Mueller YM, et al. Memory CD8+ T cells require CD28 costimulation. J Immunol. 2007;179:6494–503.

    Article  CAS  PubMed  Google Scholar 

  120. Schmidt D, Goronzy JJ, Weyand CM. CD4+ CD7− CD28− T cells are expanded in rheumatoid arthritis and are characterized by autoreactivity. J Clin Investig. 1996;97:2027–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Fagnoni FF, Vescovini R, Mazzola M, et al. Expansion of cytotoxic CD8+ CD28− T cells in healthy ageing people, including centenarians. Immunology. 1996;88:501–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Vivar N, Ruffin N, Sammicheli S, et al. Survival and proliferation of CD28− T cells during HIV-1 infection relate to the amplitude of viral replication. J Infect Dis. 2011;203:1658–67.

    Article  CAS  PubMed  Google Scholar 

  123. van Leeuwen EMM, Remmerswaal EBM, Vossen MTM, et al. Emergence of a CD4+ CD28− granzyme B+, cytomegalovirus-specific T cell subset after recovery of primary cytomegalovirus infection. J Immunol. 2004;173:1834–41.

    Article  PubMed  Google Scholar 

  124. Kato M, Matsuguchi T, Ono Y, et al. Characterization of CD28(−)CD4(+) T cells in living kidney transplant patients with long-term allograft acceptance. Hum Immunol. 2001;62:1335–45.

    Article  CAS  PubMed  Google Scholar 

  125. Pawlik A, Florczak M, Masiuk M, et al. The expansion of CD4+ CD28− T cells in patients with chronic kidney graft rejection. Transplant Proc. 2003;35:2902–4.

    Article  CAS  PubMed  Google Scholar 

  126. de Graav GN, Hesselink DA, Dieterich M, et al. Down-regulation of surface CD28 under belatacept treatment: an escape mechanism for antigen-reactive T-cells. PLoS One. 2016;11:e0148604.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Thibaudin D, Alamartine E, de Filippis JP, et al. Advantage of antithymocyte globulin induction in sensitized kidney recipients: a randomized prospective study comparing induction with and without antithymocyte globulin. Nephrol Dial Transplant. 1998;13:711–5.

    Article  CAS  PubMed  Google Scholar 

  128. D’Addio F, Boenisch O, Magee CN, et al. Prolonged, low-dose anti-thymocyte globulin, combined with CTLA4-Ig, promotes engraftment in a stringent transplant model. PLoS One. 2013;8:e53797.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Feng X, Kajigaya S, Solomou EE, et al. Rabbit ATG but not horse ATG promotes expansion of functional CD4+ CD25highFOXP3+ regulatory T cells in vitro. Blood. 2008;111:3675–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Ferrajoli A, O’Brien S, Keating MJ. Alemtuzumab: a novel monoclonal antibody. Expert Opin Biol Ther. 2001;1:1059–65.

    Article  CAS  PubMed  Google Scholar 

  131. Morgan RD, O’Callaghan JM, Knight SR, Morris PJ. Alemtuzumab induction therapy in kidney transplantation: a systematic review and meta-analysis. Transplantation. 2012;93:1179–88.

    Article  CAS  PubMed  Google Scholar 

  132. Miller GT, Hochman PS, Meier W, et al. Specific interaction of lymphocyte function-associated antigen 3 with CD2 can inhibit T cell responses. J Exp Med. 1993;178:211–22.

    Article  CAS  PubMed  Google Scholar 

  133. Cooper JC, Morgan G, Harding S, et al. Alefacept selectively promotes NK cell-mediated deletion of CD45R0+ human T cells. Eur J Immunol. 2003;33:666–75.

    Article  CAS  PubMed  Google Scholar 

  134. Snanoudj R, Rouleau M, Bidère N, et al. A role for CD2 antibodies (BTI-322 and its humanized form) in the in vivo elimination of human T lymphocytes infiltrating an allogeneic human skin graft in SCID mice: an Fcgamma receptor-related mechanism involving co-injected human NK cells. Transplantation. 2004;78:50–8.

    Article  CAS  PubMed  Google Scholar 

  135. Noël C, Abramowicz D, Durand D, et al. Daclizumab versus antithymocyte globulin in high-immunological-risk renal transplant recipients. J Am Soc Nephrol. 2009;20:1385–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Hellemans R, Hazzan M, Durand D, et al. Daclizumab versus rabbit antithymocyte globulin in high-risk renal transplants: five-year follow-up of a randomized study. Am J Transplant. 2015;15:1923–32.

    Article  CAS  PubMed  Google Scholar 

  137. Lo DJ, Anderson DJ, Weaver TA, et al. Belatacept and sirolimus prolong nonhuman primate renal allograft survival without a requirement for memory T cell depletion. Am J Transplant. 2013;13:320–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Ferguson R, Grinyó J, Vincenti F, et al. Immunosuppression with belatacept-based, corticosteroid-avoiding regimens in de novo kidney transplant recipients. Am J Transplant. 2011;11:66–76.

    Article  CAS  PubMed  Google Scholar 

  139. Bestard O, Cassis L, Cruzado JM, et al. Costimulatory blockade with mTor inhibition abrogates effector T-cell responses allowing regulatory T-cell survival in renal transplantation. Transpl Int. 2011;24:451–60.

    Article  CAS  PubMed  Google Scholar 

  140. Kirk AD, Guasch A, Xu H, et al. Renal transplantation using belatacept without maintenance steroids or calcineurin inhibitors. Am J Transplant. 2014;14:1142–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Lebranchu Y, Snanoudj R, Toupance O, et al. Five-year results of a randomized trial comparing de novo sirolimus and cyclosporine in renal transplantation: the SPIESSER study. Am J Transplant. 2012;12:1801–10.

    Article  CAS  PubMed  Google Scholar 

  142. Durrbach A, Rostaing L, Tricot L, et al. Prospective comparison of the use of sirolimus and cyclosporine in recipients of a kidney from an expanded criteria donor. Transplantation. 2008;85:486–90.

    Article  PubMed  Google Scholar 

  143. Vanhove B, Laflamme G, Coulon F, et al. Selective blockade of CD28 and not CTLA-4 with a single-chain Fv-alpha1-antitrypsin fusion antibody. Blood. 2003;102:564–70.

    Article  CAS  PubMed  Google Scholar 

  144. Poirier N, Dilek N, Mary C, et al. FR104, an antagonist anti-CD28 monovalent fab’ antibody, prevents alloimmunization and allows calcineurin inhibitor minimization in nonhuman primate renal allograft. Am J Transplant. 2015;15:88–100.

    Article  CAS  PubMed  Google Scholar 

  145. Poirier N, Chevalier M, Mary C, et al. Selective CD28 antagonist blunts memory immune responses and promotes long-term control of skin inflammation in nonhuman primates. J Immunol. 2016;196:274–83.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to acknowledge Professor Bernard Charpentier for his permanent support and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Durrbach.

Ethics declarations

Funding

None of the authors received financial assistance for the preparation of this article.

Conflict of interest

A Durrbach and F. Herr received a grant from Bristol-Myers Squibb. A. Durrbach has served on an advisory board for Bristol-Myers Squibb. M. Brunel and N. Roders declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herr, F., Brunel, M., Roders, N. et al. Co-stimulation Blockade Plus T-Cell Depletion in Transplant Patients: Towards a Steroid- and Calcineurin Inhibitor-Free Future?. Drugs 76, 1589–1600 (2016). https://doi.org/10.1007/s40265-016-0656-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-016-0656-2

Keywords

Navigation