, Volume 76, Issue 13, pp 1257–1270 | Cite as

Therapeutic Monoclonal Antibodies for the Treatment of Chronic Obstructive Pulmonary Disease

  • Maria Gabriella Matera
  • Clive Page
  • Paola Rogliani
  • Luigino Calzetta
  • Mario Cazzola
Review Article


Chronic obstructive pulmonary disease (COPD) is a disorder characterized by a complex chronic inflammatory response that is largely poorly responsive to treatment with corticosteroids. Consequently, there is a huge need to find effective anti-inflammatory agents for the treatment of patients with this disease. Inhibition of cytokines and chemokines or their receptors using monoclonal antibodies (mAbs) could be a potential strategy to treat the inflammatory component of COPD. In this article, we review the therapeutic potential of some of these mAbs; however, to date there has been little or no therapeutic effect of any mAb directed against cytokines or chemokines in patients with COPD. This may reflect the complexity of COPD in which there is no dominant role for any single cytokine or chemokine. It is also likely that since the umbrella term COPD covers many endotypes having different underlying mechanisms, mAbs directed towards specific cytokines or chemokines should be tested in restricted and focused populations.


Compliance with Ethical Standards

Conflict of interest

Maria Gabriella Matera, Clive Page, Paola Rogliani, Luigino Calzetta and Mario Cazzola have no relevant affiliations or financial involvement with any organization or entity with a financial interest in, or financial conflict with, the subject matter or materials discussed in the manuscript, including employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.


This manuscript was not funded/sponsored, and no writing assistance was utilized in its production.


  1. 1.
    Cazzola M, Page CP, Calzetta L, Matera MG. Emerging anti-inflammatory strategies for COPD. Eur Respir J. 2012;40(3):724–41.CrossRefPubMedGoogle Scholar
  2. 2.
    Barnes PJ. Cellular and molecular mechanisms of chronic obstructive pulmonary disease. Clin Chest Med. 2014;35(1):71–86.CrossRefPubMedGoogle Scholar
  3. 3.
    Barnes PJ. The cytokine network in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2009;41(6):631–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Caramori G, Adcock IM, Di Stefano A, Chung KF. Cytokine inhibition in the treatment of COPD. Int J Chron Obstruct Pulmon Dis. 2014;9:397–412.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Barnes PJ. New anti-inflammatory targets for chronic obstructive pulmonary disease. Nat Rev Drug Discov. 2013;12(7):543–59.Google Scholar
  6. 6.
    Fellner RC, Terryah ST, Tarran R. Inhaled protein/peptide-based therapies for respiratory disease. Mol Cell Pediatr. 2016;3(1):16.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Matera MG, Calzetta L, Cazzola M. TNF-α inhibitors in asthma and COPD: we must not throw the baby out with the bath water. Pulm Pharmacol Ther. 2010;23(2):121–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Hacievliyagil SS, Gunen H, Mutlu LC, Karabulut AB, Temel I. Association between cytokines in induced sputum and severity of chronic obstructive pulmonary disease. Respir Med. 2006;100(5):846–54.CrossRefPubMedGoogle Scholar
  9. 9.
    Bathoorn E, Liesker JJ, Postma DS, et al. Change in inflammation in out-patient COPD patients from stable phase to a subsequent exacerbation. Int J Chron Obstruct Pulmon Dis. 2009;4:101–9.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Banerjee A, Koziol-White C, Panettieri R Jr. p38 MAPK inhibitors, IKK2 inhibitors, and TNFα inhibitors in COPD. Curr Opin Pharmacol. 2012;12(3):287–92.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Suissa S, Ernst P, Hudson M. TNF-α antagonists and the prevention of hospitalisation for chronic obstructive pulmonary disease. Pulm Pharmacol Ther. 2008;21(1):234–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Aaron SD, Vandemheen KL, Maltais F, et al. TNFα antagonists for acute exacerbations of COPD: a randomised double-blind controlled trial. Thorax. 2013;68(2):142–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Dejager L, Dendoncker K, Eggermont M, et al. Neutralizing TNFα restores glucocorticoid sensitivity in a mouse model of neutrophilic airway inflammation. Mucosal Immunol. 2015;8(6):1212–25.CrossRefPubMedGoogle Scholar
  14. 14.
    Yilmaz O, Karaman M, Bagriyanik HA, et al. Comparison of TNF antagonism by etanercept and dexamethasone on airway epithelium and remodeling in an experimental model of asthma. Int Immunopharmacol. 2013;17(3):768–73.CrossRefPubMedGoogle Scholar
  15. 15.
    Mukaida N. Pathophysiological roles of interleukin-8/CXCL8 in pulmonary diseases. Am J Physiol Lung Cell Mol Physiol. 2003;284(4):L566–77.CrossRefPubMedGoogle Scholar
  16. 16.
    Beeh KM, Kornmann O, Buhl R, Culpitt SV, Giembycz MA, Barnes PJ. Neutrophil chemotactic activity of sputum from patients with COPD: role of interleukin 8 and leukotriene B4. Chest. 2003;123(4):1240–7.CrossRefPubMedGoogle Scholar
  17. 17.
    Mahler DA, Huang S, Tabrizi M, Bell GM. Efficacy and safety of a monoclonal antibody recognizing interleukin-8 in COPD: a pilot study. Chest. 2004;126(3):926–34.CrossRefPubMedGoogle Scholar
  18. 18.
    Yang XD, Corvalan JR, Wang P, Roy CM, Davis CG. Fully human anti-interleukin-8 monoclonal antibodies: potential therapeutics for the treatment of inflammatory disease states. J Leukoc Biol. 1999;66(3):401–10.PubMedGoogle Scholar
  19. 19.
    Proudfoot AE, Handel TM, Johnson Z, et al. Glycosaminoglycan binding and oligomerization are essential for the in vivo activity of certain chemokines. Proc Natl Acad Sci. 2003;100(4):1885–90.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Mulloy B, Hogwood J, Gray E, Lever R, Page CP. Pharmacology of heparin and related drugs. Pharmacol Rev. 2016;68(1):76–141.CrossRefPubMedGoogle Scholar
  21. 21.
    Brown RA, Allegra L, Matera MG, Page CP, Cazzola M. Additional clinical benefit of enoxaparin in COPD patients receiving salmeterol and fluticasone propionate in combination. Pulm Pharmacol Ther. 2006;19(6):419–24.CrossRefPubMedGoogle Scholar
  22. 22.
    Ockham Biotech. Results of a phase IIB study of inhaled heparin in moderate to severe COPD patients. Available at: http://www.ockhambiotech.com/european-patent.php. Accessed 18 June 2016.
  23. 23.
    Adage T, del Bene F, Fiorentini F, et al. PA401, a novel CXCL8-based biologic therapeutic with increased glycosaminoglycan binding, reduces bronchoalveolar lavage neutrophils and systemic inflammatory markers in a murine model of LPS-induced lung inflammation. Cytokine. 2015;76(2):433–41.CrossRefPubMedGoogle Scholar
  24. 24.
    Abderrazak A, Syrovets T, Couchie D, et al. NLRP3 inflammasome: from a danger signal sensor to a regulatory node of oxidative stress and inflammatory diseases. Redox Biol. 2015;4:296–307.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Rogliani P, Calzetta L, Ora J, Matera MG. Canakinumab for the treatment of chronic obstructive pulmonary disease. Pulm Pharmacol Ther. 2015;31:15–27.CrossRefPubMedGoogle Scholar
  26. 26.
    Lappalainen U, Whitsett JA, Wert SE, Tichelaar JW, Bry K. Interleukin-1β causes pulmonary inflammation, emphysema, and airway remodeling in the adult murine lung. Am J Respir Cell Mol Biol. 2005;32(4):311–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Botelho FM, Bauer CM, Finch D, et al. IL-1α/IL-1R1 expression in chronic obstructive pulmonary disease and mechanistic relevance to smoke-induced neutrophilia in mice. PLoS One. 2011;6(12):e28457.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Brusselle G, Bracke K. Targeting immune pathways for therapy in asthma and chronic obstructive pulmonary disease. Ann Am Thorac Soc. 2014;11(Suppl 5):S322–8.CrossRefPubMedGoogle Scholar
  29. 29.
    Calverley PM, Sethi S, Dawson M, Ward C, Newbold P, Van Der Merwe R. A phase 2 study of MEDI8968, an anti-interleukin-1 receptor I (IL-1RI) monoclonal antibody, in adults with moderate-to-very severe chronic obstructive pulmonary disease (COPD) [abstract]. Am J Respir Crit Care Med. 2015;191:A3964.CrossRefGoogle Scholar
  30. 30.
    de Boer WI. Perspectives for cytokine antagonist therapy in COPD. Drug Discov Today. 2005;10(2):93–106.CrossRefPubMedGoogle Scholar
  31. 31.
    George L, Brightling CE. Eosinophilic airway inflammation: role in asthma and chronic obstructive pulmonary disease. Ther Adv Chronic Dis. 2016;7(1):34–51.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Singh D, Kolsum U, Brightling CE, Locantore N, Agusti A, Tal-Singer R. Eosinophilic inflammation in COPD: prevalence and clinical characteristics. Eur Respir J. 2014;44(6):1697–700.CrossRefPubMedGoogle Scholar
  33. 33.
    Eltboli O, Mistry V, Barker B, Brightling CE. Relationship between blood and bronchial submucosal eosinophilia and reticular basement membrane thickening in chronic obstructive pulmonary disease. Respirology. 2015;20(4):667–70.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Barnes PJ. Therapeutic approaches to asthma-chronic obstructive pulmonary disease overlap syndromes. J Allergy Clin Immunol. 2015;136(3):531–45.CrossRefPubMedGoogle Scholar
  35. 35.
    Nair PK, Dasgupta A, Kjarsgaard M, et al. Mepolizumab in COPD with eosinophilic bronchitis: a randomized clinical trial [abstract]. J Allergy Clin Immunol. 2016;137:AB392.Google Scholar
  36. 36.
    Brightling CE, Bleecker ER, Panettieri RA Jr, et al. Benralizumab for chronic obstructive pulmonary disease and sputum eosinophilia: a randomised, double-blind, placebo-controlled, phase 2a study. Lancet Respir Med. 2014;2(11):891–901.CrossRefPubMedGoogle Scholar
  37. 37.
    Fulkerson PC, Schollaert KL, Bouffi C, Rothenberg ME. IL-5 triggers a cooperative cytokine network that promotes eosinophil precursor maturation. J Immunol. 2014;193(8):4043–52.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Rincon M, Irvin CG. Role of IL-6 in asthma and other inflammatory pulmonary diseases. Int J Biol Sci. 2012;8(9):1281–90.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Yao X, Huang J, Zhong H, et al. Targeting interleukin-6 in inflammatory autoimmune diseases and cancers. Pharmacol Ther. 2014;141(2):125–39.CrossRefPubMedGoogle Scholar
  40. 40.
    Agusti A, Edwards LD, Rennard SI, et al. Persistent systemic inflammation is associated with poor clinical outcomes in COPD: a novel phenotype. PLoS One. 2012;7(5):e37483.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Hurst JR, Perera WR, Wilkinson TM, Donaldson GC, Wedzicha JA. Systemic and upper and lower airway inflammation at exacerbation of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2006;173(1):71–8.CrossRefPubMedGoogle Scholar
  42. 42.
    Pinto-Plata VM, Livnat G, Girish M, et al. Systemic cytokines, clinical and physiological changes in patients hospitalized for exacerbation of COPD. Chest. 2007;131(1):37–43.CrossRefPubMedGoogle Scholar
  43. 43.
    Chaouat A, Savale L, Chouaid C, et al. Role for interleukin-6 in COPD-related pulmonary hypertension. Chest. 2009;136(3):678–87.CrossRefPubMedGoogle Scholar
  44. 44.
    May RD, Fung M. Strategies targeting the IL-4/IL-13 axes in disease. Cytokine. 2015;75(1):89–116.CrossRefPubMedGoogle Scholar
  45. 45.
    van der Pouw Kraan TC, Küçükaycan M, Bakker AM, et al. Chronic obstructive pulmonary disease is associated with the −1055 IL-13 promoter polymorphism. Genes Immun. 2002;3(7):436–9.CrossRefPubMedGoogle Scholar
  46. 46.
    He JQ, Connett JE, Anthonisen NR, Sandford AJ. Polymorphisms in the IL13, IL13RA1, and IL4RA genes and rate of decline in lung function in smokers. Am J Respir Cell Mol Biol. 2003;28(3):379–85.CrossRefPubMedGoogle Scholar
  47. 47.
    Barczyk A, Pierzchała W, Kon OM, Cosio B, Adcock IM, Barnes PJ. Cytokine production by bronchoalveolar lavage T lymphocytes in chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2006;117(6):1484–92.CrossRefPubMedGoogle Scholar
  48. 48.
    Lee JS, Rosengart MR, Kondragunta V, et al. Inverse association of plasma IL-13 and inflammatory chemokines with lung function impairment in stable COPD: a cross-sectional cohort study. Respir Res. 2007;8:64.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Makris D, Lazarou S, Alexandrakis M, et al. Tc2 response at the onset of COPD exacerbations. Chest. 2008;134(3):483–8.CrossRefPubMedGoogle Scholar
  50. 50.
    Christenson SA, Steiling K, van den Berge M, et al. Asthma-COPD overlap. Clinical relevance of genomic signatures of type 2 inflammation in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2015;191(7):758–66.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Mitchell PD, El-Gammal AI, O’Byrne PM. Emerging monoclonal antibodies as targeted innovative therapeutic approaches to asthma. Clin Pharmacol Ther. 2016;99(1):38–48.CrossRefPubMedGoogle Scholar
  52. 52.
    Fragoulis GE, Siebert S, McInnes IB. Therapeutic targeting of IL-17 and IL-23 cytokines in immune-mediated diseases. Annu Rev Med. 2016;67:337–53.CrossRefPubMedGoogle Scholar
  53. 53.
    Aggarwal S, Gurney AL. IL-17: prototype member of an emerging cytokine family. J Leukoc Biol. 2002;71(1):1–8.PubMedGoogle Scholar
  54. 54.
    Beringer A, Noack M, Miossec P. IL-17 in chronic inflammation: from discovery to targeting. Trends Mol Med. 2016;22(3):230–41.CrossRefPubMedGoogle Scholar
  55. 55.
    Cazzola M, Matera MG. IL-17 in chronic obstructive pulmonary disease. Expert Rev Respir Med. 2012;6(2):135–8.CrossRefPubMedGoogle Scholar
  56. 56.
    Hartupee J, Liu C, Novotny M, Li X, Hamilton T. IL-17 enhances chemokine gene expression through mRNA stabilization. J Immunol. 2007;179(6):4135–41.CrossRefPubMedGoogle Scholar
  57. 57.
    Zrioual S, Ecochard R, Tournadre A, Lenief V, Cazalis MA, Miossec P. Genome-wide comparison between IL-17A- and IL-17F-induced effects in human rheumatoid arthritis synoviocytes. J Immunol. 2009;182(5):3112–20.CrossRefPubMedGoogle Scholar
  58. 58.
    Kolls JK, Lindén A. Interleukin-17 family members and inflammation. Immunity. 2004;21(4):467–76.CrossRefPubMedGoogle Scholar
  59. 59.
    Jiang Z, Zhu L. Update on molecular mechanisms of corticosteroid resistance in chronic obstructive pulmonary disease. Pulm Pharmacol Ther. 2016;37:1–8.CrossRefPubMedGoogle Scholar
  60. 60.
    Di Stefano A, Caramori G, Gnemmi I, et al. T helper type 17-related cytokine expression is increased in the bronchial mucosa of stable chronic obstructive pulmonary disease patients. Clin Exp Immunol. 2009;157(2):316–24.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Fujii U, Miyahara N, Taniguchi A, et al. Importance of IL-23 to the development of elastase-induced pulmonary inflammation and emphysema [abstract]. Am J Respir Crit Care Med. 2015;191:A2715.Google Scholar
  62. 62.
    Chang Y, Al-Alwan L, Audusseau S, et al. Genetic deletion of IL-17A reduces cigarette smoke-induced inflammation and alveolar type II cell apoptosis. Am J Physiol Lung Cell Mol Physiol. 2014;306(2):L132–43.CrossRefPubMedGoogle Scholar
  63. 63.
    Roos AB, Sandén C, Mori M, Bjermer L, Stampfli MR, Erjefält JS. IL-17A is elevated in end-stage chronic obstructive pulmonary disease and contributes to cigarette smoke-induced lymphoid neogenesis. Am J Respir Crit Care Med. 2015;191(11):1232–41.CrossRefPubMedGoogle Scholar
  64. 64.
    Chang Y, Al-Alwan L, Alshakfa S, et al. Upregulation of IL-17A/F from human lung tissue explants with cigarette smoke exposure: implications for COPD. Respir Res. 2014;15:145.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Zhang L, Cheng Z, Liu W, Wu K. Expression of interleukin (IL)-10, IL-17A and IL-22 in serum and sputum of stable chronic obstructive pulmonary disease patients. COPD. 2013;10(4):459–65.CrossRefPubMedGoogle Scholar
  66. 66.
    Roos AB, Sethi S, Nikota J, et al. IL-17A and the promotion of neutrophilia in acute exacerbation of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2015;192(4):428–37.CrossRefPubMedGoogle Scholar
  67. 67.
    Bartlett HS, Million RP. Targeting the IL-17-Th17 pathway. Nat Rev Drug Discov. 2015;14(1):11–2.CrossRefPubMedGoogle Scholar
  68. 68.
    Liang SC, Long AJ, Bennett F, et al. An IL-17F/A heterodimer protein is produced by mouse Th17 cells and induces airway neutrophil recruitment. J Immunol. 2007;179(11):7791–9.CrossRefPubMedGoogle Scholar
  69. 69.
    Shen N, Wang J, Zhao M, Pei F, He B. Anti-interleukin-17 antibodies attenuate airway inflammation in tobacco-smoke-exposed mice. Inhal Toxicol. 2011;23(4):212–8.CrossRefPubMedGoogle Scholar
  70. 70.
    Kirsten A, Watz H, Pedersen F, et al. The anti-IL-17A-antibody secukinumab does not attenuate ozone induced acute airway neutrophilia in healthy volunteers. Eur Respir J. 2013;41(1):239–41.CrossRefPubMedGoogle Scholar
  71. 71.
    Kolls JK, Kanaly ST, Ramsay AJJ. Interleukin-17: an emerging role in lung inflammation. Am J Respir Cell Mol Biol. 2003;28(1):9–11.CrossRefPubMedGoogle Scholar
  72. 72.
    Singh D. Chronic obstructive pulmonary disease, neutrophils and bacterial onfection: a complex web involving IL-17 and IL-22 unravels. EBioMedicine. 2015;2(11):1580–1.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Schmitz J, Owyang A, Oldham E, et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity. 2005;23(5):479–90.CrossRefPubMedGoogle Scholar
  74. 74.
    Luthi AU, Cullen SP, McNeela EA, et al. Suppression of interleukin-33 bioactivity through proteolysis by apoptotic caspases. Immunity. 2009;31(1):84–98.CrossRefPubMedGoogle Scholar
  75. 75.
    Xia J, Zhao J, Shang J, et al. Increased IL-33 expression in chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol. 2015;308(7):L619–27.CrossRefPubMedGoogle Scholar
  76. 76.
    Donovan C, Bourke JE, Vlahos R. Targeting the IL-33/IL-13 axis for respiratory viral infections. Trends Pharmacol Sci. 2016;37(4):252–61.CrossRefPubMedGoogle Scholar
  77. 77.
    Shang J, Zhao J, Wu X, Xu Y, Xie J, Zhao J. Interleukin-33 promotes inflammatory cytokine production in chronic airway inflammation. Biochem Cell Biol. 2015;93(4):359–66.CrossRefPubMedGoogle Scholar
  78. 78.
    Molofsky AB, Savage AK, Locksley RM. Interleukin-33 in tissue homeostasis, injury, and inflammation. Immunity. 2015;42(6):1005–19.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Carroll J. Genentech snags a PhII-ready IL-33 asthma/COPD drug from Amgen. Available at: http://www.fiercebiotech.com/biotech/genentech-snags-a-phii-ready-il-33-asthma-copd-drug-from-amgen. Accessed 18 June 2016.
  80. 80.
    Verhamme FM, Bracke KR, Joos GF, Brusselle GG. TGF-β superfamily in obstructive lung diseases: more suspects than TGF-β alone. Am J Respir Cell Mol Biol. 2015;52(6):653–62.CrossRefPubMedGoogle Scholar
  81. 81.
    Königshoff M, Kneidinger N, Eickelberg O. TGF-β signalling in COPD: deciphering genetic and cellular susceptibilities for future therapeutic regimens. Swiss Med Wkly. 2009;139(39–40):554–63.PubMedGoogle Scholar
  82. 82.
    Moore B, Murphy RF, Agrawal DK. Interaction of TGF-β with immune cells in airway disease. Curr Mol Med. 2008;8(5):427–36.CrossRefPubMedGoogle Scholar
  83. 83.
    Takizawa H, Tanaka M, Takami K, et al. Increased expression of transforming growth factor-beta1 in small airway epithelium from tobacco smokers and patients with chronic obstructive pulmonary disease (COPD). Am J Respir Crit Care Med. 2001;163(6):1476–83.CrossRefPubMedGoogle Scholar
  84. 84.
    Baarsma HA, Spanjer AI, Haitsma G, et al. Activation of WNT/β-catenin signaling in pulmonary fibroblasts by TGF-β1 is increased in chronic obstructive pulmonary disease. PLoS One. 2011;6(9):e25450.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Akhurst RJ, Hata A. Targeting the TGFβ signalling pathway in disease. Nat Rev Drug Discov. 2012;11(10):790–811.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Nussbaumer-Ochsner Y, Rabe KF. Systemic manifestations of COPD. Chest. 2011;139(1):165–73.CrossRefPubMedGoogle Scholar
  87. 87.
    Cazzola M, Matera MG, Rogliani P, Page C. Treating systemic effects of COPD. Trends Pharmacol Sci. 2007;28(10):544–50.CrossRefPubMedGoogle Scholar
  88. 88.
    Woodruff PG, Agusti A, Roche N, Singh D, Martinez FJ. Current concepts in targeting chronic obstructive pulmonary disease pharmacotherapy: making progress towards personalised management. Lancet. 2015;385(9979):1789–98.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Boyman O, Comte D, Spertini F. Adverse reactions to biologic agents and their medical management. Nat Rev Rheumatol. 2014;10(10):612–27.CrossRefPubMedGoogle Scholar
  90. 90.
    Guilleminault L, Azzopardi N, Arnoult C, et al. Fate of inhaled monoclonal antibodies after the deposition of aerosolized particles in the respiratory system. J Control Release. 2014;196:344–54.CrossRefPubMedGoogle Scholar
  91. 91.
    Lightwood D, O’Dowd V, Carrington B, et al. The discovery, engineering and characterisation of a highly potent anti-human IL-13 fab fragment designed for administration by inhalation. J Mol Biol. 2013;425(3):577–93.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Maria Gabriella Matera
    • 1
  • Clive Page
    • 2
  • Paola Rogliani
    • 3
  • Luigino Calzetta
    • 3
  • Mario Cazzola
    • 3
  1. 1.Department of Experimental MedicineSecond University of NaplesNaplesItaly
  2. 2.Sackler Institute of Pulmonary Pharmacology, King’s College LondonLondonUK
  3. 3.Department of Systems MedicineUniversity of Rome Tor VergataRomeItaly

Personalised recommendations