Drugs

, Volume 76, Issue 6, pp 639–646

The Emerging Role of PI3K Inhibitors in the Treatment of Hematological Malignancies: Preclinical Data and Clinical Progress to Date

Leading Article

Abstract

The phosphoinositide 3-kinase (PI3K)/Akt/mTOR pathway is implicated in the pathogenesis of lymphoma. Deeper understanding of the diversity and biological impact of this pathway has led to the development of specific inhibitors to this pathway. Preclinical data in cell lines, patient samples and disease models have broadened our understanding of PI3K inhibition. Several PI3K inhibitors are currently in advanced stages of clinical development. Idelalisib is the first agent of this new substance class to be approved in chronic lymphocytic leukemia and follicular lymphoma. Other agents specifically target different PI3K isoforms and show promising clinical efficacy.

References

  1. 1.
    Cantley LC. The phosphoinositide 3-kinase pathway. Science (New York, NY). 2002;296(5573):1655–7.CrossRefGoogle Scholar
  2. 2.
    Liu P, Cheng H, Roberts TM, Zhao JJ. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov. 2009;8(8):627–44.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Vanhaesebroeck B, Leevers SJ, Panayotou G, Waterfield MD. Phosphoinositide 3-kinases: a conserved family of signal transducers. Trends Biochem Sci. 1997;22(7):267–72.CrossRefPubMedGoogle Scholar
  4. 4.
    Vanhaesebroeck B, Stephens L, Hawkins P. PI3K signalling: the path to discovery and understanding. Nat Rev Mol Cell Biol. 2012;13(3):195–203.CrossRefPubMedGoogle Scholar
  5. 5.
    Katso R, Okkenhaug K, Ahmadi K, White S, Timms J, Waterfield MD. Cellular function of phosphoinositide 3-kinases: implications for development, homeostasis, and cancer. Annu Rev Cell Dev Biol. 2001;17:615–75.CrossRefPubMedGoogle Scholar
  6. 6.
    Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet. 2006;7(8):606–19.CrossRefPubMedGoogle Scholar
  7. 7.
    Song MS, Salmena L, Pandolfi PP. The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol. 2012;13(5):283–96.PubMedGoogle Scholar
  8. 8.
    Blachly JS, Baiocchi RA. Targeting PI3-kinase (PI3K), AKT and mTOR axis in lymphoma. Br J Haematol. 2014;167(1):19–32.CrossRefPubMedGoogle Scholar
  9. 9.
    Okkenhaug K, Vanhaesebroeck B. PI3K-signalling in B- and T-cells: insights from gene-targeted mice. Biochem Soc Trans. 2003;31(Pt 1):270–4.CrossRefPubMedGoogle Scholar
  10. 10.
    Rommel C, Camps M, Ji H. PI3K delta and PI3K gamma: partners in crime in inflammation in rheumatoid arthritis and beyond? Nat Rev Immunol. 2007;7(3):191–201.CrossRefPubMedGoogle Scholar
  11. 11.
    Kracker S, Curtis J, Ibrahim MA, Sediva A, Salisbury J, Campr V, et al. Occurrence of B-cell lymphomas in patients with activated phosphoinositide 3-kinase delta syndrome. J Allergy Clin Immunol. 2014;134(1):233–6.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Crank MC, Grossman JK, Moir S, Pittaluga S, Buckner CM, Kardava L, et al. Mutations in PIK3CD can cause hyper IgM syndrome (HIGM) associated with increased cancer susceptibility. J Clin Immunol. 2014;34(3):272–6.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Berenjeno IM, Guillermet-Guibert J, Pearce W, Gray A, Fleming S, Vanhaesebroeck B. Both p110alpha and p110beta isoforms of PI3K can modulate the impact of loss-of-function of the PTEN tumour suppressor. Biochem J. 2012;442(1):151–9.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Nakamura M, Nakashima S, Katagiri Y, Nozawa Y. Effect of wortmannin and 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002) on N-formyl-methionyl-leucyl-phenylalanine-induced phospholipase D activation in differentiated HL60 cells: possible involvement of phosphatidylinositol 3-kinase in phospholipase D activation. Biochem Pharmacol. 1997;53(12):1929–36.CrossRefPubMedGoogle Scholar
  15. 15.
    Knight ZA, Shokat KM. Chemically targeting the PI3K family. Biochem Soc Trans. 2007;35(Pt 2):245–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Marone R, Cmiljanovic V, Giese B, Wymann MP. Targeting phosphoinositide 3-kinase: moving towards therapy. Biochim Biophys Acta. 2008;1784(1):159–85.CrossRefPubMedGoogle Scholar
  17. 17.
    Jamieson S, Flanagan JU, Kolekar S, Buchanan C, Kendall JD, Lee WJ, et al. A drug targeting only p110alpha can block phosphoinositide 3-kinase signalling and tumour growth in certain cell types. Biochem J. 2011;438(1):53–62.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Jackson SP, Schoenwaelder SM, Goncalves I, Nesbitt WS, Yap CL, Wright CE, et al. PI 3-kinase p110beta: a new target for antithrombotic therapy. Nat Med. 2005;11(5):507–14.CrossRefPubMedGoogle Scholar
  19. 19.
    Lannutti BJ, Meadows SA, Herman SE, Kashishian A, Steiner B, Johnson AJ, et al. CAL-101, a p110delta selective phosphatidylinositol-3-kinase inhibitor for the treatment of B-cell malignancies, inhibits PI3K signaling and cellular viability. Blood. 2011;117(2):591–4.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Chaussade C, Rewcastle GW, Kendall JD, Denny WA, Cho K, Gronning LM, et al. Evidence for functional redundancy of class IA PI3K isoforms in insulin signalling. Biochem J. 2007;404(3):449–58.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Winkler DG, Faia KL, DiNitto JP, Ali JA, White KF, Brophy EE, et al. PI3K-delta and PI3K-gamma inhibition by IPI-145 abrogates immune responses and suppresses activity in autoimmune and inflammatory disease models. Chem Biol. 2013;20(11):1364–74.CrossRefPubMedGoogle Scholar
  22. 22.
    Hutter G, Zimmermann Y, Zoellner AK, Irrgang P, Weigert O, Hiddemann W, et al. Combination of PI3K and PDPK1 inhibitors is highly effective in mantle cell lymphoma. Blood. 2014;124(21):3123.Google Scholar
  23. 23.
    Brown JR, Byrd JC, Coutre SE, Benson DM, Flinn IW, Wagner-Johnston ND, et al. Idelalisib, an inhibitor of phosphatidylinositol 3-kinase p110delta, for relapsed/refractory chronic lymphocytic leukemia. Blood. 2014;123(22):3390–7.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Furman RR, Sharman JP, Coutre SE, Cheson BD, Pagel JM, Hillmen P, et al. Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N Engl J Med. 2014;370(11):997–1007.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Hoellenriegel J, Meadows SA, Sivina M, Wierda WG, Kantarjian H, Keating MJ, et al. The phosphoinositide 3’-kinase delta inhibitor, CAL-101, inhibits B-cell receptor signaling and chemokine networks in chronic lymphocytic leukemia. Blood. 2011;118(13):3603–12.CrossRefPubMedGoogle Scholar
  26. 26.
    Sharman JP, Coutre SE, Furman RF, Cheson BD, Pagel JM, Hillmen P, et al. Second interim analysis of a phase 3 study of idelalisib (ZYDELIG®) plus rituximab (R) for relapsed chronic lymphocytic leukemia (CLL): efficacy analysis in patient subpopulations with Del(17p) and other adverse prognostic factors. Blood. 2014:Abstract 330.Google Scholar
  27. 27.
    O’BrienS., Lamanna N, Kipps TJ, Flinn IW, Zelenetz AD, Burger JA, et al. Update on a phase 2 study of idelalisib in combination with rituximab in treatment-naïve patients ≥65 years with chronic lymphocytic leukemia (CLL) or small lymphocytic lymphoma (SLL). Blood. 2014:Abstract 1994.Google Scholar
  28. 28.
    Furman R, de Vos S, Barrientos JC, Schreeder MT, Flinn IW, Sharman JP, et al. Long-term follow-up of a phase 1 study of idelalisib (ZYDELIG®) in combination with anti-CD20 antibodies (rituximab [R] or ofatumumab [O]) in patients with relapsed or refractory chronic lymphocytic leukemia (CLL). Blood. 2014;124(21) [abstract 5653].Google Scholar
  29. 29.
    Barrientos JC, Coutre SE, de Vos S, Wagner-Johnston NC, Flinn IW, Sharman JP, et al. Long-term follow-up of a phase 1 trial of idelalisib (ZYDELIG®) in combination with bendamustine (B), bendamustine/rituximab (BR), fludarabine (F), chlorambucil (Chl), or chlorambucil/rituximab (ChlR) in patients with relapsed or refractory chronic lymphocytic leukemia (CLL). Blood. 2014:Abstract 3343.Google Scholar
  30. 30.
    Zelenetz AD, Robak T, Coiffier B, Delgado J, Marlton P, Adewoye AH, et al. Idelalisib plus bendamustine and rituximab (BR) is superior to BR alone in patients with relapsed/refractory chronic lymphocytic leukemia: results of a phase 3 randomized double-blind placebo-controlled study. Blood. 2015:LBA 5.Google Scholar
  31. 31.
    Flinn IW, Kahl BS, Leonard JP, Furman RR, Brown JR, Byrd JC, et al. Idelalisib, a selective inhibitor of phosphatidylinositol 3-kinase-delta, as therapy for previously treated indolent non-Hodgkin lymphoma. Blood. 2014;123(22):3406–13.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Gopal AK, Kahl BS, de Vos S, Wagner-Johnston ND, Schuster SJ, Jurczak WJ, et al. PI3Kdelta inhibition by idelalisib in patients with relapsed indolent lymphoma. N Engl J Med. 2014;370(11):1008–18.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Gopal AK, Kahl BS, de Vos S, Wagner-Johnston ND, Schuster SJ, Jurczak W, et al. Mature follow up from a phase 2 study of PI3K-delta inhibitor idelalisib in patients with double (rituximab and alkylating agent)-refractory indolent B-cell non-hodgkin lymphoma (iNHL). Blood. 2014:Abstract 1708.Google Scholar
  34. 34.
    de Vos S, Wagner-Johnston ND, Coutre SE, Flinn I, Schreeder MT, Fowler N, et al. Durable responses following treatment with the PI3K-delta inhibitor idelalisib in combination with rituximab, bendamustine, or both, in recurrent indolent non-Hodgkin lymphoma: phase I/II results. Blood. 2014:Abstract 3063.Google Scholar
  35. 35.
    Kahl BS, Spurgeon SE, Furman RR, Flinn IW, Coutre SE, Brown JR, et al. A phase 1 study of the PI3Kdelta inhibitor idelalisib in patients with relapsed/refractory mantle cell lymphoma (MCL). Blood. 2014;123(22):3398–405.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Wagner-Johnston ND, De Vos S, Leonard J, Sharman JP, Schreeder MT, Boccia RV, et al. Preliminary results of PI3Kδ inhibitor idelalisib (GS-1101) treatment in combination with everolimus, bortezomib, or bendamustine/rituximab in patients with previously treated mantle cell lymphoma (MCL). J Clin Oncol. 2013;31(suppl):Abstract 8501.Google Scholar
  37. 37.
    Coutre SE, Barrientos JC, Brown JR, de Vos S, Furman RR, Keating MJ, et al. Management of adverse events associated with idelalisib treatment: expert panel opinion. Leuk Lymphoma. 2015;56(10):2779–86.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    O’Brien S, Patel M, Kahl BS, Horwitz SM, Foss FM, Prcu P, et al. Duvelisib (IPI-145), a PI3K-δ,γ inhibitor, is clinically active in patients with relapsed/refractory chronic lymphocytic leukemia. Blood. 2014:Abstract 3334.Google Scholar
  39. 39.
    Davids MS, Kim HT, Gilbert E, Cowen L, Francoeur K, Hellman J, et al. Preliminary Results of a phase Ib study of duvelisib in combination with FCR (dFCR) in previously untreated, younger patients with CLL. Blood. 2015;126:4158.Google Scholar
  40. 40.
    Flinn I, Oki Y, Patel M, Horwitz SM, Foss FM, Sweeney J, et al. A phase 1 evaluation of duvelisib (IPI-145), a PI3K-δ,γ inhibitor, in patients with relapsed/refractory iNHL. Blood. 2014:Abstract 802.Google Scholar
  41. 41.
    Flinn I, Patel MR, Maris MB, Matous J, Cherry M, Berdeja JG. An open-label, phase Ib study of duvelisib (IPI-145) in combination with bendamustine, rituximab or bendamustine/rituximab in select subjects with lymphoma or chronic lymphocytic leukemia. Blood. 2014:Abstract 4422.Google Scholar
  42. 42.
    Horwitz SM, Porcu P, Flinn I, Kahl BS, Sweeney J, Stern HM, et al. Duvelisib (IPI-145), a phosphoinositide-3-kinase-δ,γ inhibitor, shows activity in patients with relapsed/refractory T-cell lymphoma. Blood. 2014:Abstract 803.Google Scholar
  43. 43.
    Dreyling MH, Morschhauser F, Bron D, Bouabdallah K, Vitolo U, Linton K, et al. Preliminary results of a phase II study of single agent Bay 80-6946, a novel PI3K inhibitor, in patients with relapsed/refractory, indolent or aggressive lymphoma. Blood. 2013:Abstract 87.Google Scholar
  44. 44.
    Cunningham D, Zinzani PL, Assouline SE, Bouabdallah K, Bron D, Haioun C, et al. Results of the mantle cell lymphoma subset from a phase 2a study of copanlisib, a novel PI3K inhibitor, in patients with indolent and aggressive lymphoma. Blood. 2015;126:3935.Google Scholar
  45. 45.
    Iyengar S, Clear A, Bodor C, Maharaj L, Lee A, Calaminici M, et al. P110alpha-mediated constitutive PI3K signaling limits the efficacy of p110delta-selective inhibition in mantle cell lymphoma, particularly with multiple relapse. Blood. 2013;121(12):2274–84.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Matas-Céspedes A, Rodriguez V, Kalko S, Gine E, Campo E, Roue G, et al. Follicular dendrytic cells deliver angiogenesis signaling to follicular lymphoma cells that is hampered by the Pan-PI3K inhibitor NVP-BKM120. Blood. 2013:Abstract 3072.Google Scholar
  47. 47.
    Herko A, Mavis C, Czuczman MS, Hernandez F. AMG 319, a novel inhibitor of phosphoinositide-3 kinase delta (PI3Kd), demonstrates activity in lymphoma pre-clinical models. Blood. 2012:Abstract 3718.Google Scholar
  48. 48.
    Savona M, Gutierrez M-, Lanasa M, Deng C, Kuhn J, Sade L, et al. A phase I dose escalation study of TGR-1202, a novel PI3K-δ inhibitor, for patients with relapsed or refractory hematologic malignancies. Blood. 2013:Abstract 4373.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Internal Medicine III, University Hospital GrosshadernLudwig Maximilians University (LMU)MunichGermany

Personalised recommendations