Skip to main content
Log in

Pharmacologic Management of Advanced Cervical Cancer: Antiangiogenesis Therapy and Immunotherapeutic Considerations

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

As a consequence of disparities in access to and utilization of preventative healthcare, the incidence and death rates from cervical cancer remain substantial in the face of indisputable evidence that screening saves lives. While disparities persist, there will be an urgent need for research into the treatment of advanced forms of this disease. In this review, we explore the evolution of the treatment of metastatic, recurrent, and persistent cervical cancer from cytotoxic agents to targeted therapy. We discuss why targeted therapies are unlikely to produce sustained responses alone but may be more successful in combination with immunotherapies. We also provide a rationale for the potential next phase in treatment of this challenging disease—combined therapy with antiangiogenic agents and immune checkpoint inhibitors. In doing so, we highlight recent paradigm shifts within cancer therapeutics, including the shift in focus from the tumor cell itself to the tumor microenvironment, and from stimulating the immune system to inhibiting the inhibitors of an adequate immune response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cervical cancer: estimated incidence, mortality and prevalence worldwide in 2012. http://globocan.iarc.fr/old/FactSheets/cancers/cervix-new.asp. Accessed 16 Sep 2015.

  2. Benard VB, Thomas CC, King J, Massetti GM, Doria-Rose VP, Saraiya M. Vital signs: cervical cancer incidence, mortality, and screening—United States, 2007–2012. MMWR Morb Mortal Wkly Rep. 2014;63(44):1004–9.

    PubMed  Google Scholar 

  3. Rahman M, McGrath CJ, Hirth JM, Berenson AB. Age at HPV vaccine initiation and completion among US adolescent girls: trend from 2008 to 2012. Vaccine. 2015;33(5):585–7.

    Article  PubMed  Google Scholar 

  4. Kessels SJ, Marshall HS, Watson M, Braunack-Mayer AJ, Reuzel R, Tooher RL. Factors associated with HPV vaccine uptake in teenage girls: a systematic review. Vaccine. 2012;30(24):3546–56.

    Article  PubMed  Google Scholar 

  5. What are the key statistics about cervical cancer? http://www.cancer.org/cancer/cervicalcancer/detailedguide/cervical-cancer-key-statistics. Accessed 26 Feb 2015.

  6. DiSaia P, Creasman W. Clinical gynecologic oncology. 8th ed. Philadelphia: Elsevier; 2012.

    Google Scholar 

  7. Thigpen T, Shingleton H, Homesley H, Lagasse L, Blessing J. Cis-platinum in treatment of advanced or recurrent squamous cell carcinoma of the cervix: a phase II study of the Gynecologic Oncology Group. Cancer. 1981;48(4):899–903.

    Article  CAS  PubMed  Google Scholar 

  8. Moore DH, Blessing JA, McQuellon RP, Thaler HT, Cella D, Benda J, et al. Phase III study of cisplatin with or without paclitaxel in stage IVB, recurrent, or persistent squamous cell carcinoma of the cervix: a Gynecologic Oncology Group study. J Clin Oncol. 2004;22(15):3113–9.

    Article  CAS  PubMed  Google Scholar 

  9. Long HJ 3rd, Bundy BN, Grendys EC Jr, Benda JA, McMeekin DS, Sorosky J, et al. Randomized phase III trial of cisplatin with or without topotecan in carcinoma of the uterine cervix: a Gynecologic Oncology Group Study. J Clin Oncol. 2005;23(21):4626–33.

    Article  CAS  PubMed  Google Scholar 

  10. Eskander RN, Tewari KS. Chemotherapy in the treatment of metastatic, persistent, and recurrent cervical cancer. Curr Opin Obstet Gynecol. 2014;26(4):314–21.

    Article  PubMed  Google Scholar 

  11. Peters WA 3rd, Liu PY, Barrett RJ 2nd, Stock RJ, Monk BJ, Berek JS, et al. Concurrent chemotherapy and pelvic radiation therapy compared with pelvic radiation therapy alone as adjuvant therapy after radical surgery in high-risk early-stage cancer of the cervix. J Clin Oncol. 2000;18(8):1606–13.

    CAS  PubMed  Google Scholar 

  12. Keys HM, Bundy BN, Stehman FB, Muderspach LI, Chafe WE, Suggs CL 3rd, et al. Cisplatin, radiation, and adjuvant hysterectomy compared with radiation and adjuvant hysterectomy for bulky stage IB cervical carcinoma. N Engl J Med. 1999;340(15):1154–61.

    Article  CAS  PubMed  Google Scholar 

  13. Whitney CW, Sause W, Bundy BN, Malfetano JH, Hannigan EV, Fowler WC Jr, et al. Randomized comparison of fluorouracil plus cisplatin versus hydroxyurea as an adjunct to radiation therapy in stage IIB-IVA carcinoma of the cervix with negative para-aortic lymph nodes: a Gynecologic Oncology Group and Southwest Oncology Group study. J Clin Oncol. 1999;17(5):1339–48.

    CAS  PubMed  Google Scholar 

  14. Rose PG, Bundy BN, Watkins EB, Thigpen JT, Deppe G, Maiman MA, et al. Concurrent cisplatin-based radiotherapy and chemotherapy for locally advanced cervical cancer. N Engl J Med. 1999;340(15):1144–53.

    Article  CAS  PubMed  Google Scholar 

  15. Morris M, Eifel PJ, Lu J, Grigsby PW, Levenback C, Stevens RE, et al. Pelvic radiation with concurrent chemotherapy compared with pelvic and para-aortic radiation for high-risk cervical cancer. N Engl J Med. 1999;340(15):1137–43.

    Article  CAS  PubMed  Google Scholar 

  16. National Institutes of Health. NCI issues clinical announcement for cervical cancer: chemotherapy plus radiation improves survival. http://www.nih.gov/news/pr/feb99/nci-22.htm. Accessed 26 Feb 2015.

  17. Monk BJ, Sill MW, McMeekin DS, Cohn DE, Ramondetta LM, Boardman CH, et al. Phase III trial of four cisplatin-containing doublet combinations in stage IVB, recurrent, or persistent cervical carcinoma: a Gynecologic Oncology Group study. J Clin Oncol. 2009;27(28):4649–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Tewari KS, Sill MW, Long HJ 3rd, Penson RT, Huang H, Ramondetta LM, et al. Improved survival with bevacizumab in advanced cervical cancer. N Engl J Med. 2014;370(8):734–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Bahadori HR, Green MR, Catapano CV. Synergistic interaction between topotecan and microtubule-interfering agents. Cancer Chemother Pharmacol. 2001;48(3):188–96.

    Article  CAS  PubMed  Google Scholar 

  20. Tiersten AD, Selleck MJ, Hershman DL, Smith D, Resnik EE, Troxel AB, et al. Phase II study of topotecan and paclitaxel for recurrent, persistent, or metastatic cervical carcinoma. Gynecol Oncol. 2004;92(2):635–8.

    Article  CAS  PubMed  Google Scholar 

  21. Monk BJ, Sill MW, Burger RA, Gray HJ, Buekers TE, Roman LD. Phase II trial of bevacizumab in the treatment of persistent or recurrent squamous cell carcinoma of the cervix: a Gynecologic Oncology Group study. J Clin Oncol. 2009;27(7):1069–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Bodily JM, Mehta KP, Laimins LA. Human papillomavirus E7 enhances hypoxia-inducible factor 1-mediated transcription by inhibiting binding of histone deacetylases. Cancer Res. 2011;71(3):1187–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Clere N, Bermont L, Fauconnet S, Lascombe I, Saunier M, Vettoretti L, et al. The human papillomavirus type 18 E6 oncoprotein induces Vascular Endothelial Growth Factor 121 (VEGF121) transcription from the promoter through a p53-independent mechanism. Exp Cell Res. 2007;313(15):3239–50.

    Article  CAS  PubMed  Google Scholar 

  24. Tang X, Zhang Q, Nishitani J, Brown J, Shi S, Le AD. Overexpression of human papillomavirus type 16 oncoproteins enhances hypoxia-inducible factor 1 alpha protein accumulation and vascular endothelial growth factor expression in human cervical carcinoma cells. Clin Cancer Res. 2007;13(9):2568–76.

    Article  CAS  PubMed  Google Scholar 

  25. Tewari KS, Taylor JA, Liao SY, DiSaia PJ, Burger RA, Monk BJ, et al. Development and assessment of a general theory of cervical carcinogenesis utilizing a severe combined immunodeficiency murine-human xenograft model. Gynecol Oncol. 2000;77(1):137–48.

    Article  CAS  PubMed  Google Scholar 

  26. Penson RT, Huang HQ, Wenzel LB, Monk BJ, Stockman S, Long HJ 3rd, et al. Bevacizumab for advanced cervical cancer: patient-reported outcomes of a randomised, phase 3 trial (NRG Oncology-Gynecologic Oncology Group protocol 240). Lancet Oncol. 2015;16(3):301–11.

    Article  CAS  PubMed  Google Scholar 

  27. Tewari KS, Sill MW, Penson RT, Huang H, Ramondetta LM, Landrum LM, et al. Final overall survival analysis of the phase III randomized trial of chemotherapy with and without bevacizumab for advanced cervical cancer: a NRG Oncology—Gynecologic Oncology Group Study. Ann Oncol. 2014;25(5):1–41.

    Google Scholar 

  28. Moore DH, Tian C, Monk BJ, Long HJ, Omura GA, Bloss JD. Prognostic factors for response to cisplatin-based chemotherapy in advanced cervical carcinoma: a Gynecologic Oncology Group Study. Gynecol Oncol. 2010;116(1):44–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Tewari KS, Sill MW, Monk BJ, Long HJ, Penson RT, Huang H, et al. Prospective validation of pooled clinical prognostic factors in patients with recurrent and advanced cervical cancer: a Gynecologic Oncology Group study. Gynecol Oncol. 2014;133(1):S59–60.

    Article  Google Scholar 

  30. Tewari KS, Sill MW, Moore DH, Long HJ, Penson RT, Huang H, et al. High-risk patients with recurrent/advanced cervical cancer may derive the most benefit from anti-angiogenesis therapy: a Gynecologic Oncology Group study. Gynecol Oncol. 2014;133(1):S60.

    Article  Google Scholar 

  31. Shekarian T, Valsesia-Wittmann S, Caux C, Marabelle A. Paradigm shift in oncology: targeting the immune system rather than cancer cells. Mutagenesis. 2015;30(2):205–11.

    Article  PubMed  Google Scholar 

  32. Ojesina AI, Lichtenstein L, Freeman SS, Pedamallu CS, Imaz-Rosshandler I, Pugh TJ, et al. Landscape of genomic alterations in cervical carcinomas. Nature. 2014;506(7488):371–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Eskander RN, Tewari KS. Beyond angiogenesis blockade: targeted therapy for advanced cervical cancer. J Gynecol Oncol. 2014;25(3):249–59.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Akimoto T, Hunter NR, Buchmiller L, Mason K, Ang KK, Milas L. Inverse relationship between epidermal growth factor receptor expression and radiocurability of murine carcinomas. Clin Cancer Res. 1999;5(10):2884–90.

    CAS  PubMed  Google Scholar 

  35. Bianco C, Bianco R, Tortora G, Damiano V, Guerrieri P, Montemaggi P, et al. Antitumor activity of combined treatment of human cancer cells with ionizing radiation and anti-epidermal growth factor receptor monoclonal antibody C225 plus type I protein kinase A antisense oligonucleotide. Clin Cancer Res. 2000;6(11):4343–50.

    CAS  PubMed  Google Scholar 

  36. Huang SM, Harari PM. Modulation of radiation response after epidermal growth factor receptor blockade in squamous cell carcinomas: inhibition of damage repair, cell cycle kinetics, and tumor angiogenesis. Clin Cancer Res. 2000;6(6):2166–74.

    CAS  PubMed  Google Scholar 

  37. Milas L, Mason K, Hunter N, Petersen S, Yamakawa M, Ang K, et al. In vivo enhancement of tumor radioresponse by C225 antiepidermal growth factor receptor antibody. Clin Cancer Res. 2000;6(2):701–8.

    CAS  PubMed  Google Scholar 

  38. Zagouri F, Sergentanis TN, Chrysikos D, Filipits M, Bartsch R. Molecularly targeted therapies in cervical cancer: a systematic review. Gynecol Oncol. 2012;126(2):291–303.

    Article  CAS  PubMed  Google Scholar 

  39. Santin AD, Hermonat PL, Ravaggi A, Bellone S, Roman JJ, Smith CV, et al. Phenotypic and functional analysis of tumor-infiltrating lymphocytes compared with tumor-associated lymphocytes from ascitic fluid and peripheral blood lymphocytes in patients with advanced ovarian cancer. Gynecol Obstet Invest. 2001;51(4):254–61.

    Article  CAS  PubMed  Google Scholar 

  40. Goncalves A, Fabbro M, Lhomme C, Gladieff L, Extra JM, Floquet A, et al. A phase II trial to evaluate gefitinib as second- or third-line treatment in patients with recurring locoregionally advanced or metastatic cervical cancer. Gynecol Oncol. 2008;108(1):42–6.

    Article  CAS  PubMed  Google Scholar 

  41. Schilder RJ, Sill MW, Lee YC, Mannel R. A phase II trial of erlotinib in recurrent squamous cell carcinoma of the cervix: a Gynecologic Oncology Group Study. Int J Gynecol Cancer. 2009;19(5):929–33.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Wheeler DL, Huang S, Kruser TJ, Nechrebecki MM, Armstrong EA, Benavente S, et al. Mechanisms of acquired resistance to cetuximab: role of HER (ErbB) family members. Oncogene. 2008;27(28):3944–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Dugué PA, Rebolj M, Garred P, Lynge E. Immunosuppression and risk of cervical cancer. Exp Rev Anticancer Ther. 2013;13(1):29–42.

    Article  Google Scholar 

  44. Vanneman M, Dranoff G. Combining immunotherapy and targeted therapies in cancer treatment. Nat Rev Cancer. 2012;12(4):237–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Gabrilovich DI, Chen HL, Girgis KR, Cunningham HT, Meny GM, Nadaf S, et al. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med. 1996;2(10):1096–103.

    Article  CAS  PubMed  Google Scholar 

  46. Gabrilovich D, Ishida T, Oyama T, Ran S, Kravtsov V, Nadaf S, et al. Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood. 1998;92(11):4150–66.

    CAS  PubMed  Google Scholar 

  47. Gabrilovich DI, Ishida T, Nadaf S, Ohm JE, Carbone DP. Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function. Clin Cancer Res. 1999;5(10):2963–70.

    CAS  PubMed  Google Scholar 

  48. Shrimali RK, Yu Z, Theoret MR, Chinnasamy D, Restifo NP, Rosenberg SA. Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of adoptive immunotherapy of cancer. Cancer Res. 2010;70(15):6171–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Escudier B, Pluzanska A, Koralewski P, Ravaud A, Bracarda S, Szczylik C, et al. Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial. Lancet. 2007;370(9605):2103–11.

    Article  PubMed  Google Scholar 

  50. Kojima S, Kawana K, Tomio K, Yamashita A, Taguchi A, Miura S, et al. The prevalence of cervical regulatory T cells in HPV-related cervical intraepithelial neoplasia (CIN) correlates inversely with spontaneous regression of CIN. Am J Reprod Immunol. 2013;69(2):134–41.

    Article  CAS  PubMed  Google Scholar 

  51. Wu MY, Kuo TY, Ho HN. Tumor-infiltrating lymphocytes contain a higher proportion of FOXP3(+) T lymphocytes in cervical cancer. J Formos Med Assoc. 2011;110(9):580–6.

    Article  CAS  PubMed  Google Scholar 

  52. Shah W, Yan X, Jing L, Zhou Y, Chen H, Wang Y. A reversed CD4/CD8 ratio of tumor-infiltrating lymphocytes and a high percentage of CD4(+)FOXP3(+) regulatory T cells are significantly associated with clinical outcome in squamous cell carcinoma of the cervix. Cell Mol Immunol. 2011;8(1):59–66.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Bolpetti A, Silva JS, Villa LL, Lepique AP. Interleukin-10 production by tumor infiltrating macrophages plays a role in Human Papillomavirus 16 tumor growth. BMC Immunol. 2010;11:27.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Lepique AP, Daghastanli KR, Cuccovia IM, Villa LL. HPV16 tumor associated macrophages suppress antitumor T cell responses. Clin Cancer Res. 2009;15(13):4391–400.

    Article  CAS  PubMed  Google Scholar 

  55. Hammes LS, Tekmal RR, Naud P, Edelweiss MI, Kirma N, Valente PT, et al. Macrophages, inflammation and risk of cervical intraepithelial neoplasia (CIN) progression: clinicopathological correlation. Gynecol Oncol. 2007;105(1):157–65.

    Article  CAS  PubMed  Google Scholar 

  56. Kobayashi A, Weinberg V, Darragh T, Smith-McCune K. Evolving immunosuppressive microenvironment during human cervical carcinogenesis. Mucosal Immunol. 2008;1(5):412–20.

    Article  CAS  PubMed  Google Scholar 

  57. Mazibrada J, Ritta M, Mondini M, De Andrea M, Azzimonti B, Borgogna C, et al. Interaction between inflammation and angiogenesis during different stages of cervical carcinogenesis. Gynecol Oncol. 2008;108(1):112–20.

    Article  CAS  PubMed  Google Scholar 

  58. Petrillo M, Zannoni GF, Martinelli E, Pedone Anchora L, Ferrandina G, Tropeano G, et al. Polarisation of tumor-associated macrophages toward M2 phenotype correlates with poor response to chemoradiation and reduced survival in patients with locally advanced cervical cancer. PLoS One. 2015;10(9):e0136654.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Ding H, Cai J, Mao M, Fang Y, Huang Z, Jia J, et al. Tumor-associated macrophages induce lymphangiogenesis in cervical cancer via interaction with tumor cells. APMIS. 2014;122(11):1059–69.

    CAS  PubMed  Google Scholar 

  60. Schoppmann SF, Birner P, Stockl J, Kalt R, Ullrich R, Caucig C, et al. Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. Am J Pathol. 2002;161(3):947–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–64.

    Article  CAS  PubMed  Google Scholar 

  62. US FDA. FDA approves new treatment for a type of late-stage skin cancer. http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm1193237.htm. Accessed 15 Oct 2014.

  63. Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH, et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature. 2006;439(7077):682–7.

    Article  CAS  PubMed  Google Scholar 

  64. Ahmadzadeh M, Johnson LA, Heemskerk B, Wunderlich JR, Dudley ME, White DE, et al. Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood. 2009;114(8):1537–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. US FDA. FDA approves Keytruda for advanced melanoma. http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm412802.htm. Accessed 15 Oct 2014.

  66. US FDA. FDA approves Opdivo for advanced melanoma. http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm427716.htm. Accessed 22 Nov 2014.

  67. Kosmaczewska A, Bocko D, Ciszak L, Wlodarska-Polinska I, Kornafel J, Szteblich A, et al. Dysregulated expression of both the costimulatory CD28 and inhibitory CTLA-4 molecules in PB T cells of advanced cervical cancer patients suggests systemic immunosuppression related to disease progression. Pathol Oncol Res. 2012;18(2):479–89.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Karim R, Jordanova ES, Piersma SJ, Kenter GG, Chen L, Boer JM, et al. Tumor-expressed B7-H1 and B7-DC in relation to PD-1+ T-cell infiltration and survival of patients with cervical carcinoma. Clin Cancer Res. 2009;15(20):6341–7.

    Article  CAS  PubMed  Google Scholar 

  69. Heeren AM, Koster BD, Samuels S, Ferns DM, Chondronasiou D, Kenter GG, et al. High and interrelated rates of PD-L1+CD14+ antigen-presenting cells and regulatory T cells mark the microenvironment of metastatic lymph nodes from patients with cervical cancer. Cancer Immunol Res. 2015;3(1):48–58.

    Article  CAS  PubMed  Google Scholar 

  70. Kuznar W. Adding anti-PD-L1 antibody to bevacizumab induces responses in mRCC. http://www.onclive.com/conference-coverage/gu-2015/Adding-Anti-PD-L1-Antibody-to-Bevacizumab-Induces-Responses-in-mRCC?utm_source=Informz&utm_medium=OncLive&utm_campaign=ASCO%20GU;%203-2-15. Accessed 2 Mar 2015.

  71. US FDA. Approved risk evaluation and mitigation strategies (REMS). http://www.fda.gov/downloads/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandProviders/UCM249435.pdf. Accessed 15 Oct 2014.

  72. Wolchok JD, Hodi FS, Weber JS, Allison JP, Urba WJ, Robert C, et al. Development of ipilimumab: a novel immunotherapeutic approach for the treatment of advanced melanoma. Ann N Y Acad Sci. 2013;1291:1–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Wolchok JD, Hoos A, O’Day S, Weber JS, Hamid O, Lebbe C, et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res. 2009;15(23):7412–20.

    Article  CAS  PubMed  Google Scholar 

  74. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228–47.

    Article  CAS  PubMed  Google Scholar 

  75. Minion LE, Bai J, Monk BJ, Robin Keller L, Ramez EN, Forde GK, et al. A Markov model to evaluate cost-effectiveness of antiangiogenesis therapy using bevacizumab in advanced cervical cancer. Gynecol Oncol. 2015;137(3):490–6.

    Article  CAS  PubMed  Google Scholar 

  76. Kucharzewska P, Belting M. Emerging roles of extracellular vesicles in the adaptive response of tumour cells to microenvironmental stress. J Extracell Vesicles. 2013;2. doi:10.3402/jev.v2i0.20304.

  77. Kucharzewska P, Christianson HC, Welch JE, Svensson KJ, Fredlund E, Ringner M, et al. Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development. Proc Natl Acad Sci USA. 2013;110(18):7312–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Longoria TC, Eskander RN. Immune checkpoint inhibition: therapeutic implications in epithelial ovarian cancer. Recent Pat Anticancer Drug Discov. 2015;10:133-44.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnansu S. Tewari.

Ethics declarations

Conflicts of interest

Krishnansu S. Tewari has served as a consultant for Genentech/Roche and his institution has been awarded a research grant from Genentech for contracted research. Teresa C. Longoria has no conflicts of interest to declare.

Financial support

This research was supported by an NCI T32 Training Grant awarded to the Division of Gynecologic Oncology, University of California, Irvine, CA, USA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Longoria, T.C., Tewari, K.S. Pharmacologic Management of Advanced Cervical Cancer: Antiangiogenesis Therapy and Immunotherapeutic Considerations. Drugs 75, 1853–1865 (2015). https://doi.org/10.1007/s40265-015-0481-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-015-0481-z

Keywords

Navigation