Dehydroepiandrosterone (DHEA): Hypes and Hopes

Abstract

Dehydroepiandrosterone (DHEA) and its sulfated form dehydroepiandrosterone sulfate (DHEAS) are the most abundant circulating steroid hormones in humans. In animal studies, their low levels have been associated with age-related involuntary changes, including reduced lifespan. Extrapolation of animal data to humans turned DHEA into a ‘superhormone’ and an ‘anti-aging’ panacea. It has been aggressively marketed and sold in large quantities as a dietary supplement. Recent double-blind, placebo-controlled human studies provided evidence to support some of these claims. In the elderly, DHEA exerts an immunomodulatory action, increasing the number of monocytes, T cells expressing T-cell receptor gamma/delta (TCRγδ) and natural killer (NK) cells. It improves physical and psychological well-being, muscle strength and bone density, and reduces body fat and age-related skin atrophy stimulating procollagen/sebum production. In adrenal insufficiency, DHEA restores DHEA/DHEAS and androstenedione levels, reduces total cholesterol, improves well-being, sexual satisfaction and insulin sensitivity, and prevents loss of bone mineral density. Normal levels of CD4+CD25hi and FoxP3 (forkhead box P3) are restored. In systemic lupus erythematosus, DHEA is steroid-sparing. In an unblinded study, it induced remission in the majority of patients with inflammatory bowel disease. DHEA modulates cardiovascular signalling pathways and exerts an anti-inflammatory, vasorelaxant and anti-remodelling effect. Its low levels correlate with increased cardiovascular disease and all-cause mortality. DHEA/DHEAS appear protective in asthma and allergy. It attenuates T helper 2 allergic inflammation, and reduces eosinophilia and airway hyperreactivity. Low levels of DHEAS accompany adrenal suppression. It could be used to screen for the side effects of steroids. In women, DHEA improves sexual satisfaction, fertility and age-related vaginal atrophy. Many factors are responsible for the inconsistent/negative results of some studies. Overreliance on animal models (DHEA is essentially a human molecule), different dosing protocols with non-pharmacological doses often unachievable in humans, rapid metabolism of DHEA, co-morbidities and organ-specific differences render data interpretation difficult. Nevertheless, a growing body of evidence supports the notion that DHEA is not just an overrated dietary supplement but a useful drug for some, but not all, human diseases. Large-scale randomised controlled trials are needed to fine-tune the indications and optimal dosing protocols before DHEA enters routine clinical practice.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Lieberman S. An abbreviated account of some aspects of the biochemistry of DHEA, 1934–1995. Ann N Y Acad Sci. 1995;774:1–15.

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Leowattana W. DHEAS as a new diagnostic tool. Clin Chim Acta. 2004;341:1–15.

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Gaby AR. Dehydroepiandrosterone: biological effects and clinical significance. Altern Med Rev. 1996;1:60–9.

    Google Scholar 

  4. 4.

    Nestler JE. DHEA: a coming age. Ann N Y Acad Sci. 1995;774:IX–XI.

    Article  Google Scholar 

  5. 5.

    Maninger N, Wolkowitz OM, Reus VI, et al. Neurobiological and neuropsychiatric effects of dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS). Front Neuroendocrinol. 2009;30:65–91.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  6. 6.

    Dumas de la Roque E, Quignard JF, Ducret T, et al. Beneficial effect of dehydroepiandrosterone on pulmonary hypertension in a rodent model of pulmonary hypertension in infants. Pediatr Res. 2013;74:163–99.

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Savineau JP, Marthan R, Dumas de la Roque E. Role of DHEA in cardiovascular diseases. Biochem Pharmacol. 2013;85:718–26.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Webb SJ, Geoghegan TE, Prough RA, et al. The biological actions of dehydroepiandrosterone involves multiple receptors. Drug Metab Rev. 2006;38:89–116.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  9. 9.

    Traish AM, Kang HP, Saad F, et al. Dehydroepiandrosterone (DHEA): a precursor steroid or an active hormone in human physiology. J Sex Med. 2011;8:2960–82.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Simoncini T, Mannella P, Fornari L, et al. Dehydroepiandrosterone modulates endothelial nitric oxide synthesis via direct genomic and non-genomic mechanisms. Endocrinology. 2003;144:3449–55.

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Espinoza J, Montaño LM, Perusquía M. Nongenomic bronchodilating action elicited by dehydroepiandrosterone (DHEA) in a guinea pig asthma model. J Steroid Biochem Mol Biol. 2013;138:174–82.

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Liu D, Dillon JS. Dehydroepiandrosterone activates endothelial cell nitric-oxide synthase by a specific plasma membrane receptor coupled to Galpha (i2,3). J Biol Chem. 2002;277:21379–88.

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Liu D, Dillon JS. Dehydroepiandrosterone stimulates nitric oxide release in vascular endothelial cells: evidence for a cell surface receptor. Steroids. 2004;69:279–89.

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Simoncini T, Genazzani AR. Dehydroepiandrosterone, the endothelium, and cardio-vascular protection. Endocrinology. 2007;148:3065–7.

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Olivo HF, Perez-Hernandez N, Liu D, et al. Synthesis and application of a photoaffinity analog of dehydroepiandrosterone (DHEA). Bioorg Med Chem Lett. 2010;20:1153–5.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  16. 16.

    Liu D, O’Leary B, Iruthayanathan M, et al. Evaluation of a novel photoactive and biotinylated dehydroepiandrosterone analog. Mol Cell Endocrinol. 2010;328:56–62.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Waschatko G, Kojro E, Zahnow M, et al. Photo-DHEA—a functional photoreactive dehydroepiandrosterone (DHEA) analog. Steroids. 2011;76:502–27.

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Kroboth PD, Salek FS, Pittenger AL, et al. DHEA and DHEA-S: a review. J Clin Pharmacol. 1999;39:327–48.

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Olech E, Merrill JT. DHEA supplementation: the claims in perspective. Cleve Clin J Med. 2005;72:965–966, 968, 970–971.

  20. 20.

    Baulieu EE. Dehydroepiandrosterone (DHEA): a fountain of youth? J Clin Endocrinol Metab. 1996;81:3147–51.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Binello E, Gordon CM. Clinical uses and misuses of dehydroepiandrosterone. Curr Opin Pharmacol. 2003;3:635–41.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Burkhardt T, Schmidt NO, Vettorazzi E, et al. DHEA(S): a novel marker in Cushing’s disease. Acta Neurochir (Wien). 2013;155:479–84.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Kasperska-Zając AE, Brzoza ZK, Koczy-Baron E, et al. Dehydroepiandrosterone in therapy of allergic diseases. Recent Pat Inflamm Allergy Drug Discov. 2009;3:211–3.

    PubMed  Article  Google Scholar 

  24. 24.

    Dhatariya KK, Nair KS. Dehydroepiandrosterone: is there a role for replacement? Mayo Clin Proc. 2003;78:1257–73.

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Valenti G, Denti L, Saccò M, et al. GISEG (Italian Study Group on Geriatric Endocrinology), consensus document on substitution therapy with DHEA in the elderly. Aging Clin Exp Res. 2006;18:277–300.

    PubMed  Article  Google Scholar 

  26. 26.

    Panjari M, Davis SR. DHEA therapy for women: effect on sexual function and wellbeing. Hum Reprod Update. 2007;13:239–48.

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Thompson RD, Carlson M, Thompson RD, et al. Liquid chromatographic determination of dehydroepiandrosterone (DHEA) in dietary supplement products. J AOAC Int. 2000;83:847–57.

    CAS  PubMed  Google Scholar 

  28. 28.

    Yakin K, Urman B. DHEA as a miracle drug in the treatment of poor responders; hype or hope? Hum Reprod. 2011;26:1941–4.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Kushnir MM, Blamires T, Rockwood AL, et al. Liquid chromatography-tandem mass spectrometry assay for androstenedione, dehydroepiandrosterone, and testosterone with pediatric and adult reference intervals. Clin Chem. 2010;56:1138–47.

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Orentreich N, Brind JL, Rizer RL, et al. Age changes and sex differences in serum dehydroepiandrosterone sulfate concentrations throughout adulthood. J Clin Endocrinol Metab. 1984;59:551–5.

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Roth GS, Lane MA, Ingram DK, et al. Biomarkers of caloric restriction may predict longevity in humans. Science. 2002;297:811.

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Celec P, Stárka L. Dehydroepiandrosterone: is the fountain of youth drying out? Physiol Res. 2003;52:397–407.

    CAS  PubMed  Google Scholar 

  33. 33.

    Allolio B, Arlt W. DHEA treatment: myth or reality? Trends Endocrinol Metab. 2002;13:288–94.

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Dillon JS. Dehydroepiandrosterone, dehydroepiandrosterone sulfate and related steroids: their role in inflammatory, allergic and immunological disorders. Curr Drug Targets Inflamm Allergy. 2005;4:377–85.

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Saponaro S, Guarnieri V, Pescarmona GP, et al. Long-term exposure to dehydroepiandrosterone affects the transcriptional activity of the glucocorticoid receptor. J Steroid Biochem Mol Biol. 2007;103:129–36.

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Genazzani AD, Stomati M, Bernardi F, et al. Long-term low-dose dehydroepiandrosterone oral supplementation in early and late postmenopausal women modulates endocrine parameters and synthesis of neuroactive steroids. Fertil Steril. 2003;80:1495–501.

    PubMed  Google Scholar 

  37. 37.

    Alkatib AA, Cosma M, Elamin MB, et al. A systematic review and meta-analysis of randomized placebo-controlled trials of DHEA treatment effects on quality of life in women with adrenal insufficiency. J Clin Endocrinol Metab. 2009;94:3676–81.

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Basu R, Dalla Man C, et al. Two years of treatment with dehydroepiandrosterone does not improve insulin secretion, insulin action, or postprandial glucose turnover in elderly men or women. Diabetes. 2007;56:753–66.

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Christiansen JJ, Bruun JM, Christiansen JS, et al. Long-term DHEA substitution in female adrenocortical failure, body composition, muscle function, and bone metabolism: a randomized trial. Eur J Endocrinol. 2011;165:293–300.

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Hartkamp A, Geenen R, Godaert GL, et al. Effects of dehydroepiandrosterone on fatigue and well-being in women with quiescent systemic lupus erythematosus: a randomised controlled trial. Ann Rheum Dis. 2010;69:1144–7.

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Morales AJ, Nolan JJ, Nelson JC, et al. Effects of replacement dose of dehydroepiandrosterone in men and women of advancing age. J Clin Endocrinol Metab. 1994;78:1360–7.

    CAS  PubMed  Google Scholar 

  42. 42.

    Yen SS, Morales AJ, Khorram O. Replacement of DHEA in aging men and women: potential remedial effects. Ann N Y Acad Sci. 1995;774:128–42.

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Morales AJ, Haubrich RH, Hwang JY, et al. The effect of six months treatment with a 100 mg daily dose of dehydroepiandrosterone (DHEA) on circulating sex steroids, body composition and muscle strength in age-advanced men and women. Clin Endocrinol (Oxf). 1998;49:421–32.

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Baulieu EE, Thomas G, Legrain S, et al. Dehydroepiandrosterone (DHEA), DHEA sulfate, and aging: contribution of the DHEAge Study to a sociobiomedical issue. Proc Natl Acad Sci. 2000;97:4279–84.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  45. 45.

    Weiss EP, Shah K, Fontana L, et al. Dehydroepiandrosterone replacement therapy in older adults: 1- and 2-y effects on bone. Am J Clin Nutr. 2009;89:1459–67.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  46. 46.

    Weiss EP, Villareal DT, Fontana L, et al. Dehydroepiandrosterone (DHEA) replacement decreases insulin resistance and lowers inflammatory cytokines in aging humans. Aging (Albany NY). 2011;3:533–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. 47.

    Nouveau S, Bastien P, Baldo F, et al. Effects of topical DHEA on aging skin: a pilot study. Maturitas. 2008;59:174–81.

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    El-Alfy M, Deloche C, Azzi L, et al. Skin responses to topical dehydroepiandrosterone: implications in antiageing treatment? Br J Dermatol. 2010;163:968–76.

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Shin MH, Rhie GE, Park CH, et al. Modulation of collagen metabolism by the topical application of dehydroepiandrosterone to human skin. J Invest Dermatol. 2005;124:315–23.

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Arlt W, Callies F, van Vlijmen JC, et al. Dehydroepiandrosterone replacement in women with adrenal insufficiency. N Engl J Med. 1999;341:1013–20.

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Gurnell EM, Hunt PJ, Curran SE, et al. Long-term DHEA replacement in primary adrenal insufficiency: a randomized, controlled trial. J Clin Endocrinol Metab. 2008;93:400–9.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  52. 52.

    Dhatariya K, Bigelow ML, Nair KS. Effect of dehydroepiandrosterone replacement on insulin sensitivity and lipids in hypoadrenal women. Diabetes. 2005;54:765–9.

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Coles AJ, Thompson S, Cox AL, et al. Dehydroepiandrosterone replacement in patients with Addison’s disease has a bimodal effect on regulatory (CD4+CD25hi and CD4+FoxP3+) T cells. Eur J Immunol. 2005;35:3694–703.

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Chang DM, Lan JL, Lin HY, et al. Dehydroepiandrosterone treatment of women with mild-to-moderate systemic lupus erythematosus: a multicenter randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 2002;46:2924–7.

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Petri MA, Lahita RG, Van Vollenhoven RF, et al. GL601 Study Group. Effects of prasterone on corticosteroid requirements of women with systemic lupus erythematosus: a double-blind, randomized, placebo-controlled trial. Arthritis Rheum. 2002;46:1820–9.

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Andus T, Klebl F, Rogler G, et al. Patients with refractory Crohn’s disease or ulcerative colitis respond to dehydroepiandrosterone: a pilot study. Aliment Pharmacol Ther. 2003;17:409–14.

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Altman R, Motton DD, Kota RS, et al. Inhibition of vascular inflammation by dehydroepiandrosterone sulfate in human aortic endothelial cells: roles of PPARalpha and NF-kappaB. Vascul Pharmacol. 2008;48:76–84.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  58. 58.

    Bonnet S, Paulin R, Sutendra G, et al. Dehydroepiandrosterone reverses systemic vascular remodelling through the inhibition of the Akt/GSK3-{beta}/NFAT axis. Circulation. 2009;120:1231–40.

    CAS  PubMed  Article  Google Scholar 

  59. 59.

    Shufelt C, Bretsky P, Almeida CM, et al. DHEA-S levels and cardiovascular disease mortality in postmenopausal women: results from the National Institutes of Health: National Heart, Lung, and Blood Institute (NHLBI)-sponsored Women’s Ischemia Syndrome Evaluation (WISE). J Clin Endocrinol Metab. 2010;95:4985–92.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  60. 60.

    Yu CK, Yang BC, Lei HY, et al. Attenuation of house dust mite Dermatophagoides farinae-induced airway allergic responses in mice by dehydroepiandrosterone is correlated with down-regulation of TH2 response. Clin Exp Allergy. 1999;29:414–22.

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Lin XH, Choi IS, Koh YA, et al. Effects of combined bacille Calmette-Guérin and dehydroepiandrosterone treatment on established asthma in mice. Exp Lung Res. 2009;35:250–61.

    CAS  PubMed  Article  Google Scholar 

  62. 62.

    Liou CJ, Huang WC. Dehydroepiandrosterone suppresses eosinophil infiltration and airway hyperresponsiveness via modulation of chemokines and Th2 cytokines in ovalbumin-sensitized mice. J Clin Immunol. 2011;31:656–65.

    CAS  PubMed  Article  Google Scholar 

  63. 63.

    Choi IS, Cui Y, Koh YA, et al. Effects of dehydroepiandrosterone on Th2 cytokine production in peripheral blood mononuclear cells from asthmatics. Korean J Intern Med. 2008;23:176–81.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  64. 64.

    Shin YS, Takeda K, Gelfand EW. Understanding asthma using animal models. Allergy Asthma Immunol Res. 2009;191:10–8.

    Article  Google Scholar 

  65. 65.

    Tabata N, Tagami H, Terui T. Dehydroepiandrosterone may be one of the regulators of cytokine production in atopic dermatitis. Arch Dermatol Res. 1997;289:410–4.

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    Koziol-White CJ, Goncharova EA, Cao G, et al. DHEA-S inhibits human neutrophil and human airway smooth muscle migration. Biochim Biophys Acta. 2012;1822:1638–42.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  67. 67.

    Wenzel SE, Robinson CB, Leonard JM, et al. Nebulized dehydroepiandrosterone-3-sulfate improves asthma control in the moderate-to-severe asthma results of a 6-week, randomized, double-blind, placebo-controlled study. Allergy Asthma Proc. 2010;31:461–71.

    CAS  PubMed  Article  Google Scholar 

  68. 68.

    Chan CC, Liou CJ, Xu PY, et al. Effect of dehydroepiandrosterone on atopic dermatitis-like skin lesions induced by 1-chloro-2,4-dinitrobenzene in mouse. J Dermatol Sci. 2013;72:149–57.

    CAS  PubMed  Article  Google Scholar 

  69. 69.

    Kasperska-Zajac A, Brzoza Z, Rogala B. Lower serum concentration of dehydroepiandrosterone sulphate in patients suffering from chronic idiopathic urticaria. Allergy. 2006;61:1489–90.

    CAS  PubMed  Article  Google Scholar 

  70. 70.

    Kasperska-Zajac A, Brzoza Z, Rogala B. Serum concentration of dehydroepiandrosterone sulphate in female patients with chronic idiopathic urticaria. J Dermatol Sci. 2006;41:80–1.

    CAS  PubMed  Article  Google Scholar 

  71. 71.

    Brzoza Z, Kasperska-Zajac A, Badura-Brzoza K, et al. Decline in dehydroepiandrosterone sulfate observed in chronic urticaria is associated with psychological distress. Psychosom Med. 2008;70:723–8.

    CAS  PubMed  Article  Google Scholar 

  72. 72.

    Kasperska-Zajac A, Brzoza Z, Rogala B. Plasma concentration of interleukin 6 (IL-6), and its relationship with circulating concentration of dehydroepiandrosterone sulfate (DHEA-S) in patients with chronic idiopathic urticaria. Cytokine. 2007;39:142–6.

    CAS  PubMed  Article  Google Scholar 

  73. 73.

    Kamel-Sabry MK, Farres MN, Melek NA, et al. Prolactin and dehydroepiandrosterone sulfate: are they related to the severity of chronic urticaria? Arch Med Res. 2013;44:21–6.

    PubMed  Article  Google Scholar 

  74. 74.

    Blauer KL, Poth M, Rogers WM, et al. Dehydroepiandrosterone antagonizes the suppressive effects of dexamethasone on lymphocyte proliferation. Endocrinology. 1991;129:3174–9.

    CAS  PubMed  Article  Google Scholar 

  75. 75.

    Daynes RA, Dudley DJ, Araneo BA. Regulation of murine lymphokine production in vivo: II. Dehydroepiandrosterone is a natural enhancer of interleukin 2 synthesis by helper T cells. Eur J Immunol. 1990;20:793–802.

    CAS  PubMed  Article  Google Scholar 

  76. 76.

    Harding G, Mak YT, Evans B, et al. The effects of dexamethasone and dehydroepiandrosterone (DHEA) on cytokines and receptor expression in a human osteoblastic cell line: potential steroid-sparing role for DHEA. Cytokine. 2006;36:57–68.

    CAS  PubMed  Article  Google Scholar 

  77. 77.

    Buoso E, Lanni C, Molteni E, et al. Opposing effects of cortisol and dehydroepiandrosterone on the expression of the receptor for Activated C Kinase 1: implications in immunosenescence. Exp Gerontol. 2011;46:877–83.

    CAS  PubMed  Article  Google Scholar 

  78. 78.

    Kasperska-Zajac A. Asthma and dehydroepiandrosterone (DHEA): facts and hypotheses. Inflammation. 2010;33:320–4.

    CAS  PubMed  Article  Google Scholar 

  79. 79.

    Martinez FJ, Donohue JF, Rennard SI. The future of chronic obstructive pulmonary disease treatment: difficulties of and barriers to drug development. Lancet. 2011;378:1027–37.

    CAS  PubMed  Article  Google Scholar 

  80. 80.

    Eusebio MO, Grzelewski T, Pietruczuk M, et al. The patents on glucocorticosteroids and selected new therapies for the management of asthma in children. Recent Pat Inflamm Allergy Drug Discov. 2011;5:57–65.

    CAS  PubMed  Article  Google Scholar 

  81. 81.

    Kannisto S, Laatikainen A, Taivainen A, et al. Serum dehydroepiandrosterone sulfate concentration as an indicator of adrenocortical suppression during inhaled steroid therapy in adult asthmatic patients. Eur J Endocrinol. 2004;150:687–90.

    CAS  PubMed  Article  Google Scholar 

  82. 82.

    Fusi FM, Ferrario M, Bosisio C, et al. DHEA supplementation positively affects spontaneous pregnancies in women with diminished ovarian function. Gynecol Endocrinol. 2013;29:940–3.

    CAS  PubMed  Article  Google Scholar 

  83. 83.

    Labrie F, Archer D, Bouchard C, et al. Intravaginal dehydroepiandrosterone (Prasterone), a physiological and highly efficient treatment of vaginal atrophy. Menopause. 2009;16:907–22.

    PubMed  Article  Google Scholar 

  84. 84.

    Labrie F, Archer D, Bouchard C, et al. Effect of intravaginal dehydroepiandrosterone (Prasterone) on libido and sexual dysfunction in postmenopausal women. Menopause. 2009;16:923–31.

    PubMed  Article  Google Scholar 

  85. 85.

    Davis SR, Panjari M, Stanczyk FZ. Clinical review: DHEA replacement for post-menopausal women. J Clin Endocrinol Metab. 2011;96:1642–53.

    CAS  PubMed  Article  Google Scholar 

  86. 86.

    Corona G, Rastrelli G, Giagulli VA, et al. Dehydroepiandrosterone supplementation in elderly men: a meta-analysis study of placebo-controlled trials. J Clin Endocrinol Metab. 2013;98:3615–26.

    CAS  PubMed  Article  Google Scholar 

  87. 87.

    Grossman A, Johannsson G, Quinkler M, et al. Therapy of endocrine disease: perspectives on the management of adrenal insufficiency: clinical insights from across Europe. Eur J Endocrinol. 2013;169:165–75.

    Article  Google Scholar 

  88. 88.

    Hyman JH, Margalioth EJ, Rabinowitz R, Tsafrir A, et al. DHEA supplementation may improve IVF outcome in poor responders: a proposed mechanism. Eur J Obstet Gynecol Reprod Biol. 2013;168:49–53.

    CAS  PubMed  Article  Google Scholar 

  89. 89.

    Yilmaz N, Uygur D, Inal H, et al. Dehydroepiandrosterone supplementation improves predictive markers for diminished ovarian reserve: serum AMH, inhibin B and antral follicle count. Eur J Obstet Gynecol Reprod Biol. 2013;169:257–60.

    CAS  PubMed  Article  Google Scholar 

  90. 90.

    Kara M, Aydin T, Aran T, et al. Does dehydroepiandrosterone supplementation really affect IVF-ICSI outcome in women with poor ovarian reserve? Eur J Obstet Gynecol Reprod Biol. 2014;173:63–5.

    CAS  PubMed  Article  Google Scholar 

  91. 91.

    Strauss S, Greve T, Ernst E, et al. Administration of DHEA augments progesterone production in a woman with low ovarian reserve being transplanted with cryopreserved ovarian tissue. J Assist Reprod Genet. 2014;31:645–9.

    PubMed  Article  Google Scholar 

  92. 92.

    Sunkara SK, Pundir J, Khalaf Y. Effect of androgen supplementation or modulation on ovarian stimulation outcome in poor responders: a meta-analysis. Reprod Biomed Online. 2011;22:545–55.

    PubMed  Article  Google Scholar 

  93. 93.

    Narkwichean A, Maalouf W, Campbell BK, et al. Efficacy of dehydroepiandrosterone to improve ovarian response in women with diminished ovarian reserve: a meta-analysis. Reprod Biol Endocrinol. 2013;11:44.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  94. 94.

    ChEBI: the database and ontology of Chemical Entities of Biological Interest. Dehydroepiandrosterone (CHEBI 28689). Available from http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=5881. Accessed 5 July 2014.

  95. 95.

    ChEBI: the database and ontology of Chemical Entities of Biological Interest. Dehydroepiandrosterone sulfate (CHEBI 16814). Available from http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=12594&loc=ec_rcs. Accessed 5 July 2014.

Download references

Acknowledgments

Paweł Sowa is a recipient of the scholarship ‘Studies, research, commercialization—a support programme for doctoral students’, Human Capital Operational Programme of the EU.

Funding

No funding was used in the preparation of this review.

Conflict of interest

Krzysztof Rutkowski, Pawel Sowa, Joanna Rutkowska-Talipska, Anna Kuryliszyn-Moskal and Ryszard Rutkowski have no conflicts of interest to declare.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Rutkowski.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rutkowski, K., Sowa, P., Rutkowska-Talipska, J. et al. Dehydroepiandrosterone (DHEA): Hypes and Hopes. Drugs 74, 1195–1207 (2014). https://doi.org/10.1007/s40265-014-0259-8

Download citation

Keywords

  • Systemic Lupus Erythematosus
  • DHEA
  • Airway Smooth Muscle
  • DHEAS
  • Chronic Urticaria