Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Colistimethate Sodium Dry Powder for Inhalation: A Review of Its Use in the Treatment of Chronic Pseudomonas aeruginosa Infection in Patients with Cystic Fibrosis

Abstract

Historically, the polymyxin antibacterial colistin has been administered as intravenous or nebulized colistimethate sodium in patients with cystic fibrosis (CF) and chronic Pseudomonas aeruginosa infection. More recently, colistimethate sodium has been formulated as a dry powder (Colobreathe®) to be administered via a hand-held Turbospin® inhaler. Compared with nebulized colistimethate sodium, the colistimethate sodium dry powder for inhalation (DPI) formulation reduces treatment time and improves patient convenience. Colistimethate sodium DPI is approved in the EU for the treatment of chronic P. aeruginosa infections in patients with CF aged ≥6 years. In a phase III clinical trial in this patient population, it was determined that the change in percent predicted forced expiratory volume in 1 s with colistimethate sodium DPI 1.6625 MIU (125 mg) twice daily was noninferior to that with nebulized tobramycin 300 mg/5 mL twice daily. Moreover, patients found colistimethate sodium DPI easier to use than nebulized tobramycin. Colistimethate sodium DPI was generally well tolerated, with a similar adverse event profile to that of nebulized tobramycin, except for a numerically higher incidence of cough and abnormal taste. Most adverse events diminished after 28 days in patients receiving colistimethate sodium DPI, with an occurrence similar to that in nebulized tobramycin recipients. In conclusion, colistimethate sodium DPI administered via the Turbospin® inhaler is a useful option for the treatment of chronic P. aeruginosa infection in patients with CF aged ≥6 years.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. 1.

    Westerman EM, Heijerman HGM, Frijlink HW. Dry powder inhalation versus wet nebulisation delivery of antibiotics in cystic fibrosis patients. Expert Opin Drug Deliv. 2007;4(2):91–4.

  2. 2.

    National Institute for Health and Care Excellence. Colistimethate sodium and tobramycin dry powders for inhalation for treating pseudomonas lung infection in cystic fibrosis: technology appraisal guidance. 2013. http://publications.nice.org.uk/colistimethate-sodium-and-tobramycin-dry-powders-for-inhalation-for-treating-pseudomonas-lung-ta276/clinical-need-and-practice. Accessed 19 Nov 2013.

  3. 3.

    Devesa I, Fernández-Ballester G, Ferrer-Montiel A. Targeting protein-protein interactions to rescue Δf508-cftr: a novel corrector approach to treat cystic fibrosis. EMBO Mol Med. 2013;5(10):1462–4.

  4. 4.

    Farrell PM. The prevalence of cystic fibrosis in the European Union. J Cyst Fibros. 2008;7(5):450–3.

  5. 5.

    Govan JRW, Deretic V. Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microb Rev. 1996;60(3):539–74.

  6. 6.

    FitzSimmons SC. The changing epidemiology of cystic fibrosis. J Pediatr. 1993;122(1):1–9.

  7. 7.

    Ramsey BW, Pepe MS, Quan JM, et al. Intermittent administration of inhaled tobramycin in patients with cystic fibrosis. N Engl J Med. 1999;340(1):23–30.

  8. 8.

    Høiby N. Recent advances in the treatment of Pseudomonas aeruginosa infections in cystic fibrosis. BMC Med. 2011;9:32.

  9. 9.

    Döring G, Conway SP, Heijerman HGM, et al. Antibiotic therapy against Pseudomonas aeruginosa in cystic fibrosis: a European consensus. Eur Respir J. 2000;16(4):749–67.

  10. 10.

    Lim LM, Ly N, Anderson D, et al. Resurgence of colistin: a review of resistance, toxicity, pharmacodynamics, and dosing. Pharmacotherapy. 2010;30(12):1279–91.

  11. 11.

    Li J, Nation RL, Turnidge JD, et al. Colistin: the re-emerging antibiotic for multidrug-resistant Gram-negative bacterial infections. Lancet Infect Dis. 2006;6(9):589–601.

  12. 12.

    Velkov T, Roberts KD, Nation RL, et al. Pharmacology of polymyxins: new insights into an ‘old’ class of antibiotics. Future Microbiol. 2013;8(6):711–24.

  13. 13.

    Flume PA, O’Sullivan BP, Robinson KA, et al. Cystic fibrosis pulmonary guidelines: chronic medications for maintenance of lung health. Am J Respir Crit Care Med. 2007;176(10):957–69.

  14. 14.

    European Medicines Agency. Colobreathe (colistimethate sodium): EU assessment report. 2011. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Public_assessment_report/human/001225/WC500123693.pdf. Accessed 12 Nov 2013.

  15. 15.

    Geller DE. Aerosol antibiotics in cystic fibrosis. Respir Care. 2009;54(5):658–70.

  16. 16.

    Gibson RL, Burns JL, Ramsey BW. Pathophysiology and management of pulmonary infections in cystic fibrosis. Am J Respir Crit Care Med. 2003;168(8):918–51.

  17. 17.

    Heijerman H, Westerman E, Conway S, et al. Inhaled medication and inhalation devices for lung disease in patients with cystic fibrosis: a European consensus. J Cyst Fibros. 2009;8(5):295–315.

  18. 18.

    Dodd ME, Webb AK. Understanding non-compliance with treatment in adults with cystic fibrosis. J R Soc Med. 2000;93(Suppl 38):2–8.

  19. 19.

    Kettler LJ, Sawyer SM, Winefield HR, et al. Determinants of adherence in adults with cystic fibrosis. Thorax. 2002;57(5):459–64.

  20. 20.

    Sawicki GS, Sellers DE, Robinson WM. High treatment burden in adults with cystic fibrosis: challenges to disease self-management. J Cyst Fibros. 2009;8(2):91–6.

  21. 21.

    Schuster A, Haliburn C, Döring G, et al. Safety, efficacy and convenience of colistimethate sodium dry powder for inhalation (Colobreathe DPI) in patients with cystic fibrosis: a randomised study. Thorax. 2013;68(4):344–50.

  22. 22.

    Bergen PJ, Li J, Rayner CR, et al. Colistin methanesulfonate is an inactive prodrug of colistin against Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2006;50(6):1953–8.

  23. 23.

    Li J, Turnidge J, Milne R, et al. In vitro pharmacodynamic properties of colistin and colistin methanesulfonate against Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Antimicrob Agents Chemother. 2001;45(3):781–5.

  24. 24.

    Hancock REW, Chapple DS. Peptide antibiotics. Antimicrob Agents Chemother. 1999;43(6):1317–23.

  25. 25.

    Bergen PJ, Bulitta JB, Forrest A, et al. Pharmacokinetic/pharmacodynamic investigation of colistin against Pseudomonas aeruginosa using an in vitro model. Antimicrob Agents Chemother. 2010;54(9):3783–9.

  26. 26.

    Bergen PJ, Landersdorfer CB, Zhang J, et al. Pharmacokinetics and pharmacodynamics of ‘old’ polymyxins: what is new? Diagn Microbiol Infect Dis. 2012;74(3):213–23.

  27. 27.

    Gales AC, Jones RN, Sader HS. Contemporary activity of colistin and polymyxin B against a worldwide collection of Gram-negative pathogens: results from the SENTRY Antimicrobial Surveillance Program (2006-09). J Antimicrob Chemother. 2011;66(9):2070–4.

  28. 28.

    MacGowan AP, Wise R. Establishing MIC breakpoints and the interpretation of in vitro susceptibility tests. J Antimicrob Chemother. 2001;48 Suppl S1:17–28.

  29. 29.

    Bozkurt-Guzel C, Gerceker AA. In vitro pharmacodynamic properties of colistin methanesulfonate and amikacin against Pseudomonas aeruginosa. Indian J Med Microbiol. 2012;30(1):34–8.

  30. 30.

    Dudhani RV, Turnidge JD, Coulthard K, et al. Elucidation of the pharmacokinetic/pharmacodynamic determinant of colistin activity against Pseudomonas aeruginosa in murine thigh and lung infection models. Antimicrob Agents Chemother. 2010;54(3):1117–24.

  31. 31.

    Bergen PJ, Li J, Nation RL, et al. Comparison of once-, twice- and thrice-daily dosing of colistin on antibacterial effect and emergence of resistance: studies with Pseudomonas aeruginosa in an in vitro pharmacodynamic model. J Antimicrob Chemother. 2008;61(3):636–42.

  32. 32.

    Dudhani RV, Turnidge JD, Nation RL, et al. fAUC/MIC is the most predictive pharmacokinetic/pharmacodynamic index of colistin against Acinetobacter baumannii in murine thigh and lung infection models. J Antimicrob Chemother. 2010;65(9):1984–90.

  33. 33.

    Wang H, Wu H, Ciofu O, et al. In vivo pharmacokinetics/pharmacodynamics of colistin and imipenem in Pseudomonas aeruginosa biofilm infection. Antimicrob Agents Chemother. 2012;56(5):2683–90.

  34. 34.

    Wang H, Hong W, Oana CF, et al. Pharmacokinetics/pharmacodynamics of colistin and imipenem on mucoid and nonmucoid Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother. 2011;55(9):4469–74.

  35. 35.

    Ren CL, Konstan MW, Yegin A, et al. Multiple antibiotic-resistant Pseudomonas aeruginosa and lung function decline in patients with cystic fibrosis. J Cyst Fibros. 2012;11(4):293–9.

  36. 36.

    Bozkurt Güzel C, Gerçeker AA. In vitro activities of various antibiotics, alone and in combination with colistin methanesulfonate, against Pseudomonas aeruginosa strains isolated from cystic fibrosis patients. Chemotherapy. 2008;54(2):147–51.

  37. 37.

    Denton M, Kerr K, Mooney L, et al. Transmission of colistin-resistant Pseudomonas aeruginosa between patients attending a pediatric cystic fibrosis center. Pediatr Pulmonol. 2002;34(4):257–61.

  38. 38.

    Tamm M, Eich C, Frei R, et al. Inhaled colistin in cystic fibrosis [in German]. Schweiz Med Wochenschr. 2000;130(39):1366–72.

  39. 39.

    Ledson MJ, Gallagher MJ, Cowperthwaite C, et al. Four years’ experience of intravenous colomycin in an adult cystic fibrosis unit. Eur Respir J. 1998;12(3):592–4.

  40. 40.

    Conway SP, Pond MN, Watson A, et al. Intravenous colistin sulphomethate in acute respiratory exacerbations in adult patients with cystic fibrosis. Thorax. 1997;52(11):987–93.

  41. 41.

    Conway SP, Etherington C, Munday J, et al. Safety and tolerability of bolus intravenous colistin in acute respiratory exacerbations in adults with cystic fibrosis. Ann Pharmacother. 2000;34(11):1238–42.

  42. 42.

    Falagas ME, Rizos M, Bliziotis IA, et al. Toxicity after prolonged (more than four weeks) administration of intravenous colistin. BMC Infect Dis. 2005;5:1.

  43. 43.

    Reina R, Estenssoro E, Sáenz G, et al. Safety and efficacy of colistin in Acinetobacter and Pseudomonas infections: a prospective cohort study. Intensive Care Med. 2005;31(8):1058–65.

  44. 44.

    Hartzell JD, Neff R, Ake J, et al. Nephrotoxicity associated with intravenous colistin (colistimethate sodium) treatment at a tertiary care medical center. Clin Infect Dis. 2009;48(12):1724–8.

  45. 45.

    Falagas ME, Fragoulis KN, Kasiakou SK, et al. Nephrotoxicity of intravenous colistin: a prospective evaluation. Int J Antimicrob Agents. 2005;26(6):504–7.

  46. 46.

    Beringer P. The clinical use of colistin in patients with cystic fibrosis. Curr Opin Pulm Med. 2001;7(6):434–40.

  47. 47.

    Koch-Weser J, Sidel VW, Federman EB, et al. Adverse effects of sodium colistimethate: manifestations and specific reaction rates during 317 courses of therapy. Ann Intern Med. 1970;72(6):857–68.

  48. 48.

    Parisi AF, Kaplan MH. Apnea during treatment with sodium colistimethate. J Am Med Assoc. 1965;194(3):298–9.

  49. 49.

    Falagas ME, Kasiakou SK, Tsiodras S, et al. The use of intravenous and aerosolized polymyxins for the treatment of infections in critically ill patients: a review of the recent literature. Clin Med Res. 2006;4(2):138–46.

  50. 50.

    European Medicines Agency. Colobreathe (colistimethate sodium): EU summary of product characteristics. 2013. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/001225/WC500123690.pdf. Accessed 6 Nov 2013.

  51. 51.

    Cunningham S, Prasad A, Collyer L, et al. Bronchoconstriction following nebulised colistin in cystic fibrosis. Arch Dis Child. 2001;84(5):432–3.

  52. 52.

    Dodd ME, Abbott J, Maddison J, et al. Effect of tonicity of nebulised colistin on chest tightness and pulmonary function in adults with cystic fibrosis. Thorax. 1997;52(7):656–8.

  53. 53.

    Forest Laboratories Inc. Forest Laboratories receives European marketing approval for Colobreathe® Dry Powder Inhaler® [media release]. 2012. http://www.frx.com. Accessed 6 Jan 2014.

  54. 54.

    Forest Laboratories UK Ltd. Colomycin (colistimethate sodium) injection: UK summary of product characteristics. 2013. http://www.medicines.org.uk/emc/medicine/1590/SPC/Colomycin+Injection/. Accessed 6 Jan 2014.

  55. 55.

    Davies J, Hall P, Francis J, et al. A dry powder formulation of colistimethate sodium is safe and well-tolerated in adults and children with CF [abstract no. 278]. In: 18th Annual North American Cystic Fibrosis Conference; 6–9 Oct 2004; St Louis (MO).

  56. 56.

    Ratjen F, Rietschel E, Kasel D, et al. Pharmacokinetics of inhaled colistin in patients with cystic fibrosis. J Antimicrob Chemother. 2006;57(2):306–11.

  57. 57.

    Michalopoulos AS, Falagas ME. Colistin: recent data on pharmacodynamics properties and clinical efficacy in critically ill patients. Ann Intensive Care. 2011;1(1):30.

  58. 58.

    Mohamed AF, Karaiskos I, Plachouras D, et al. Application of a loading dose of colistin methanesulfonate in critically ill patients: population pharmacokinetics, protein binding, and prediction of bacterial kill. Antimicrob Agents Chemother. 2012;56(8):4241–9.

  59. 59.

    Li J, Coulthard K, Milne R, et al. Steady-state pharmacokinetics of intravenous colistin methanesulphonate in patients with cystic fibrosis. J Antimicrob Chemother. 2003;52(6):987–92.

  60. 60.

    Reed MD, Stern RC, O’Riordan MA, et al. The pharmacokinetics of colistin in patients with cystic fibrosis. J Clin Pharmacol. 2001;41(6):645–54.

  61. 61.

    Imberti R, Cusato M, Villani P, et al. Steady-state pharmacokinetics and BAL concentration of colistin in critically ill patients after IV colistin methanesulfonate administration. Chest. 2010;138(6):1333–9.

  62. 62.

    Li J, Milne RW, Nation RL, et al. Pharmacokinetics of colistin methanesulphonate and colistin in rats following an intravenous dose of colistin methanesulphonate. J Antimicrob Chemother. 2004;53(5):837–40.

  63. 63.

    Kerem E, Reisman J, Corey M, et al. Prediction of mortality in patients with cystic fibrosis. N Engl J Med. 1992;326(18):1187–91.

  64. 64.

    Konstan MW, Flume PA, Kappler M, et al. Safety, efficacy and convenience of tobramycin inhalation powder in cystic fibrosis patients: the EAGER trial. J Cyst Fibros. 2011;10(1):54–61.

  65. 65.

    Banerjee D, Stableforth D. The treatment of respiratory pseudomonas infection in cystic fibrosis: what drug and which way? Drugs. 2000;60(5):1053–64.

  66. 66.

    Catchpole CR, Andrews JM, Brenwald N, et al. A reassessment of the in-vitro activity of colistin sulphomethate sodium. J Antimicrob Chemother. 1997;39(2):255–60.

  67. 67.

    Fish DN, Piscitelli SC, Danziger LH. Development of resistance during antimicrobial therapy: a review of antibiotic classes and patient characteristics in 173 studies. Pharmacotherapy. 1995;15(3):279–91.

  68. 68.

    Li J, Nation RL, Milne RW, et al. Evaluation of colistin as an agent against multi-resistant Gram-negative bacteria. Int J Antimicrob Agents. 2005;25(1):11–25.

  69. 69.

    Llor C, Bayona C, Hernández S, et al. Comparison of adherence between twice- and thrice-daily regimens of oral amoxicillin/clavulanic acid. Respirology. 2012;17(4):687–92.

  70. 70.

    Tappenden P, Harnan S, Uttley L, et al. Colistimethate sodium powder and tobramycin powder for inhalation for the treatment of chronic Pseudomonas aeruginosa lung infection in cystic fibrosis: systematic review and economic model. Health Technol Assess. 2013;17(56).

Download references

Disclosure

The preparation of this review was not supported by any external funding. During the peer review process, the manufacturer of the agent under review was offered an opportunity to comment on this article. Changes resulting from comments received were made by the author on the basis of scientific and editorial merit.

Author information

Correspondence to Gillian M. Keating.

Additional information

The manuscript was reviewed by: S. Antoniu, Department of Interdisciplinary Medicine-Nursing, University of Medicine and Pharmacy, Iasi, Romania; W. Hengzhuang, Department of Clinical Microbiology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark; J. Li, Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; Q. Zhou, Faculty of Pharmacy, University of Sydney, Sydney, New South Wales, Australia.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Conole, D., Keating, G.M. Colistimethate Sodium Dry Powder for Inhalation: A Review of Its Use in the Treatment of Chronic Pseudomonas aeruginosa Infection in Patients with Cystic Fibrosis. Drugs 74, 377–387 (2014). https://doi.org/10.1007/s40265-014-0181-0

Download citation

Keywords

  • Cystic Fibrosis
  • Cystic Fibrosis Transmembrane Conductance Regulator
  • Tobramycin
  • Colistin
  • Polymyxin