Skip to main content
Log in

β-Adrenoceptor Modulation in Chronic Obstructive Pulmonary Disease: Present and Future Perspectives

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

The common coexistence of chronic obstructive pulmonary disease (COPD) and cardiovascular disease (CVD) presents several therapeutic constraints that have not been comprehensively investigated. Pharmacologic modulation of β-adrenoceptor (β-AR) function is one of the critical issues in the treatment of these patients because inhaled β2-AR agonists may induce adverse events in patients with COPD, mainly in those with coexisting CVD. Moreover, the use of β-AR blockers has traditionally been contraindicated in COPD, mainly because of the potential for acute bronchospasm and increased airway hyperresponsiveness after their administration. However, there now appears to be good evidence that β-AR blockers are not only safe but may have benefits in COPD that extend beyond a reduction in cardiovascular mortality. This article starts with a succinct outline of the evolution in our understanding of β-AR modulation in COPD, touching on treatment of COPD with β-AR agonists and the issues of β-AR blockade and cardioselectivity in patients with comorbid CVD. We then summarize the current evidence for a COPD benefit from β-AR blockers and hypothesize on the mode of action. Finally, we provide a view of the future landscape in terms of therapeutic possibilities and what still needs to be resolved, based on our opinion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cazzola M, Calzetta L, Bettoncelli G, Cricelli C, Romeo F, Matera MG, Rogliani P. Cardiovascular disease in asthma and COPD: a population-based retrospective cross-sectional study. Respir Med. 2012;106:249–56.

    Article  PubMed  Google Scholar 

  2. Cockcroft JR, Pedersen ME. β-blockade: benefits beyond blood pressure reduction? J Clin Hypertens (Greenwich). 2012;14:112–20.

    Article  CAS  Google Scholar 

  3. Matera MG, Martuscelli E, Cazzola M. Pharmacological modulation of β-adrenoceptor function in patients with coexisting chronic obstructive pulmonary disease and chronic heart failure. Pulm Pharmacol Ther. 2010;23:1–8.

    Article  PubMed  CAS  Google Scholar 

  4. Cazzola M, Matera MG, Donner CF. Inhaled β2-adrenoceptor agonists: cardiovascular safety in patients with obstructive lung disease. Drugs. 2005;65:1595–610.

    Article  PubMed  CAS  Google Scholar 

  5. Cazzola M, Noschese P, D’Amato G, Matera MG. The pharmacologic treatment of uncomplicated arterial hypertension in patients with airway dysfunction. Chest. 2002;121:230–41.

    Article  PubMed  CAS  Google Scholar 

  6. van der Woude HJ, Zaagsma J, Postma DS, Winter TH, van Hulst M, Aalbers R. Detrimental effects of β-blockers in COPD: a concern for nonselective β-blockers. Chest. 2005;127:818–24.

    Article  PubMed  Google Scholar 

  7. Cazzola M, Page CP, Calzetta L, Matera MG. Pharmacology and therapeutics of bronchodilators. Pharmacol Rev. 2012;64:450–504.

    Article  PubMed  CAS  Google Scholar 

  8. Cazzola M, Page CP, Rogliani P, Matera MG. β2-Agonist therapy in lung disease. Am J Respir Crit Care Med. 2013;187:690–6.

    Article  PubMed  CAS  Google Scholar 

  9. Billington CK, Hall IP. Novel cAMP signalling paradigms: therapeutic implications for airway disease. Br J Pharmacol. 2012;166:401–10.

    Article  PubMed  CAS  Google Scholar 

  10. Brueckner F, Piscitelli CL, Tsai CJ, Standfuss J, Deupi X, Schertler GF. Structure of β-adrenergic receptors. Methods Enzymol. 2013;520:117–51.

    Article  PubMed  CAS  Google Scholar 

  11. Johnson M. The β-adrenoceptor. Am J Respir Crit Care Med. 1998;158:S146–53.

    Article  PubMed  CAS  Google Scholar 

  12. Whalen EJ, Rajagopal S, Lefkowitz RJ. Therapeutic potential of β-arrestin- and G protein-biased agonists. Trends Mol Med. 2011;17:126–39.

    Article  PubMed  CAS  Google Scholar 

  13. Lohse MJ, Benovic JL, Codina J, Caron MG, Lefkowitz RJ. Beta-arrestin: a protein that regulates beta-adrenergic receptor function. Science. 1990;248:1547–50.

    Article  PubMed  CAS  Google Scholar 

  14. Ahn S, Nelson CD, Garrison TR, Miller WE, Lefkowitz RJ. Desensitization, internalization, and signaling functions of beta-arrestins demonstrated by RNA interference. Proc Natl Acad Sci USA. 2003;100:1740–4.

    Article  PubMed  CAS  Google Scholar 

  15. Perry SJ, Baillie GS, Kohout TA, McPhee I, Magiera MM, Ang KL, Miller WE, McLean AJ, Conti M, Houslay MD, Lefkowitz RJ. Targeting of cyclic AMP degradation to beta 2-adrenergic receptors by beta-arrestins. Science. 2002;298:834–6.

    Article  PubMed  CAS  Google Scholar 

  16. Canning BJ. Reflex regulation of airway smooth muscle tone. J Appl Physiol. 2006;101:971–85.

    Article  PubMed  CAS  Google Scholar 

  17. van Gestel AJ, Kohler M, Clarenbach CF. Sympathetic overactivity and cardiovascular disease in patients with chronic obstructive pulmonary disease (COPD). Discov Med. 2012;14:359–68.

    PubMed  Google Scholar 

  18. Andreas S, Anker SD, Scanlon PD, Somers VK. Neurohormonal activation as a link to systemic manifestations of chronic obstructive pulmonary disease. Chest. 2005;128:3618–24.

    Article  PubMed  Google Scholar 

  19. Volterrani M, Scalvini S, Mazzuero G. Decreased heart rate variability in patients with chronic obstructive pulmonary disease. Chest. 1994;106:1432–7.

    Article  PubMed  CAS  Google Scholar 

  20. Steward RI, Lewis M. Cardiac output during exercise in patients with COPD. Chest. 1986;89:199–205.

    Article  Google Scholar 

  21. Patakas D, Louridas G, Kakavelas E. Reduced baroreceptor sensitivity in patients with chronic obstructive pulmonary disease. Thorax. 1982;37:292–5.

    Article  PubMed  CAS  Google Scholar 

  22. Heindl S, Lehnert M, Criée CP. Marked sympathetic activation in patients with chronic respiratory failure. Am J Respir Crit Care Med. 2001;164:597–601.

    Article  PubMed  CAS  Google Scholar 

  23. Velez-Roa S, Ciarka A, Najem B, Vachiery JL, Naeije R, van de Borne P. Increased sympathetic nerve activity in pulmonary artery hypertension. Circulation. 2004;110:1308–12.

    Article  PubMed  Google Scholar 

  24. Poirier P, Lacasse Y, Marquis K, Jobin J, LeBlanc P. Post-exercise heart rate recovery and mortality in chronic obstructive pulmonary disease. Respir Med. 2005;99:877–86.

    Article  PubMed  Google Scholar 

  25. Jensen MT, Marott JL, Lange P, Vestbo J, Schnohr P, Nielsen OW, Jensen JS, Jensen GB. Resting heart rate is a predictor of mortality in COPD. Eur Respir J. 2013;42:341–9.

    Article  PubMed  Google Scholar 

  26. Bristow MR, Ginsburg R, Umans V, Fowler M, Minobe W, Rasmussen R, Zera P, Menlove R, Shah P, Jamieson S, Stinson EB. β1- and β2-adrenergic-receptor subpopulations in nonfailing and failing human ventricular myocardium: coupling of both receptor subtypes to muscle contraction and selective β1-receptor down-regulation in heart failure. Circ Res. 1986;59:297–309.

    Article  PubMed  CAS  Google Scholar 

  27. Brodde OE. β1- and β2-adrenoceptors in the human heart: properties, function and alterations in chronic heart failure. Pharmacol Rev. 1991;43:203–42.

    PubMed  CAS  Google Scholar 

  28. Rodefeld MD, Beau SL, Schuessler RB, Boineau JP, Saffitz JE. β-Adrenergic and muscarinic cholinergic receptor densities in the human sinoatrial node: identification of a high β2-adrenergic receptor density. J Cardiovasc Electrophysiol. 1996;7:1039–49.

    Article  PubMed  CAS  Google Scholar 

  29. Newton GE, Parker JD. Acute effects of β1-selective and nonselective β-adrenergic receptor blockade on cardiac sympathetic activity in congestive heart failure. Circulation. 1996;94:353–8.

    Article  PubMed  CAS  Google Scholar 

  30. Cazzola M, Donner CF, Matera MG. Long acting β2 agonists and theophylline in stable chronic obstructive pulmonary disease. Thorax. 1999;54:730–6.

    Article  PubMed  CAS  Google Scholar 

  31. Cazzola M, Matera MG. Should long-acting β2-agonists be considered an alternative first choice option for the treatment of stable COPD? Respir Med. 1999;93:227–9.

    Article  PubMed  CAS  Google Scholar 

  32. Cekici L, Valipour A, Kohansal R, Burghuber OC. Short-term effects of inhaled salbutamol on autonomic cardiovascular control in healthy subjects: a placebo-controlled study. Br J Clin Pharmacol. 2009;67:394–402.

    Article  PubMed  CAS  Google Scholar 

  33. Silke B, Hanratty CG, Riddell JG. Heart-rate variability effects of beta-adrenoceptor agonists (xamoterol, prenalterol, and salbutamol) assessed nonlinearly with scatterplots and sequence methods. J Cardiovasc Pharmacol. 1999;33:859–67.

    Article  PubMed  CAS  Google Scholar 

  34. Hanratty CG, Silke B, Riddell JG. Evaluation of the effect on heart rate variability of a beta2-adrenoceptor agonist and antagonist using non-linear scatterplot and sequence methods. Br J Clin Pharmacol. 1999;47:157–66.

    Article  PubMed  CAS  Google Scholar 

  35. Newton GE, Azevedo ER, Parker JD. Inotropic and sympathetic responses to the intracoronary infusion of a β2-receptor agonist: a human in vivo study. Circulation. 1999;99:2402–7.

    Article  PubMed  CAS  Google Scholar 

  36. Cazzola M, Calzetta L, Matera MG. β2-adrenoceptor agonists: current and future direction. Br J Pharmacol. 2011;163:4–17.

    Article  PubMed  CAS  Google Scholar 

  37. Cazzola M, Imperatore F, Salzillo A, Di Perna F, Calderaro F, Imperatore A, Matera MG. Cardiac effects of formoterol and salmeterol in patients suffering from COPD with preexisting cardiac arrhythmias and hypoxemia. Chest. 1998;114:411–5.

    Article  PubMed  CAS  Google Scholar 

  38. Wilchesky M, Ernst P, Brophy JM, Platt RW, Suissa S. Bronchodilator use and the risk of arrhythmia in COPD: part 2. Reassessment in the larger Quebec cohort. Chest. 2012;142:305–11.

    Article  PubMed  CAS  Google Scholar 

  39. Calverley PM, Anderson JA, Celli B, Ferguson GT, Jenkins C, Jones PW, Crim C, Willits LR, Yates JC, Vestbo J. Cardiovascular events in patients with COPD: TORCH study results. Thorax. 2010;65:719–25.

    Article  PubMed  Google Scholar 

  40. Hanania NA, Sharafkhaneh A, Barber R, Dickey BF. β-agonist intrinsic efficacy: measurement and clinical significance. Am J Respir Crit Care Med. 2002;165:1353–8.

    Article  PubMed  Google Scholar 

  41. Parker H, Brenya R, Zarich S, Manthous CA. β-agonists for patients with chronic obstructive pulmonary disease and heart disease? Am J Emerg Med. 2008;26:104–5.

    Article  PubMed  Google Scholar 

  42. Singer AJ, Emerman C, Char DM, Heywood JT, Kirk JD, Hollander JE, Summers R, Lee CC, Wynne J, Kellerman L, Peacock WF. Bronchodilator therapy in acute decompensated heart failure patients without a history of chronic obstructive pulmonary disease. Ann Emerg Med. 2008;51:25–34.

    Article  PubMed  Google Scholar 

  43. Minasian AG, van den Elshout FJ, Dekhuijzen PN, Vos PJ, Willems FF, van den Bergh PJ, Heijdra YF. Bronchodilator responsiveness in patients with chronic heart failure. Heart Lung. 2013;42:208–14.

    Article  PubMed  Google Scholar 

  44. Maak CA, Tabas JA, McClintock DE. Should acute treatment with inhaled beta agonists be withheld from patients with dyspnea who may have heart failure? J Emerg Med. 2011;40:135–45.

    Article  PubMed  Google Scholar 

  45. Coughlin SS, Metayer C, McCarthy EP, Mather FJ, Waldhorn RE, Gersh BJ, DuPraw S, Baughman KL. Respiratory illness, beta-agonists, and risk of idiopathic dilated cardiomyopathy: the Washington, DC, Dilated Cardiomyopathy Study. Am J Epidemiol. 1995;142:395–403.

    PubMed  CAS  Google Scholar 

  46. Au DH, Udris EM, Fan VS, Curtis JR, McDonell MB, Fihn SD. Risk of mortality and heart failure exacerbations associated with inhaled beta-adrenoceptor agonists among patients with known left ventricular systolic dysfunction. Chest. 2003;123:1964–9.

    Article  PubMed  CAS  Google Scholar 

  47. Hannink JD, van Helvoort HA, Dekhuijzen PN, Heijdra YF. Heart failure and COPD: partners in crime? Respirology. 2010;15:895–901.

    Article  PubMed  Google Scholar 

  48. Sengstock DM, Obeidat O, Pasnoori V, Mehra P, Sandberg KR, McCullough PA. Asthma, beta-agonists, and development of congestive heart failure: results of the ABCHF study. J Card Fail. 2002;8:232–8.

    Article  PubMed  CAS  Google Scholar 

  49. Bermingham M, O’Callaghan E, Dawkins I, Miwa S, Samsudin S, McDonald K, Ledwidge M. Are beta2-agonists responsible for increased mortality in heart failure? Eur J Heart Fail. 2011;13:885–91.

    Article  PubMed  CAS  Google Scholar 

  50. Campbell SC, Criner GJ, Levine BE, Simon SJ, Smith JS, Orevillo CJ, Ziehmer BA. Cardiac safety of formoterol 12 microg twice daily in patients with chronic obstructive pulmonary disease. Pulm Pharmacol Ther. 2006;20:571–9.

    Article  PubMed  Google Scholar 

  51. Worth H, Chung KF, Felser JM, Hu H, Rueegg P. Cardio- and cerebrovascular safety of indacaterol vs formoterol, salmeterol, tiotropium and placebo in COPD. Respir Med. 2011;105:571–9.

    Article  PubMed  Google Scholar 

  52. López-Sendón J, Swedberg K, McMurray J, Tamargo J, Maggioni AP, Dargie H, Tendera M, Waagstein F, Kjekshus J, Lechat P, Torp-Pedersen C. Expert consensus document on β-adrenergic receptor blockers. Eur Heart J. 2004;25:1341–62.

    Article  PubMed  Google Scholar 

  53. Baker JG. The selectivity of β-adrenoceptor antagonists at the human β1, β2 and β3 adrenoceptors. Br J Pharmacol. 2005;144:317–22.

    Article  PubMed  CAS  Google Scholar 

  54. Chang CL, Mills GD, McLachlan JD, Karalus NC, Hancox RJ. Cardio-selective and non-selective beta-blockers in chronic obstructive pulmonary disease: effects on bronchodilator response and exercise. Intern Med J. 2010;40:193–200.

    Article  PubMed  CAS  Google Scholar 

  55. British Cardiac Society, British Hypertension Society, Diabetes UK, HEART UK, Primary Care Cardiovascular Society, The Stroke Association. JBS 2: Joint British Societies’ guidelines on prevention of cardiovascular disease in clinical practice. Heart 2005; 91:v1–52.

    Google Scholar 

  56. National Clinical Guidelines Centre 2010. Chronic heart failure: national clinical guideline for diagnosis and management in primary care [online]. August 2010. http://www.nice.org.uk/nicemedia/live/13099/50514/50514.pdf. Accessed 16 May 2013.

  57. Smith SC Jr, Allen J, Blair SN, Bonow RO, Brass LM, Fonarow GC, Grundy SM, Hiratzka L, Jones D, Krumholz HM, Mosca L, Pasternak RC, Pearson T, Pfeffer MA, Taubert KA. AHA/ACC, National Heart Lung and Blood Institute: AHA/ACC guidelines for secondary prevention for patients with coronary and other atherosclerotic vascular disease: 2006 update: endorsed by the National Heart, Lung, and Blood Institute. Circulation. 2006;113:2363–72.

    Article  PubMed  Google Scholar 

  58. Mancia G, De Backer G, Dominiczak A, Cifkova R, Fagard R, Germano G, Grassi G, Heagerty AM, Kjeldsen SE, Laurent S, Narkiewicz K, Ruilope L, Rynkiewicz A, Schmieder RE, Struijker Boudier HA, Zanchetti A. ESH-ESC practice guidelines for the management of arterial hypertension: ESH-ESC task force on the management of arterial hypertension. J Hypertens. 2007;2007(25):1105–87.

    Article  Google Scholar 

  59. Cazzola M, Matera MG. β-Blockers are safe in patients with chronic obstructive pulmonary disease, but only with caution. Am J Respir Crit Care Med. 2008;178:661–2.

    Article  PubMed  Google Scholar 

  60. Salpeter S, Ormiston T, Salpeter E. Cardioselective beta blockers for chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2005; (19):CD003566.

  61. Ni Y, Shi G, Wan H. Use of cardioselective β-blockers in patients with chronic obstructive pulmonary disease: a meta-analysis of randomized, placebo-controlled, blinded trials. J Int Med Res. 2012;40:2051–65.

    Article  PubMed  CAS  Google Scholar 

  62. Loth DW, Brusselle GG, Lahousse L, Hofman A, Leufkens HG, Stricker BH. Beta-blockers and pulmonary function in the general population: the Rotterdam Study. Br J Clin Pharmacol. 2013. doi:10.1111/bcp.12181.

    PubMed  Google Scholar 

  63. Etminan M, Jafari S, Carleton B, FitzGerald JM. Beta-blocker use and COPD mortality: a systematic review and meta-analysis. BMC Pulm Med. 2012;12:48.

    Article  PubMed  CAS  Google Scholar 

  64. Rutten F, Zuithoff N, Hak E, Grobbee D, Hoes A. β-blockers may reduce mortality and risk of exacerbations in patients with chronic obstructive pulmonary disease. Arch Intern Med. 2010;170:880–7.

    Article  PubMed  Google Scholar 

  65. Short PM, Lipworth SI, Elder DH, Schembri S, Lipworth BJ. Effect of beta blockers in treatment of chronic obstructive pulmonary disease: a retrospective cohort study. BMJ. 2011;342:d2549.

    Article  PubMed  Google Scholar 

  66. Farland MZ, Peters CJ, Williams JD, Bielak KM, Heidel RE, Ray SM. β-Blocker use and incidence of chronic obstructive pulmonary disease exacerbations. Ann Pharmacother. 2013;47:651–6.

    Article  PubMed  Google Scholar 

  67. Matera MG, Calzetta L, Rinaldi B, Cazzola M. Treatment of COPD: moving beyond the lungs. Curr Opin Pharmacol. 2012;12:315–22.

    Article  PubMed  CAS  Google Scholar 

  68. Cochrane B, Quinn S, Walters H, Young I. Investigating the adverse respiratory effects of beta-blocker treatment: six years of prospective longitudinal data in a cohort with cardiac disease. Intern Med J. 2012;42:786–93.

    Article  PubMed  CAS  Google Scholar 

  69. Dransfield MT, Rowe SM, Johnson JE, Bailey WC, Gerald LB. Use of β blockers and the risk of death in hospitalised patients with acute exacerbations of COPD. Thorax. 2008;63:301–5.

    Article  PubMed  CAS  Google Scholar 

  70. Suissa S, Ernst P. Biases in the observational study of beta blockers in COPD. Thorax. 2008;63:1026–7.

    PubMed  CAS  Google Scholar 

  71. Stefan MS, Rothberg MB, Priya A, Pekow PS, Au DH, Lindenauer PK. Association between β-blocker therapy and outcomes in patients hospitalized with acute exacerbations of chronic obstructive lung disease with underlying ischaemic heart disease, heart failure or hypertension. Thorax. 2012;67:977–84.

    Article  PubMed  Google Scholar 

  72. Mentz RJ, Wojdyla D, Fiuzat M, Chiswell K, Fonarow GC, O’Connor CM. Association of beta-blocker use and selectivity with outcomes in patients with heart failure and chronic obstructive pulmonary disease (from OPTIMIZE-HF). Am J Cardiol. 2013;111:582–7.

    Article  PubMed  CAS  Google Scholar 

  73. Mentz RJ, Schulte PJ, Fleg JL, Fiuzat M, Kraus WE, Piña IL, Keteyian SJ, Kitzman DW, Whellan DJ, Ellis SJ, O’Connor CM. Clinical characteristics, response to exercise training, and outcomes in patients with heart failure and chronic obstructive pulmonary disease: findings from Heart Failure and A Controlled Trial Investigating Outcomes of Exercise TraiNing (HF-ACTION). Am Heart J. 2013;165:193–9.

    Article  PubMed  Google Scholar 

  74. Rutten FH, Hoes AW. Chronic obstructive pulmonary disease: a slowly progressive cardiovascular disease masked by its pulmonary effects? Eur J Heart Fail. 2012;14:348–50.

    Article  PubMed  Google Scholar 

  75. Lin R, Peng H, Nguyen LP, Dudekula NB, Shardonofsky F, Knoll BJ, Parra S, Bond RA. Changes in β2-adrenoceptor and other signaling proteins produced by chronic administration of ‘β-blockers’ in a murine asthma model. Pulm Pharmacol Ther. 2008;21:115–24.

    Article  PubMed  CAS  Google Scholar 

  76. Peng H, Bond RA, Knoll BJ. The effects of acute and chronic nadolol treatment on β2AR signaling in HEK293 cells. Naunyn Schmiedebergs Arch Pharmacol. 2011;383:209–16.

    Article  PubMed  CAS  Google Scholar 

  77. Paolillo S, Pellegrino R, Salvioni E, Contini M, Iorio A, Bovis F, Antonelli A, Torchio R, Gulotta C, Locatelli A, Agostoni P. Role of alveolar β2-adrenergic receptors on lung fluid clearance and exercise ventilation in healthy humans. PLoS One. 2013;8:e61877.

    Article  PubMed  CAS  Google Scholar 

  78. Nguyen LP, Omoluabi O, Parra S, Frieske JM, Clement C, Ammar-Aouchiche Z, Ho SB, Ehre C, Kesimer M, Knoll BJ, Tuvim MJ, Dickey BF, Bond RA. Chronic exposure to beta-blockers attenuates inflammation and mucin content in a murine asthma model. Am J Respir Cell Mol Biol. 2008;38:256–62.

    Article  PubMed  CAS  Google Scholar 

  79. Nguyen LP, Lin R, Parra S, Omoluabi O, Hanania NA, Tuvim MJ, Knoll BJ, Dickey BF, Bond RA. β2-adrenoceptor signaling is required for the development of an asthma phenotype in a murine model. Proc Natl Acad Sci USA. 2009;106:2435–40.

    Article  PubMed  CAS  Google Scholar 

  80. Hanania NA, Singh S, El-Wali R, Flashner M, Franklin AE, Garner WJ, Dickey BF, Parra S, Ruoss S, Shardonofsky F, O’Connor BJ, Page C, Bond RA. The safety and effects of the beta-blocker, nadolol, in mild asthma: an open-label pilot study. Pulm Pharmacol Ther. 2008;21:134–41.

    Article  PubMed  CAS  Google Scholar 

  81. Kazani S, Israel E. Treatment with β blockers in people with COPD. BMJ. 2011;342:d2655.

    Article  PubMed  Google Scholar 

  82. Page C. Paradoxical pharmacology: turning our pharmacological model upside down. Trends Pharmacol Sci. 2011;32:197–200.

    Article  PubMed  CAS  Google Scholar 

  83. Dickey BF, Walker JKL, Hanania NA, Bond RA. β-Adrenoceptor inverse agonists in asthma. Curr Opin Pharmacol. 2010;10:254–9.

    Article  PubMed  CAS  Google Scholar 

  84. Penn RB. Embracing emerging paradigms of G protein-coupled receptor agonism and signaling to address airway smooth muscle pathobiology in asthma. Naunyn Schmiedebergs Arch Pharmacol. 2008;378:149–69.

    Article  PubMed  CAS  Google Scholar 

  85. Short PM, Williamson PA, Anderson WJ, Lipworth BJ. Randomized placebo-controlled trial to evaluate chronic dosing effects of propranolol in asthma. Am J Respir Crit Care Med. 2013;187:1308–14.

    Article  PubMed  CAS  Google Scholar 

  86. Donohue JF, Menjoge S, Kesten S. Tolerance to bronchodilating effects of salmeterol in COPD. Respir Med. 2003;97:1014–20.

    Article  PubMed  CAS  Google Scholar 

  87. Tsagaraki V, Amfilochiou A, Markantonis SL. Evidence of tachyphylaxis associated with salmeterol treatment of chronic obstructive pulmonary disease patients. Int J Clin Pract. 2006;60:415–21.

    Article  PubMed  CAS  Google Scholar 

  88. Tashkin DP, Altose MD, Bleecker ER, Connett JE, Kanner RE, Lee WW, Wise R. The lung health study: airway responsiveness to inhaled methacholine in smokers with mild to moderate airflow limitation. The Lung Health Study Research Group. Am Rev Respir Dis. 1992;145:301–10.

    Article  PubMed  CAS  Google Scholar 

  89. van den Berge M, Vonk JM, Gosman M, Lapperre TS, Snoeck-Stroband JB, Sterk PJ, Kunz LI, Hiemstra PS, Timens W, Ten Hacken NH, Kerstjens HA, Postma DS. Clinical and inflammatory determinants of bronchial hyperresponsiveness in COPD. Eur Respir J. 2012;40:1098–105.

    Article  PubMed  Google Scholar 

  90. Irvin CG. Neutrophils, airway hyperresponsiveness and COPD: true, true and related? Eur Respir J. 2012;40:1067–9.

    Article  PubMed  Google Scholar 

  91. Zhu J, Qiu YS, Majumdar S, Gamble E, Matin D, Turato G, Fabbri LM, Barnes N, Saetta M, Jeffery PK. Exacerbations of bronchitis: bronchial eosinophilia and gene expression for interleukin-4, interleukin-5, and eosinophil chemoattractants. Am J Respir Crit Care Med. 2001;164:109–16.

    Article  PubMed  CAS  Google Scholar 

  92. Siva R, Green RH, Brightling CE, Shelley M, Hargadon B, McKenna S, Monteiro W, Berry M, Parker D, Wardlaw AJ, Pavord ID. Eosinophilic airway inflammation and exacerbations of COPD: a randomised controlled trial. Eur Respir J. 2007;29:906–13.

    Article  PubMed  CAS  Google Scholar 

  93. Cohn L. Mucus in chronic airway diseases: sorting out the sticky details. J Clin Invest. 2006;116:306–8.

    Article  PubMed  CAS  Google Scholar 

  94. Au DH, Udris EM, Curtis JR, McDonell MB, Fihn SD. Association between chronic heart failure and inhaled β-2-adrenoceptor agonists. Am Heart J. 2004;148:915–20.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

M. Matera, L. Calzetta, and M. Cazzola declare that they have no conflicts of interest relevant to this article. No sources of funding were used to support the writing of the manuscript. All authors contributed to the writing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Gabriella Matera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matera, M.G., Calzetta, L. & Cazzola, M. β-Adrenoceptor Modulation in Chronic Obstructive Pulmonary Disease: Present and Future Perspectives. Drugs 73, 1653–1663 (2013). https://doi.org/10.1007/s40265-013-0120-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-013-0120-5

Keywords

Navigation