Skip to main content
Log in

Intermittent Claudication: New Targets for Drug Development

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Peripheral artery disease (PAD) is the result of extensive atherosclerosis in the arterial supply to the lower extremities. PAD is associated with increased systemic cardiovascular morbidity and mortality as well as substantial disability due to walking impairment. Claudication is the classic symptom of leg pain with walking that is relieved by rest, but patients with PAD without typical claudication also have a walking limitation. Treatment of the patient with PAD is directed towards reducing cardiovascular risk and improving exercise capacity. The pathophysiology of the physical impairment is complex as changes in the muscle distal to the arterial stenoses contribute to the limitations. Current treatment options to improve exercise performance have limitations emphasizing the need for new pharmacotherapies for this highly prevalent condition. The multifactorial contributors to the exercise impairment in PAD suggest potential targets for novel drug therapies. Advances in understanding angiogenesis make pharmacologic revascularization possible. However, ensuring that new blood vessels develop in a distribution relevant to the clinical impairment remains a challenge. Skeletal muscle metabolism and its regulation are altered in patients with PAD and strategies to improve the efficient oxidation of fuel substrates may improve muscle function. PAD is associated with increased oxidative stress which may result in injury to the muscle microvasculature and myocyte. Minimizing this oxidative stress by enhancing cellular defense mechanisms, administration of anti-inflammatory agents or by providing antioxidants, could prevent oxidative injury. Given the central role of atherosclerosis in the flow limitation, therapies to induce regression of atherosclerotic lesions could result in improved blood flow and oxygen delivery. Drugs targeting the distribution of blood flow in the microcirculatory environment of the muscle have the potential to better match oxygen delivery with working myocytes. The physical disability and flow limitations contribute to a loss of leg muscle mass in patients with PAD. Drugs to increase muscle mass and strength could enhance walking ability in these patients. Pharmacotherapies that recapitulate the muscle adaptations induced by preconditioning may result in improved physical performance in patients with PAD. Adjunctive therapies combined with exercise training or revascularization may be important given the complexity of integrative muscle function and the multiple pathologic changes induced by PAD. New research into the pathophysiology of the physical impairment associated with PAD has identified potential new targets for drug therapy, and will likely continue to do so in the years to come. Translation of these opportunities into effective therapeutics will be important as the already high prevalence of PAD is expected to increase as the population ages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hiatt WR, Goldstone J, Smith SC Jr, McDermott M, Moneta G, Oka R, et al. Atherosclerotic peripheral vascular disease symposium II: nomenclature for vascular diseases. Circulation. 2008;118(25):2826–9.

    Article  PubMed  Google Scholar 

  2. Dormandy JA, Rutherford RB. Management of peripheral arterial disease (PAD). TASC Working Group. TransAtlantic Inter-Society Consensus (TASC). J Vasc Surg. 2000;31(1 Pt 2):S1–296.

    Google Scholar 

  3. Hirsch AT, Haskal ZJ, Hertzer NR, Bakal CW, Creager MA, Halperin JL, et al. ACC/AHA 2005 guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): executive summary a collaborative report from the American Association for Vascular Surgery/Society for Vascular Surgery, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients With Peripheral Arterial Disease) endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation; National Heart, Lung, and Blood Institute; Society for Vascular Nursing; TransAtlantic Inter-Society Consensus; and Vascular Disease Foundation. J Am Coll Cardiol. 2006;47(6):1239–312.

    Article  PubMed  Google Scholar 

  4. Weitz JI, Byrne J, Clagett GP, Farkouh ME, Porter JM, Sackett DL, et al. Diagnosis and treatment of chronic arterial insufficiency of the lower extremities: a critical review. Circulation. 1996;94(11):3026–49.

    Article  PubMed  CAS  Google Scholar 

  5. Criqui MH, Fronek A, Barrett-Connor E, Klauber MR, Gabriel S, Goodman D. The prevalence of peripheral arterial disease in a defined population. Circulation. 1985;71(3):510–5.

    Article  PubMed  CAS  Google Scholar 

  6. Meijer WT, Hoes AW, Rutgers D, Bots ML, Hofman A, Grobbee DE. Peripheral arterial disease in the elderly: the Rotterdam Study. Arterioscler Thromb Vasc Biol. 1998;18(2):185–92.

    Article  PubMed  CAS  Google Scholar 

  7. Criqui MH, Langer RD, Fronek A, Feigelson HS, Klauber MR, McCann TJ, et al. Mortality over a period of 10 years in patients with peripheral arterial disease. N Engl J Med. 1992;326(6):381–6.

    Article  PubMed  CAS  Google Scholar 

  8. Leng GC, Lee AJ, Fowkes FG, Whiteman M, Dunbar J, Housley E, et al. Incidence, natural history and cardiovascular events in symptomatic and asymptomatic peripheral arterial disease in the general population. Int J Epidemiol. 1996;25(6):1172–81.

    Article  PubMed  CAS  Google Scholar 

  9. Criqui MH, McClelland RL, McDermott MM, Allison MA, Blumenthal RS, Aboyans V, et al. The ankle-brachial index and incident cardiovascular events in the MESA (Multi-Ethnic Study of Atherosclerosis). J Am Coll Cardiol. 2010;56(18):1506–12.

    Article  PubMed  Google Scholar 

  10. Bouisset F, Bongard V, Ruidavets JB, Hascoet S, Taraszkiewicz D, Roncalli J, et al. Prognostic usefulness of clinical and subclinical peripheral arterial disease in men with stable coronary heart disease. Am J Cardiol. 2012;110(2):197–202.

    Google Scholar 

  11. Aronow WS. Peripheral arterial disease of the lower extremities. Arch Med Sci. 2012;8(2):375–88.

    Article  PubMed  CAS  Google Scholar 

  12. Hiatt WR. Medical treatment of peripheral arterial disease and claudication. N Engl J Med. 2001;344(21):1608–21.

    Article  PubMed  CAS  Google Scholar 

  13. Berger JS, Krantz MJ, Kittelson JM, Hiatt WR. Aspirin for the prevention of cardiovascular events in patients with peripheral artery disease: a meta-analysis of randomized trials. JAMA J Am Med Assoc. 2009;301(18):1909–19.

    Article  CAS  Google Scholar 

  14. Subherwal S, Patel MR, Kober L, Peterson ED, Jones WS, Gislason GH, et al. Missed opportunities: despite improvement in use of cardioprotective medications among patients with lower-extremity peripheral artery disease, underuse remains. Circulation. 2012;126(11):1345–54.

    Article  PubMed  Google Scholar 

  15. Breek JC, de Vries J, van Heck GL, van Berge Henegouwen DP, Hamming JF. Assessment of disease impact in patients with intermittent claudication: discrepancy between health status and quality of life. J Vasc Surg. 2005;41(3):443–50.

    Article  PubMed  CAS  Google Scholar 

  16. Dumville JC, Lee AJ, Smith FB, Fowkes FG. The health-related quality of life of people with peripheral arterial disease in the community: the Edinburgh Artery Study. Br J Gen Pract. 2004;54(508):826–31.

    PubMed  Google Scholar 

  17. McDermott MM, Mehta S, Liu K, Guralnik JM, Martin GJ, Criqui MH, et al. Leg symptoms, the ankle-brachial index, and walking ability in patients with peripheral arterial disease. J Gen Intern Med. 1999;14(3):173–81.

    Article  PubMed  CAS  Google Scholar 

  18. McDermott MM, Greenland P, Liu K, Guralnik JM, Criqui MH, Dolan NC, et al. Leg symptoms in peripheral arterial disease: associated clinical characteristics and functional impairment. JAMA J Am Med Assoc. 2001;286(13):1599–606.

    Article  CAS  Google Scholar 

  19. McDermott MM, Greenland P, Liu K, Guralnik JM, Celic L, Criqui MH, et al. The ankle brachial index is associated with leg function and physical activity: the Walking and Leg Circulation Study. Ann Intern Med. 2002;136(12):873–83.

    Article  PubMed  Google Scholar 

  20. Parr B, Noakes TD, Derman EW. Factors predicting walking intolerance in patients with peripheral arterial disease and intermittent claudication. S Afr Med J. 2008;98(12):958–62.

    PubMed  CAS  Google Scholar 

  21. Robbins JL, Jones WS, Duscha BD, Allen JD, Kraus WE, Regensteiner JG, et al. Relationship between leg muscle capillary density and peak hyperemic blood flow with endurance capacity in peripheral artery disease. J Appl Physiol. 2011;111(1):81–6.

    Article  PubMed  Google Scholar 

  22. Belch JJ, Mackay IR, Hill A, Jennings P, McCollum P. Oxidative stress is present in atherosclerotic peripheral arterial disease and further increased by diabetes mellitus. Int Angiol. 1995;14(4):385–8.

    PubMed  CAS  Google Scholar 

  23. Pipinos II, Judge AR, Selsby JT, Zhu Z, Swanson SA, Nella AA, et al. The myopathy of peripheral arterial occlusive disease: Part 2. Oxidative stress, neuropathy, and shift in muscle fiber type. Vasc Endovasc Surg. 2008;42(2):101–12.

    Google Scholar 

  24. Regensteiner JG, Wolfel EE, Brass EP, Carry MR, Ringel SP, Hargarten ME, et al. Chronic changes in skeletal muscle histology and function in peripheral arterial disease. Circulation. 1993;87(2):413–21.

    Article  PubMed  CAS  Google Scholar 

  25. Brass EP, Hiatt WR, Green S. Skeletal muscle metabolic changes in peripheral arterial disease contribute to exercise intolerance: a point-counterpoint discussion. Vasc Med. 2004;9(4):293–301.

    Article  PubMed  Google Scholar 

  26. Coutinho T, Rooke TW, Kullo IJ. Arterial dysfunction and functional performance in patients with peripheral artery disease: a review. Vasc Med. 2011;16(3):203–11.

    Article  PubMed  Google Scholar 

  27. Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, Fowkes FG, et al. Inter-Society Consensus for the management of peripheral arterial disease (TASC II). Eur J Vasc Endovasc Surg. 2007;33(Suppl 1):S1–75.

    Article  PubMed  Google Scholar 

  28. Stewart KJ, Hiatt WR, Regensteiner JG, Hirsch AT. Exercise training for claudication. N Engl J Med. 2002;347(24):1941–51.

    Article  PubMed  Google Scholar 

  29. Watson L, Ellis B, Leng GC. Exercise for intermittent claudication. Cochrane Database Syst Rev. 2008(4):CD000990.

  30. Gardner AW, Poehlman ET. Exercise rehabilitation programs for the treatment of claudication pain. A meta-analysis. JAMA J Am Med Assoc. 1995;274(12):975–80.

    Article  CAS  Google Scholar 

  31. Holloszy JO, Coyle EF. Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol. 1984;56(4):831–8.

    PubMed  CAS  Google Scholar 

  32. Short KR, Vittone JL, Bigelow ML, Proctor DN, Coenen-Schimke JM, Rys P, et al. Changes in myosin heavy chain mRNA and protein expression in human skeletal muscle with age and endurance exercise training. J Appl Physiol. 2005;99(1):95–102.

    Article  PubMed  CAS  Google Scholar 

  33. Laughlin MH, Roseguini B. Mechanisms for exercise training-induced increases in skeletal muscle blood flow capacity: differences with interval sprint training versus aerobic endurance training. J Physiol Pharmacol. 2008;59(Suppl 7):71–88.

    PubMed  Google Scholar 

  34. Parmenter BJ, Raymond J, Fiatarone Singh MA. The effect of exercise on haemodynamics in intermittent claudication: a systematic review of randomized controlled trials. Sports Med. 2010;40(5):433–47.

    Article  PubMed  Google Scholar 

  35. Duscha BD, Robbins JL, Jones WS, Kraus WE, Lye RJ, Sanders JM, et al. Angiogenesis in skeletal muscle precede improvements in peak oxygen uptake in peripheral artery disease patients. Arterioscler Thromb Vasc Biol. 2011;31(11):2742–8.

    Article  PubMed  CAS  Google Scholar 

  36. Hiatt WR, Regensteiner JG, Wolfel EE, Carry MR, Brass EP. Effect of exercise training on skeletal muscle histology and metabolism in peripheral arterial disease. J Appl Physiol. 1996;81(2):780–8.

    PubMed  CAS  Google Scholar 

  37. Sorlie D, Myhre K. Effects of physical training in intermittent claudication. Scand J Clin Lab Invest. 1978;38(3):217–22.

    Article  PubMed  CAS  Google Scholar 

  38. Beckitt TA, Day J, Morgan M, Lamont PM. Skeletal muscle adaptation in response to supervised exercise training for intermittent claudication. Eur J Vasc Endovasc Surg. 2012;44(3):313–7.

    Article  PubMed  CAS  Google Scholar 

  39. Lundgren F, Dahllof AG, Schersten T, Bylund-Fellenius AC. Muscle enzyme adaptation in patients with peripheral arterial insufficiency: spontaneous adaptation, effect of different treatments and consequences on walking performance. Clin Sci (Lond). 1989;77(5):485–93.

    CAS  Google Scholar 

  40. Celis R, Pipinos II, Scott-Pandorf MM, Myers SA, Stergiou N, Johanning JM. Peripheral arterial disease affects kinematics during walking. J Vasc Surg. 2009;49(1):127–32.

    Article  PubMed  Google Scholar 

  41. Sorkin EM, Markham A. Cilostazol. Drugs Aging. 1999;14(1):63–71 (discussion 2–3).

    Google Scholar 

  42. Pande RL, Hiatt WR, Zhang P, Hittel N, Creager MA, McDermott M. A pooled analysis of the durability and predictors of treatment response of cilostazol in patients with intermittent claudication. Vasc Med. 2010;15(3):181–8.

    Article  PubMed  Google Scholar 

  43. Ikeda Y. Antiplatelet therapy using cilostazol, a specific PDE3 inhibitor. Thromb Haemost. 1999;82(2):435–8.

    PubMed  CAS  Google Scholar 

  44. Yasutake M, Kunimi T, Sato N, Yokoyama H, Sasaki Y, Kusama Y, et al. Effects of a single oral dose of cilostazol on epicardial coronary arteries and hemodynamics in humans. Circ J. 2002;66(3):241–6.

    Article  PubMed  CAS  Google Scholar 

  45. Brass EP, Anthony R, Cobb FR, Koda I, Jiao J, Hiatt WR. The novel phosphodiesterase inhibitor NM-702 improves claudication-limited exercise performance in patients with peripheral arterial disease. J Am Coll Cardiol. 2006;48(12):2539–45.

    Article  PubMed  CAS  Google Scholar 

  46. Brass EP, Cooper LT, Morgan RE, Hiatt WR. A phase II dose-ranging study of the phosphodiesterase inhibitor K-134 in patients with peripheral artery disease and claudication. J Vasc Surg. 2012;55(2):381–9 e1.

    Google Scholar 

  47. Murphy TP, Cutlip DE, Regensteiner JG, Mohler ER, Cohen DJ, Reynolds MR, et al. Supervised exercise versus primary stenting for claudication resulting from aortoiliac peripheral artery disease: six-month outcomes from the claudication: exercise versus endoluminal revascularization (CLEVER) study. Circulation. 2012;125(1):130–9.

    Article  PubMed  Google Scholar 

  48. Hedeager Momsen AM, Bach Jensen M, Norager CB, Roerbaek Madsen M, Vestersgaard-Andersen T, Lindholt JS. Quality of life and functional status after revascularization or conservative treatment in patients with intermittent claudication. Vasc Endovasc Surg. 2011;45(2):122–9.

    Google Scholar 

  49. Feinglass J, McCarthy WJ, Slavensky R, Manheim LM, Martin GJ. Functional status and walking ability after lower extremity bypass grafting or angioplasty for intermittent claudication: results from a prospective outcomes study. J Vasc Surg. 2000;31(1 Pt 1):93–103.

    Article  PubMed  CAS  Google Scholar 

  50. Salhiyyah K, Senanayake E, Abdel-Hadi M, Booth A, Michaels JA. Pentoxifylline for intermittent claudication. Cochrane Database Syst Rev. 2012;1:CD005262.

  51. Stevens JW, Simpson E, Harnan S, Squires H, Meng Y, Thomas S, et al. Systematic review of the efficacy of cilostazol, naftidrofuryl oxalate and pentoxifylline for the treatment of intermittent claudication. Br J Surg. 2012;99(12):1630–8.

    Article  PubMed  CAS  Google Scholar 

  52. Dettelbach HR, Aviado DM. Clinical pharmacology of pentoxifylline with special reference to its hemorrheologic effect for the treatment of intermittent claudication. J Clin Pharmacol. 1985;25(1):8–26.

    Google Scholar 

  53. Zabel P, Schade FU, Schlaak M. Inhibition of endogenous TNF formation by pentoxifylline. Immunobiology. 1993;187(3–5):447–63.

    Article  PubMed  CAS  Google Scholar 

  54. Ciuffetti G, Mercuri M, Ott C, Lombardini R, Paltriccia R, Lupattelli G, et al. Use of pentoxifylline as an inhibitor of free radical generation in peripheral vascular disease. Results of a double-blind placebo-controlled study. Eur J Clin Pharmacol. 1991;41(6):511–5.

    Article  PubMed  CAS  Google Scholar 

  55. De Backer TL, Vander Stichele R, Lehert P, Van Bortel L. Naftidrofuryl for intermittent claudication. Cochrane Database Syst Rev. 2008(2):CD001368.

  56. de Backer TL, Vander Stichele R, Lehert P, Van Bortel L. Naftidrofuryl for intermittent claudication. Cochrane Database Syst Rev. 2012;12:CD001368.

  57. Barradell LB, Brogden RN. Oral naftidrofuryl. A review of its pharmacology and therapeutic use in the management of peripheral occlusive arterial disease. Drugs Aging. 1996;8(4):299–322.

    Article  PubMed  CAS  Google Scholar 

  58. Mujika I, Padilla S. Detraining: loss of training-induced physiological and performance adaptations. Part I: short term insufficient training stimulus. Sports Med. 2000;30(2):79–87.

    Article  PubMed  CAS  Google Scholar 

  59. Zachary I, Morgan RD. Therapeutic angiogenesis for cardiovascular disease: biological context, challenges, prospects. Heart. 2011;97(3):181–9.

    Article  PubMed  CAS  Google Scholar 

  60. Jones WS, Annex BH. Growth factors for therapeutic angiogenesis in peripheral arterial disease. Curr Opin Cardiol. 2007;22(5):458–63.

    Article  PubMed  Google Scholar 

  61. Volz KS, Miljan E, Khoo A, Cooke JP. Development of pluripotent stem cells for vascular therapy. Vasc Pharmacol. 2012;56(5–6):288–96.

    Google Scholar 

  62. Baumgartner I, Pieczek A, Manor O, Blair R, Kearney M, Walsh K, et al. Constitutive expression of phVEGF165 after intramuscular gene transfer promotes collateral vessel development in patients with critical limb ischemia. Circulation. 1998;97(12):1114–23.

    Article  PubMed  CAS  Google Scholar 

  63. Shyu KG, Chang H, Wang BW, Kuan P. Intramuscular vascular endothelial growth factor gene therapy in patients with chronic critical leg ischemia. Am J Med. 2003;114(2):85–92.

    Article  PubMed  CAS  Google Scholar 

  64. Dormandy J, Heeck L, Vig S. The fate of patients with critical leg ischemia. Semin Vasc Surg. 1999;12(2):142–7.

    PubMed  CAS  Google Scholar 

  65. Lederman RJ, Mendelsohn FO, Anderson RD, Saucedo JF, Tenaglia AN, Hermiller JB, et al. Therapeutic angiogenesis with recombinant fibroblast growth factor-2 for intermittent claudication (the TRAFFIC study): a randomised trial. Lancet. 2002;359(9323):2053–8.

    Article  PubMed  CAS  Google Scholar 

  66. Creager MA, Olin JW, Belch JJ, Moneta GL, Henry TD, Rajagopalan S, et al. Effect of hypoxia-inducible factor-1alpha gene therapy on walking performance in patients with intermittent claudication. Circulation. 2011;124(16):1765–73.

    Article  PubMed  CAS  Google Scholar 

  67. Formenti F, Constantin-Teodosiu D, Emmanuel Y, Cheeseman J, Dorrington KL, Edwards LM, et al. Regulation of human metabolism by hypoxia-inducible factor. Proc Natl Acad Sci USA. 2010;107(28):12722–7.

    Article  PubMed  CAS  Google Scholar 

  68. Raval Z, Losordo DW. Cell therapy of peripheral arterial disease: from experimental findings to clinical trials. Circ Res. 2013;112(9):1288–302.

    Article  PubMed  CAS  Google Scholar 

  69. Epstein SE, Kornowski R, Fuchs S, Dvorak HF. Angiogenesis therapy: amidst the hype, the neglected potential for serious side effects. Circulation. 2001;104(1):115–9.

    Article  PubMed  CAS  Google Scholar 

  70. Hiatt WR, Wolfel EE, Regensteiner JG, Brass EP. Skeletal muscle carnitine metabolism in patients with unilateral peripheral arterial disease. J Appl Physiol. 1992;73(1):346–53.

    PubMed  CAS  Google Scholar 

  71. Bylund AC, Hammarsten J, Holm J, Schersten T. Enzyme activities in skeletal muscles from patients with peripheral arterial insufficiency. Eur J Clin Invest. 1976;6(6):425–9.

    Article  PubMed  CAS  Google Scholar 

  72. Wang H, Hiatt WR, Barstow TJ, Brass EP. Relationships between muscle mitochondrial DNA content, mitochondrial enzyme activity and oxidative capacity in man: alterations with disease. Eur J Appl Physiol Occup Physiol. 1999;80(1):22–7.

    Article  PubMed  CAS  Google Scholar 

  73. Hands LJ, Bore PJ, Galloway G, Morris PJ, Radda GK. Muscle metabolism in patients with peripheral vascular disease investigated by 31P nuclear magnetic resonance spectroscopy. Clin Sci (Lond). 1986;71(3):283–90.

    CAS  Google Scholar 

  74. Pipinos II, Shepard AD, Anagnostopoulos PV, Katsamouris A, Boska MD. Phosphorus 31 nuclear magnetic resonance spectroscopy suggests a mitochondrial defect in claudicating skeletal muscle. J Vasc Surg. 2000;31(5):944–52.

    Article  PubMed  CAS  Google Scholar 

  75. Bauer TA, Brass EP, Hiatt WR. Impaired muscle oxygen use at onset of exercise in peripheral arterial disease. J Vasc Surg. 2004;40(3):488–93.

    Article  PubMed  Google Scholar 

  76. Bauer TA, Regensteiner JG, Brass EP, Hiatt WR. Oxygen uptake kinetics during exercise are slowed in patients with peripheral arterial disease. J Appl Physiol. 1999;87(2):809–16.

    PubMed  CAS  Google Scholar 

  77. Barker GA, Green S, Green AA, Walker PJ. Walking performance, oxygen uptake kinetics and resting muscle pyruvate dehydrogenase complex activity in peripheral arterial disease. Clin Sci (Lond). 2004;106(3):241–9.

    Article  CAS  Google Scholar 

  78. Brass EP, Hiatt WR, Gardner AW, Hoppel CL. Decreased NADH dehydrogenase and ubiquinol-cytochrome c oxidoreductase in peripheral arterial disease. Am J Physiol Heart Circ Physiol. 2001;280(2):H603–9.

    PubMed  CAS  Google Scholar 

  79. Pipinos II, Judge AR, Zhu Z, Selsby JT, Swanson SA, Johanning JM, et al. Mitochondrial defects and oxidative damage in patients with peripheral arterial disease. Free Radic Biol Med. 2006;41(2):262–9.

    Article  PubMed  CAS  Google Scholar 

  80. Kals J, Kampus P, Kals M, Pulges A, Teesalu R, Zilmer K, et al. Inflammation and oxidative stress are associated differently with endothelial function and arterial stiffness in healthy subjects and in patients with atherosclerosis. Scand J Clin Lab Invest. 2008;68(7):594–601.

    Article  PubMed  CAS  Google Scholar 

  81. Bhat HK, Hiatt WR, Hoppel CL, Brass EP. Skeletal muscle mitochondrial DNA injury in patients with unilateral peripheral arterial disease. Circulation. 1999;99(6):807–12.

    Article  PubMed  CAS  Google Scholar 

  82. Brass EP, Wang H, Hiatt WR. Multiple skeletal muscle mitochondrial DNA deletions in patients with unilateral peripheral arterial disease. Vasc Med. 2000;5(4):225–30.

    PubMed  CAS  Google Scholar 

  83. Pipinos II, Swanson SA, Zhu Z, Nella AA, Weiss DJ, Gutti TL, et al. Chronically ischemic mouse skeletal muscle exhibits myopathy in association with mitochondrial dysfunction and oxidative damage. Am J Physiol Regul Integr Comp Physiol. 2008;295(1):R290–6.

    Article  PubMed  CAS  Google Scholar 

  84. Pande RL, Park MA, Perlstein TS, Desai AS, Doyle J, Navarrete N, et al. Impaired skeletal muscle glucose uptake by [18F]fluorodeoxyglucose-positron emission tomography in patients with peripheral artery disease and intermittent claudication. Arterioscler Thromb Vasc Biol. 2011;31(1):190–6.

    Article  PubMed  CAS  Google Scholar 

  85. Furnsinn C, Willson TM, Brunmair B. Peroxisome proliferator-activated receptor-delta, a regulator of oxidative capacity, fuel switching and cholesterol transport. Diabetologia. 2007;50(1):8–17.

    Article  PubMed  CAS  Google Scholar 

  86. Rasouli N, Kern PA, Elbein SC, Sharma NK, Das SK. Improved insulin sensitivity after treatment with PPARgamma and PPARalpha ligands is mediated by genetically modulated transcripts. Pharmacogenet Genomics. 2012;22(7):484–97.

    Article  PubMed  CAS  Google Scholar 

  87. Sugden MC, Zariwala MG, Holness MJ. PPARs and the orchestration of metabolic fuel selection. Pharmacol Res. 2009;60(3):141–50.

    Article  PubMed  CAS  Google Scholar 

  88. Wenz T, Diaz F, Spiegelman BM, Moraes CT. Activation of the PPAR/PGC-1alpha pathway prevents a bioenergetic deficit and effectively improves a mitochondrial myopathy phenotype. Cell Metab. 2008;8(3):249–56.

    Article  PubMed  CAS  Google Scholar 

  89. Riserus U, Sprecher D, Johnson T, Olson E, Hirschberg S, Liu A, et al. Activation of peroxisome proliferator-activated receptor (PPAR)delta promotes reversal of multiple metabolic abnormalities, reduces oxidative stress, and increases fatty acid oxidation in moderately obese men. Diabetes. 2008;57(2):332–9.

    Article  PubMed  CAS  Google Scholar 

  90. Puigserver P. Tissue-specific regulation of metabolic pathways through the transcriptional coactivator PGC1-alpha. Int J Obes (Lond). 2005;29(Suppl 1):S5–9.

    Article  CAS  Google Scholar 

  91. McCormack JG, Barr RL, Wolff AA, Lopaschuk GD. Ranolazine stimulates glucose oxidation in normoxic, ischemic, and reperfused ischemic rat hearts. Circulation. 1996;93(1):135–42.

    Article  PubMed  CAS  Google Scholar 

  92. Wilson SR, Scirica BM, Braunwald E, Murphy SA, Karwatowska-Prokopczuk E, Buros JL, et al. Efficacy of ranolazine in patients with chronic angina observations from the randomized, double-blind, placebo-controlled MERLIN-TIMI (Metabolic Efficiency With Ranolazine for Less Ischemia in Non-ST-Segment Elevation Acute Coronary Syndromes) 36 Trial. J Am Coll Cardiol. 2009;53(17):1510–6.

    Article  PubMed  CAS  Google Scholar 

  93. Ma A, Garland WT, Smith WB, Skettino S, Navarro MT, Chan AQ, et al. A pilot study of ranolazine in patients with intermittent claudication. Int Angiol. 2006;25(4):361–9.

    PubMed  CAS  Google Scholar 

  94. Bremer J. Carnitine—metabolism and functions. Physiol Rev. 1983;63(4):1420–80.

    PubMed  CAS  Google Scholar 

  95. Bieber LL. Carnitine. Annu Rev Biochem. 1988;57:261–83.

    Article  PubMed  CAS  Google Scholar 

  96. Steiber A, Kerner J, Hoppel CL. Carnitine: a nutritional, biosynthetic, and functional perspective. Mol Aspects Med. 2004;25(5–6):455–73.

    Google Scholar 

  97. Brevetti G, Chiariello M, Ferulano G, Policicchio A, Nevola E, Rossini A, et al. Increases in walking distance in patients with peripheral vascular disease treated with l-carnitine: a double-blind, cross-over study. Circulation. 1988;77(4):767–73.

    Article  PubMed  CAS  Google Scholar 

  98. Brevetti G, di Lisa F, Perna S, Menabo R, Barbato R, Martone VD, et al. Carnitine-related alterations in patients with intermittent claudication: indication for a focused carnitine therapy. Circulation. 1996;93(9):1685–9.

    Article  PubMed  CAS  Google Scholar 

  99. Broderick TL, Driedzic W, Paulson DJ. Propionyl-l-carnitine effects on postischemic recovery of heart function and substrate oxidation in the diabetic rat. Mol Cell Biochem. 2000;206(1–2):151–7.

    Article  PubMed  CAS  Google Scholar 

  100. Sundqvist KE, Vuorinen KH, Peuhkurinen KJ, Hassinen IE. Metabolic effects of propionate, hexanoate and propionylcarnitine in normoxia, ischaemia and reperfusion. Does an anaplerotic substrate protect the ischaemic myocardium? Eur Heart J. 1994;15(4):561–70.

    PubMed  CAS  Google Scholar 

  101. Brevetti G, Perna S, Sabba C, Rossini A, Scotto di Uccio V, Berardi E, et al. Superiority of l-propionylcarnitine vs l-carnitine in improving walking capacity in patients with peripheral vascular disease: an acute, intravenous, double-blind, cross-over study. Eur Heart J. 1992;13(2):251–5.

    PubMed  CAS  Google Scholar 

  102. Brevetti G, Diehm C, Lambert D. European multicenter study on propionyl-l-carnitine in intermittent claudication. J Am Coll Cardiol. 1999;34(5):1618–24.

    Article  PubMed  CAS  Google Scholar 

  103. Hiatt WR, Regensteiner JG, Creager MA, Hirsch AT, Cooke JP, Olin JW, et al. Propionyl-l-carnitine improves exercise performance and functional status in patients with claudication. Am J Med. 2001;110(8):616–22.

    Article  PubMed  CAS  Google Scholar 

  104. Hiatt WR, Creager MA, Amato A, Brass EP. Effect of propionyl-l-carnitine on a background of monitored exercise in patients with claudication secondary to peripheral artery disease. J Cardiopulm Rehabil Prev. 2011;31(2):125–32.

    Google Scholar 

  105. Barker GA, Green S, Askew CD, Green AA, Walker PJ. Effect of propionyl-l-carnitine on exercise performance in peripheral arterial disease. Med Sci Sports Exerc. 2001;33(9):1415–22.

    Article  PubMed  CAS  Google Scholar 

  106. Brass EP, Koster D, Hiatt WR, Amato A. A systematic review and meta-analysis of propionyl-l-carnitine effects on exercise performance in patients with claudication. Vasc Med. 2013;18(1):3–12.

    Article  PubMed  Google Scholar 

  107. Sahajwalla CG, Helton ED, Purich ED, Hoppel CL, Cabana BE. Multiple-dose pharmacokinetics and bioequivalence of l-carnitine 330-mg tablet versus 1-g chewable tablet versus enteral solution in healthy adult male volunteers. J Pharm Sci. 1995;84(5):627–33.

    Article  PubMed  CAS  Google Scholar 

  108. Evans AM, Fornasini G. Pharmacokinetics of l-carnitine. Clin Pharmacokinet. 2003;42(11):941–67.

    Article  PubMed  CAS  Google Scholar 

  109. Pace S, Longo A, Toon S, Rolan P, Evans AM. Pharmacokinetics of propionyl-l-carnitine in humans: evidence for saturable tubular reabsorption. Br J Clin Pharmacol. 2000;50(5):441–8.

    Article  PubMed  CAS  Google Scholar 

  110. Rebouche CJ, Engel AG. Kinetic compartmental analysis of carnitine metabolism in the human carnitine deficiency syndromes. Evidence for alterations in tissue carnitine transport. J Clin Invest. 1984;73(3):857–67.

    Article  PubMed  CAS  Google Scholar 

  111. Brooks DE, McIntosh JE. Turnover of carnitine by rat tissues. Biochem J. 1975;148(3):439–45.

    PubMed  CAS  Google Scholar 

  112. Brass EP, Hoppel CL, Hiatt WR. Effect of intravenous l-carnitine on carnitine homeostasis and fuel metabolism during exercise in humans. Clin Pharmacol Ther. 1994;55(6):681–92.

    Article  PubMed  CAS  Google Scholar 

  113. Vukovich MD, Costill DL, Fink WJ. Carnitine supplementation: effect on muscle carnitine and glycogen content during exercise. Med Sci Sports Exerc. 1994;26(9):1122–9.

    PubMed  CAS  Google Scholar 

  114. Stephens FB, Constantin-Teodosiu D, Laithwaite D, Simpson EJ, Greenhaff PL. Insulin stimulates l-carnitine accumulation in human skeletal muscle. FASEB J. 2006;20(2):377–9.

    PubMed  CAS  Google Scholar 

  115. Chen Q, Vazquez EJ, Moghaddas S, Hoppel CL, Lesnefsky EJ. Production of reactive oxygen species by mitochondria: central role of complex III. J Biol Chem. 2003;278(38):36027–31.

    Article  PubMed  CAS  Google Scholar 

  116. Drose S, Brandt U. Molecular mechanisms of superoxide production by the mitochondrial respiratory chain. Adv Exp Med Biol. 2012;748:145–69.

    Article  PubMed  CAS  Google Scholar 

  117. Loffredo L, Marcoccia A, Pignatelli P, Andreozzi P, Borgia MC, Cangemi R, et al. Oxidative-stress-mediated arterial dysfunction in patients with peripheral arterial disease. Eur Heart J. 2007;28(5):608–12.

    Article  PubMed  CAS  Google Scholar 

  118. Podmore ID, Griffiths HR, Herbert KE, Mistry N, Mistry P, Lunec J. Vitamin C exhibits pro-oxidant properties. Nature. 1998;392(6676):559.

    Article  PubMed  CAS  Google Scholar 

  119. Pearson P, Lewis SA, Britton J, Young IS, Fogarty A. The pro-oxidant activity of high-dose vitamin E supplements in vivo. BioDrugs. 2006;20(5):271–3.

    Article  PubMed  CAS  Google Scholar 

  120. Carrero JJ, Lopez-Huertas E, Salmeron LM, Baro L, Ros E. Daily supplementation with (n-3) PUFAs, oleic acid, folic acid, and vitamins B-6 and E increases pain-free walking distance and improves risk factors in men with peripheral vascular disease. J Nutr. 2005;135(6):1393–9.

    PubMed  CAS  Google Scholar 

  121. Leng GC, Lee AJ, Fowkes FG, Horrobin D, Jepson RG, Lowe GD, et al. Randomized controlled trial of antioxidants in intermittent claudication. Vasc Med. 1997;2(4):279–85.

    PubMed  CAS  Google Scholar 

  122. Violi F, Loffredo L, Mancini A, Marcoccia A. Antioxidants in peripheral arterial disease. Curr Drug Targets. 2003;4(8):651–5.

    Article  PubMed  CAS  Google Scholar 

  123. Tornwall ME, Virtamo J, Haukka JK, Aro A, Albanes D, Huttunen JK. The effect of alpha-tocopherol and beta-carotene supplementation on symptoms and progression of intermittent claudication in a controlled trial. Atherosclerosis. 1999;147(1):193–7.

    Article  PubMed  CAS  Google Scholar 

  124. Kleijnen J, Mackerras D. Vitamin E for intermittent claudication. Cochrane Database Syst Rev. 2000(2):CD000987.

  125. Berndt C, Lillig CH, Holmgren A. Thiol-based mechanisms of the thioredoxin and glutaredoxin systems: implications for diseases in the cardiovascular system. Am J Physiol Heart Circ Physiol. 2007;292(3):H1227–36.

    Article  PubMed  CAS  Google Scholar 

  126. Dhalla NS, Elmoselhi AB, Hata T, Makino N. Status of myocardial antioxidants in ischemia-reperfusion injury. Cardiovasc Res. 2000;47(3):446–56.

    Article  PubMed  CAS  Google Scholar 

  127. Stroher E, Millar AH. The biological roles of glutaredoxins. Biochem J. 2012;446(3):333–48.

    Article  PubMed  CAS  Google Scholar 

  128. Gomez-Cabrera MC, Domenech E, Vina J. Moderate exercise is an antioxidant: upregulation of antioxidant genes by training. Free Radic Biol Med. 2008;44(2):126–31.

    Article  PubMed  CAS  Google Scholar 

  129. Powers SK, Ji LL, Leeuwenburgh C. Exercise training-induced alterations in skeletal muscle antioxidant capacity: a brief review. Med Sci Sports Exerc. 1999;31(7):987–97.

    Article  PubMed  CAS  Google Scholar 

  130. Hauser RA, Lyons KE, McClain T, Carter S, Perlmutter D. Randomized, double-blind, pilot evaluation of intravenous glutathione in Parkinson’s disease. Mov Disord. 2009;24(7):979–83.

    Article  PubMed  Google Scholar 

  131. Acetylcysteine for prevention of renal outcomes in patients undergoing coronary and peripheral vascular angiography: main results from the randomized Acetylcysteine for Contrast-induced nephropathy Trial (ACT). Circulation. 2011;124(11):1250–9.

  132. Ceconi C, Curello S, Cargnoni A, Ferrari R, Albertini A, Visioli O. The role of glutathione status in the protection against ischaemic and reperfusion damage: effects of N-acetyl cysteine. J Mol Cell Cardiol. 1988;20(1):5–13.

    Article  PubMed  CAS  Google Scholar 

  133. Libby P. Inflammation in atherosclerosis. Arterioscler Thromb Vasc Biol. 2012;32(9):2045–51.

    Article  PubMed  CAS  Google Scholar 

  134. Nylaende M, Kroese A, Stranden E, Morken B, Sandbaek G, Lindahl AK, et al. Markers of vascular inflammation are associated with the extent of atherosclerosis assessed as angiographic score and treadmill walking distances in patients with peripheral arterial occlusive disease. Vasc Med. 2006;11(1):21–8.

    Article  PubMed  CAS  Google Scholar 

  135. Gans RO, Bilo HJ, Weersink EG, Rauwerda JA, Fonk T, Popp-Snijders C, et al. Fish oil supplementation in patients with stable claudication. Am J Surg. 1990;160(5):490–5.

    Article  PubMed  CAS  Google Scholar 

  136. McDermott MM, Liu K, Carr J, Criqui MH, Tian L, Li D, et al. Superficial femoral artery plaque, the ankle-brachial index, and leg symptoms in peripheral arterial disease: the walking and leg circulation study (WALCS) III. Circ Cardiovasc Imaging. 2011;4(3):246–52.

    Article  PubMed  Google Scholar 

  137. Jain MK, Ridker PM. Anti-inflammatory effects of statins: clinical evidence and basic mechanisms. Nat Rev Drug Discov. 2005;4(12):977–87.

    Article  PubMed  CAS  Google Scholar 

  138. Corti R, Fuster V, Fayad ZA, Worthley SG, Helft G, Smith D, et al. Lipid lowering by simvastatin induces regression of human atherosclerotic lesions: two years’ follow-up by high-resolution noninvasive magnetic resonance imaging. Circulation. 2002;106(23):2884–7.

    Article  PubMed  CAS  Google Scholar 

  139. Matsuo Y, Takumi T, Mathew V, Chung WY, Barsness GW, Rihal CS, et al. Plaque characteristics and arterial remodeling in coronary and peripheral arterial systems. Atherosclerosis. 2012;223(2):365–71.

    Article  PubMed  CAS  Google Scholar 

  140. McDermott MM, Guralnik JM, Greenland P, Pearce WH, Criqui MH, Liu K, et al. Statin use and leg functioning in patients with and without lower-extremity peripheral arterial disease. Circulation. 2003;107(5):757–61.

    Article  PubMed  CAS  Google Scholar 

  141. Brass EP, Cooper LT, Hanson P, Hiatt WR. Association of clinical attributes and treadmill walking performance in patients with claudication due to peripheral artery disease. J Vasc Surg (in press).

  142. Aronow WS, Nayak D, Woodworth S, Ahn C. Effect of simvastatin versus placebo on treadmill exercise time until the onset of intermittent claudication in older patients with peripheral arterial disease at six months and at one year after treatment. Am J Cardiol. 2003;92(6):711–2.

    Article  PubMed  CAS  Google Scholar 

  143. Mohler ER 3rd, Hiatt WR, Creager MA. Cholesterol reduction with atorvastatin improves walking distance in patients with peripheral arterial disease. Circulation. 2003;108(12):1481–6.

    Article  PubMed  CAS  Google Scholar 

  144. Mondillo S, Ballo P, Barbati R, Guerrini F, Ammaturo T, Agricola E, et al. Effects of simvastatin on walking performance and symptoms of intermittent claudication in hypercholesterolemic patients with peripheral vascular disease. Am J Med. 2003;114(5):359–64.

    Article  PubMed  CAS  Google Scholar 

  145. West AM, Anderson JD, Epstein FH, Meyer CH, Wang H, Hagspiel KD, et al. Low-density lipoprotein lowering does not improve calf muscle perfusion, energetics, or exercise performance in peripheral arterial disease. J Am Coll Cardiol. 2011;58(10):1068–76.

    Article  PubMed  CAS  Google Scholar 

  146. Bregar U, Poredos P, Sabovic M, Jug B, Sebestjen M. The influence of atorvastatin on walking performance in peripheral arterial disease. Vasa. 2009;38(2):155–9.

    Article  PubMed  CAS  Google Scholar 

  147. Joy TR, Hegele RA. Narrative review: statin-related myopathy. Ann Intern Med. 2009;150(12):858–68.

    Article  PubMed  Google Scholar 

  148. Randomized trial of the effects of cholesterol-lowering with simvastatin on peripheral vascular and other major vascular outcomes in 20,536 people with peripheral arterial disease and other high-risk conditions. J Vasc Surg. 2007;45(4):645–54 (discussion 53–4).

  149. Mortensen SP, Damsgaard R, Dawson EA, Secher NH, Gonzalez-Alonso J. Restrictions in systemic and locomotor skeletal muscle perfusion, oxygen supply and VO2 during high-intensity whole-body exercise in humans. J Physiol. 2008;586(10):2621–35.

    Article  PubMed  CAS  Google Scholar 

  150. Casey DP, Joyner MJ. Local control of skeletal muscle blood flow during exercise: influence of available oxygen. J Appl Physiol. 2011;111(6):1527–38.

    Article  PubMed  CAS  Google Scholar 

  151. Loffredo L, Pignatelli P, Cangemi R, Andreozzi P, Panico MA, Meloni V, et al. Imbalance between nitric oxide generation and oxidative stress in patients with peripheral arterial disease: effect of an antioxidant treatment. J Vasc Surg. 2006;44(3):525–30.

    Article  PubMed  Google Scholar 

  152. Boger RH, Bode-Boger SM, Thiele W, Junker W, Alexander K, Frolich JC. Biochemical evidence for impaired nitric oxide synthesis in patients with peripheral arterial occlusive disease. Circulation. 1997;95(8):2068–74.

    Article  PubMed  CAS  Google Scholar 

  153. Bode-Boger SM, Boger RH, Alfke H, Heinzel D, Tsikas D, Creutzig A, et al. L-arginine induces nitric oxide-dependent vasodilation in patients with critical limb ischemia. A randomized, controlled study. Circulation. 1996;93(1):85–90.

    Article  PubMed  CAS  Google Scholar 

  154. Boger RH, Bode-Boger SM, Thiele W, Creutzig A, Alexander K, Frolich JC. Restoring vascular nitric oxide formation by l-arginine improves the symptoms of intermittent claudication in patients with peripheral arterial occlusive disease. J Am Coll Cardiol. 1998;32(5):1336–44.

    Article  PubMed  CAS  Google Scholar 

  155. Oka RK, Szuba A, Giacomini JC, Cooke JP. A pilot study of l-arginine supplementation on functional capacity in peripheral arterial disease. Vasc Med. 2005;10(4):265–74.

    Article  PubMed  Google Scholar 

  156. Maxwell AJ, Anderson BE, Cooke JP. Nutritional therapy for peripheral arterial disease: a double-blind, placebo-controlled, randomized trial of HeartBar. Vasc Med. 2000;5(1):11–9.

    PubMed  CAS  Google Scholar 

  157. Wilson AM, Harada R, Nair N, Balasubramanian N, Cooke JP. l-arginine supplementation in peripheral arterial disease: no benefit and possible harm. Circulation. 2007;116(2):188–95.

    Article  PubMed  CAS  Google Scholar 

  158. Leiper JM. The DDAH-ADMA-NOS pathway. Ther Drug Monit. 2005;27(6):744–6.

    Article  PubMed  CAS  Google Scholar 

  159. MacAllister RJ, Parry H, Kimoto M, Ogawa T, Russell RJ, Hodson H, et al. Regulation of nitric oxide synthesis by dimethylarginine dimethylaminohydrolase. Br J Pharmacol. 1996;119(8):1533–40.

    Article  PubMed  CAS  Google Scholar 

  160. Cooke JP. DDAH: a target for vascular therapy? Vasc Med. 2010;15(3):235–8.

    Google Scholar 

  161. Gresele P, Migliacci R, Arosio E, Bonizzoni E, Minuz P, Violi F. Effect on walking distance and atherosclerosis progression of a nitric oxide-donating agent in intermittent claudication. J Vasc Surg. 2012;56(6):1622–8.

    Google Scholar 

  162. Amendt K. PGE1 and other prostaglandins in the treatment of intermittent claudication: a meta-analysis. Angiology. 2005;56(4):409–15.

    Article  PubMed  Google Scholar 

  163. Mohler ER 3rd, Hiatt WR, Olin JW, Wade M, Jeffs R, Hirsch AT. Treatment of intermittent claudication with beraprost sodium, an orally active prostaglandin I2 analogue: a double-blinded, randomized, controlled trial. J Am Coll Cardiol. 2003;41(10):1679–86.

    Article  PubMed  CAS  Google Scholar 

  164. Creager MA, Pande RL, Hiatt WR. A randomized trial of iloprost in patients with intermittent claudication. Vasc Med. 2008;13(1):5–13.

    Article  PubMed  Google Scholar 

  165. Jacobi B, Bongartz G, Partovi S, Schulte AC, Aschwanden M, Lumsden AB, et al. Skeletal muscle BOLD MRI: from underlying physiological concepts to its usefulness in clinical conditions. J Magn Reson Imaging. 2012;35(6):1253–65.

    Article  PubMed  Google Scholar 

  166. McDermott MM, Hoff F, Ferrucci L, Pearce WH, Guralnik JM, Tian L, et al. Lower extremity ischemia, calf skeletal muscle characteristics, and functional impairment in peripheral arterial disease. J Am Geriatr Soc. 2007;55(3):400–6.

    Article  PubMed  Google Scholar 

  167. Brass EP, Sietsema KE. Considerations in the development of drugs to treat sarcopenia. J Am Geriatr Soc. 2011;59(3):530–5.

    Article  PubMed  Google Scholar 

  168. Sakuma K, Yamaguchi A. Novel intriguing strategies attenuating to sarcopenia. J Aging Res. 2012;2012:251217.

    PubMed  Google Scholar 

  169. Goodman CA, Mayhew DL, Hornberger TA. Recent progress toward understanding the molecular mechanisms that regulate skeletal muscle mass. Cell Signal. 2011;23(12):1896–906.

    Article  PubMed  CAS  Google Scholar 

  170. Wang E, Helgerud J, Loe H, Indseth K, Kaehler N, Hoff J. Maximal strength training improves walking performance in peripheral arterial disease patients. Scand J Med Sci Sports. 2010;20(5):764–70.

    Article  PubMed  CAS  Google Scholar 

  171. Grizzo Cucato G, de Moraes Forjaz CL, Kanegusuku H, da Rocha Chehuen M, Riani Costa LA, Wolosker N, et al. Effects of walking and strength training on resting and exercise cardiovascular responses in patients with intermittent claudication. Vasa. 2011;40(5):390–7.

    Google Scholar 

  172. McDermott MM, Ades P, Guralnik JM, Dyer A, Ferrucci L, Liu K, et al. Treadmill exercise and resistance training in patients with peripheral arterial disease with and without intermittent claudication: a randomized controlled trial. JAMA J Am Med Assoc. 2009;301(2):165–74.

    Article  CAS  Google Scholar 

  173. Hiatt WR, Wolfel EE, Meier RH, Regensteiner JG. Superiority of treadmill walking exercise versus strength training for patients with peripheral arterial disease. Implications for the mechanism of the training response. Circulation. 1994;90(4):1866–74.

    Article  PubMed  CAS  Google Scholar 

  174. Sandri M, Lin J, Handschin C, Yang W, Arany ZP, Lecker SH, et al. PGC-1alpha protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription. Proc Natl Acad Sci USA. 2006;103(44):16260–5.

    Article  PubMed  CAS  Google Scholar 

  175. Moyes CD. Controlling muscle mitochondrial content. J Exp Biol. 2003;206(Pt 24):4385–91.

    Article  PubMed  CAS  Google Scholar 

  176. Bhasin S. Testosterone supplementation for aging-associated sarcopenia. J Gerontol A Biol Sci Med Sci. 2003;58(11):1002–8.

    Article  PubMed  Google Scholar 

  177. Casaburi R, Bhasin S, Cosentino L, Porszasz J, Somfay A, Lewis MI, et al. Effects of testosterone and resistance training in men with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2004;170(8):870–8.

    Article  PubMed  Google Scholar 

  178. Sumukadas D, Struthers AD, McMurdo ME. Sarcopenia—a potential target for angiotensin-converting enzyme inhibition? Gerontology. 2006;52(4):237–42.

    Article  PubMed  CAS  Google Scholar 

  179. Sumukadas D, Witham MD, Struthers AD, McMurdo ME. Effect of perindopril on physical function in elderly people with functional impairment: a randomized controlled trial. CMAJ. 2007;177(8):867–74.

    Article  PubMed  Google Scholar 

  180. Ahimastos AA, Lawler A, Reid CM, Blombery PA, Kingwell BA. Brief communication: ramipril markedly improves walking ability in patients with peripheral arterial disease: a randomized trial. Ann Intern Med. 2006;144(9):660–4.

    Article  PubMed  CAS  Google Scholar 

  181. Ahimastos AA, Walker PJ, Askew C, Leicht A, Pappas E, Blombery P, et al. Effect of ramipril on walking times and quality of life among patients with peripheral artery disease and intermittent claudication: a randomized controlled trial. JAMA J Am Med Assoc. 2013;309(5):453–60.

    Article  CAS  Google Scholar 

  182. Ostergren J, Sleight P, Dagenais G, Danisa K, Bosch J, Qilong Y, et al. Impact of ramipril in patients with evidence of clinical or subclinical peripheral arterial disease. Eur Heart J. 2004;25(1):17–24.

    Article  PubMed  CAS  Google Scholar 

  183. Sanada S, Komuro I, Kitakaze M. Pathophysiology of myocardial reperfusion injury: preconditioning, postconditioning, and translational aspects of protective measures. Am J Physiol Heart Circ Physiol. 2011;301(5):H1723–41.

    Article  PubMed  CAS  Google Scholar 

  184. Das M, Das DK. Molecular mechanism of preconditioning. IUBMB Life. 2008;60(4):199–203.

    Article  PubMed  CAS  Google Scholar 

  185. Ovize M, Baxter GF, Di Lisa F, Ferdinandy P, Garcia-Dorado D, Hausenloy DJ, et al. Postconditioning and protection from reperfusion injury: where do we stand? Position paper from the Working Group of Cellular Biology of the Heart of the European Society of Cardiology. Cardiovasc Res. 2010;87(3):406–23.

    Article  PubMed  CAS  Google Scholar 

  186. Thaveau F, Zoll J, Rouyer O, Chafke N, Kretz JG, Piquard F, et al. Ischemic preconditioning specifically restores complexes I and II activities of the mitochondrial respiratory chain in ischemic skeletal muscle. J Vasc Surg. 2007;46(3):541–7 (discussion 7).

    Google Scholar 

  187. Capecchi PL, Pasini FL, Cati G, Colafati M, Acciavatti A, Ceccatelli L, et al. Experimental model of short-time exercise-induced preconditioning in POAD patients. Angiology. 1997;48(6):469–80.

    Article  PubMed  CAS  Google Scholar 

  188. McIntosh VJ, Lasley RD. Adenosine receptor-mediated cardioprotection: are all 4 subtypes required or redundant? J Cardiovasc Pharmacol Ther. 2012;17(1):21–33.

    Article  PubMed  CAS  Google Scholar 

  189. Teoh LK, Grant R, Hulf JA, Pugsley WB, Yellon DM. The effect of preconditioning (ischemic and pharmacological) on myocardial necrosis following coronary artery bypass graft surgery. Cardiovasc Res. 2002;53(1):175–80.

    Article  PubMed  CAS  Google Scholar 

  190. Semenza GL. Hypoxia-inducible factor 1: regulator of mitochondrial metabolism and mediator of ischemic preconditioning. Biochim Biophys Acta. 2011;1813(7):1263–8.

    Article  PubMed  CAS  Google Scholar 

  191. Weerateerangkul P, Chattipakorn S, Chattipakorn N. Roles of the nitric oxide signaling pathway in cardiac ischemic preconditioning against myocardial ischemia-reperfusion injury. Med Sci Monit. 2011;17(2):RA44–52.

    Google Scholar 

  192. Geraghty AJ, Welch K. Antithrombotic agents for preventing thrombosis after infrainguinal arterial bypass surgery. Cochrane Database Syst Rev. 2011;(6):CD000536.

  193. Motovska Z, Knot J, Widimsky P. Stent thrombosis—risk assessment and prevention. Cardiovasc Ther. 2010;28(5):e92–100.

    Article  PubMed  Google Scholar 

  194. Schainfeld RM. Potential emerging therapeutic strategies to prevent restenosis in the peripheral vasculature. Catheter Cardiovasc Interv. 2002;56(3):421–31.

    Article  PubMed  Google Scholar 

  195. Kiernan TJ, Yan BP, Cruz-Gonzalez I, Cubeddu RJ, Caldera A, Kiernan GD, et al. Pharmacological and cellular therapies to prevent restenosis after percutaneous transluminal angioplasty and stenting. Cardiovasc Hematol Agents Med Chem. 2008;6(2):116–24.

    Article  PubMed  CAS  Google Scholar 

  196. Liu TJ, Lai HC, Ting CT, Lee WL. Sustained elevation of circulating vascular endothelial growth factor after percutaneous angioplasty for peripheral arterial diseases. Int J Cardiol. 2006;107(3):415–6.

    Article  PubMed  Google Scholar 

  197. Regensteiner JG, Hargarten ME, Rutherford RB, Hiatt WR. Functional benefits of peripheral vascular bypass surgery for patients with intermittent claudication. Angiology. 1993;44(1):1–10.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks Drs. William R. Hiatt and Kathy E. Sietsema for their critical review of a draft of this manuscript. The author has provided consultative services to Takeda Pharmaceuticals, Sigma tau Pharmaceuticals, Otsuka Pharmaceuticals and Kowa Research Institute on issues related to drug development for PAD within the past 36 months. The author is also a consultant to other companies on drug development issues unrelated to PAD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric P. Brass.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brass, E.P. Intermittent Claudication: New Targets for Drug Development. Drugs 73, 999–1014 (2013). https://doi.org/10.1007/s40265-013-0078-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-013-0078-3

Keywords

Navigation