Skip to main content
Log in

Multifocal Motor Neuropathy: Current Therapies and Novel Strategies

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Multifocal motor neuropathy (MMN) is a purely motor mononeuritis multiplex characterized by the presence of conduction block on motor but not on sensory nerves and by the presence of high titers of anti-GM1 antibodies. Several data point to a pathogenetic role of the immune system in this neuropathy, although this has not yet been proved. Several uncontrolled studies and randomized controlled trials have demonstrated the efficacy of therapy with high-dose intravenous immunoglobulin (IVIg) in MMN. However, this therapy has a short-lasting effect that needs to be maintained with periodic infusions. This can be partly overcome by the use of subcutaneous immunoglobulin (SCIg) at the same dose. The high cost and need for repeated infusions have led to the search for other immune therapies, the efficacy of which have not yet been confirmed in randomized trials. In addition, some therapies, including corticosteroids and plasma exchange, are not only ineffective but have been associated with clinical worsening. More recently, a number of novel therapies have been investigated in MMN, including interferon-β1a, the anti-CD20 monoclonal antibody rituximab and the complement inhibitor eculizumab. Preliminary data from open-label uncontrolled studies show that some patients improve after these therapies; however, randomized controlled trials are needed to confirm efficacy. Until then, IVIg (and SCIg) remains the mainstay of treatment in MMN, and the use of other immune therapies should only be considered for patients not responding to, or becoming resistant to, IVIg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nobile-Orazio E, Cappellari A, Priori A. Multifocal motor neuropathy: current concepts and controversies. Muscle Nerve. 2005;31:663–80.

    Article  PubMed  Google Scholar 

  2. Vlam L, van der Pol W-L, Cats EA, et al. Multifocal motor neuropathy: diagnosis, pathogenesis and treatment strategies. Nat Rev Neurol. 2011;8(1):48–58.

    Article  PubMed  Google Scholar 

  3. Roth G, Rohr J, Magistris MR, Ochsner F. Motor neuropathy with proximal multifocal persistent conduction block, fasciculations and myokymia. Eur Neurol. 1986;25:416–23.

    Article  PubMed  CAS  Google Scholar 

  4. Chad DA, Hammer K, Sargent J. Slow resolution of multifocal weakness and fasciculation: a reversible motor neuron syndrome. Neurology. 1986;36:1260–3.

    Article  PubMed  CAS  Google Scholar 

  5. Parry GJ, Clarke S. Multifocal acquired demyelinating neuropathy masquerading as motor neuron disease. Muscle Nerve. 1988;11:103–7.

    Article  PubMed  CAS  Google Scholar 

  6. Pestronk A, Cornblath DR, Ilyas A, et al. A treatable multi-focal motor neuropathy with antibodies to GM1 ganglioside. Ann Neurol. 1988;24:73–8.

    Article  PubMed  CAS  Google Scholar 

  7. van Schaik IN, Van den Berg LH, de Haan R, Vermeulen M. Intravenous immunoglobulin for multifocal motor neuropathy. Cochrane Database Syst Rev. 2005;2:CD004429.

    PubMed  Google Scholar 

  8. Cats EA, van der Pol WL, Piepers S, et al. Correlates of outcome and response to IVIg in 88 patients with multifocal motor neuropathy. Neurology. 2010;75:818–25.

    Article  PubMed  CAS  Google Scholar 

  9. Nobile-Orazio E. Multifocal motor neuropathy. J Neuroimmunol. 1001;115:4–18.

    Article  Google Scholar 

  10. Van den Berg-Vos RM, Franssen H, Wokke JHJ, et al. Multifocal motor neuropathy: diagnostic criteria that predict the response to immunoglobulin. Neurology. 2000;48:919–26.

    Google Scholar 

  11. Nobile-Orazio E, Gallia F, Terenghi F, et al. How useful are anti-neural IgM antibodies in the diagnosis of chronic immune-mediated neuropathies? J Neurol Sci. 2008;266:156–63.

    Article  PubMed  CAS  Google Scholar 

  12. Gooch CL, Amato AA. Are anti-ganglioside antibodies of clinical value in multifocal motor neuropathy? Neurology. 2010;75:1950–1.

    Article  PubMed  Google Scholar 

  13. van Schaik IN, Bossuyt PMM, Brand A, Vermeulen M. Diagnostic value of GM1 antibodies in motor neuron disorders and neuropathies: a meta analysis. Neurology. 1995;45:1570–7.

    Article  PubMed  Google Scholar 

  14. Bech E, Andersen H, Orntoft TF, Jakobsen J. Association of IgM type anti-GM1 antibodies and muscle strength in chronic acquired demyelinating polyneuropathy. Ann Neurol. 1998;43:72–8.

    Article  PubMed  CAS  Google Scholar 

  15. Taylor BV, Gross LA, Windebank AJ. The sensitivity and specificity of anti-GM1 antibody testing. Neurology. 1996;47:951–5.

    Article  PubMed  CAS  Google Scholar 

  16. Arunachalam R, Osei-Lah A, Mills KR. Transcutaneous cervical root stimulation in the diagnosis of multifocal motor neuropathy with conduction block. J Neurol Neurosurg Psychiatry. 2003;74:1329–31.

    Article  PubMed  CAS  Google Scholar 

  17. Akaza M, Kanouchi T, Inaba A, et al. Motor nerve conduction study in cauda equina with high-voltage electrical stimulation in multifocal motor neuropathy and amyotrophic lateral sclerosis. Muscle Nerve. 2011;43:274–82.

    Article  PubMed  Google Scholar 

  18. Deroide N, Uzenot D, Verscheuren A, et al. Triple-stimulation technique in multifocal motor neuropathy with conduction block. Muscle Nerve. 2007;35:632–6.

    Article  PubMed  Google Scholar 

  19. Nodera H, Bostock H, Yzumi Y, et al. Activity-dependent conduction block in multifocal motor neuropathy: magnetic fatigue test. Neurology. 2006;67:280–7.

    Article  PubMed  CAS  Google Scholar 

  20. Olney RK, Lewis RA, Putnam TD, Campellone JV. Consensus criteria for the diagnosis of multifocal motor neuropathy. Muscle Nerve. 2003;27:117–21.

    Article  PubMed  Google Scholar 

  21. Joint Task Force of the EFNS and the PNS. European Federation of Neurological Societies/Peripheral Nerve Society Guideline on management of multifocal motor neuropathy. Report of a Joint Task Force of the European Federation of Neurological Societies and the Peripheral Nerve Society. First revision. J Peripher Nerv Syst. 2010;15:295–301.

    Article  Google Scholar 

  22. Santoro M, Uncini A, Corbo M, et al. Experimental conduction block induced by serum from a patient with anti-GM1 antibodies. Ann Neurol. 1992;31:385–90.

    Article  PubMed  CAS  Google Scholar 

  23. Uncini A, Santoro M, Corbo M, et al. Conduction abnormalities induced by sera of patients with multifocal motor neuropathy and anti-GM1 antibodies. Muscle Nerve. 1993;16:610–5.

    Article  PubMed  CAS  Google Scholar 

  24. Arasaki K, Kusunoki S, Kudo N, Kanazawa I. Acute conduction block in vitro following exposure to anti-ganglioside sera. Muscle Nerve. 1993;16:587–93.

    Article  PubMed  CAS  Google Scholar 

  25. Paparounas K, O’Hanlon GM, O’Leary CP, et al. Anti-ganglioside antibodies can bind peripheral nerve nodes of Ranvier and activate the complement cascade without inducing acute conduction block in vitro. Brain. 1999;122:807–16.

    Article  PubMed  Google Scholar 

  26. Roberts M, Willison HJ, Vincent A, Newsom-Davis J. Multifocal motor neuropathy human sera block distal motor nerve conduction in mice. Ann Neurol. 1995;38:111–8.

    Article  PubMed  CAS  Google Scholar 

  27. Kaji R, Shibasaki H, Kimura J. Multifocal demyelinating motor neuropathy: cranial nerve involvement and immunoglobulin therapy. Neurology. 1992;42:506–9.

    Article  PubMed  CAS  Google Scholar 

  28. Charles N, Benoit P, Vial C, et al. Intravenous immunoglobulin treatment in multifocal motor neuropathy. Lancet. 1992;340:182.

    Article  PubMed  CAS  Google Scholar 

  29. Nobile-Orazio E, Meucci N, Barbieri S, et al. High dose intravenous immunoglobulin therapy in multifocal motor neuropathy. Neurology. 1993;43:537–44.

    Article  PubMed  CAS  Google Scholar 

  30. Kermode AG, Laing BA, Carroll WM, Mastaglia FL. Intravenous immunoglobulin for multifocal motor neuropathy. Lancet. 1992;340:920–1.

    Article  PubMed  CAS  Google Scholar 

  31. Chaudhry V, Corse A, Cornblath DR, et al. Multifocal motor neuropathy: response to human immune globulin. Ann Neurol. 1993;33:237–42.

    Article  PubMed  CAS  Google Scholar 

  32. Azulay J-P, Blin O, Pouget J, et al. Intravenous immunoglobulin treatment in patients with motor neuron syndromes associated with anti-GM1 antibodies. Neurology. 1994;44:429–32.

    Article  PubMed  CAS  Google Scholar 

  33. Van den Berg LH, Kerkhoff H, Oey PL, et al. Treatment of multifocal motor neuropathy with high dose intravenous immunoglobulins: a double blind, placebo controlled study. J Neurol Neurosurg Psychiatry. 1995;59:248–52.

    Article  PubMed  Google Scholar 

  34. Federico P, Zochodne DW, Hahn AF, et al. Multifocal motor neuropathy improved by IVIg: randomized, double-blind, placebo-controlled study. Neurology. 2000;55:1257–62.

    Article  Google Scholar 

  35. Léger J-M, Chassande B, Musset L, et al. Intravenous immunoglobulin therapy in multifocal motor neuropathy: a double-blind placebo-controlled study. Brain. 2001;124:145–53.

    Article  PubMed  Google Scholar 

  36. Hahn AF, Beydoun SR, Lawson V, The IVIg in MMN Study Team, et al. A phase III randomized, placebo-controlled study of the efficacy and safety of 10 % liquid intravenous immunoglobulin (IVIg) for the treatment of multifocal motor neuropathy (abstract). J Peripher Nerv Syst. 2012;17:243–4.

    Google Scholar 

  37. Van den Berg-Vos RM, Franssen H, Wokke JHJ, Van den Berg LH. Multifocal motor neuropathy: long-term clinical and electrophysiological assessment of intravenous immunoglobulin maintenance treatment. Brain. 2002;125:1875–86.

    Article  PubMed  Google Scholar 

  38. Terenghi F, Cappellari A, Bersano A, et al. How long is IVIg effective in multifocal motor neuropathy? Neurology. 2004;62:666–8.

    Article  PubMed  CAS  Google Scholar 

  39. Léger JM, Viala K, Cancalon F, et al. Intravenous immunoglobulin as short- and long-term therapy of multifocal motor neuropathy: a retrospective study of response to IVIg and of its predictive criteria in 40 patients. J Neurol Neurosurg Psychiatry. 2008;79:93–6.

    Article  PubMed  Google Scholar 

  40. Bauman A, Hess CW, Sturzenegger M. IVIg dose increase in multifocal motor neuropathy: a prospective six month follow-up. J Neurol. 2009;256:608–14.

    Article  Google Scholar 

  41. Van Asseldonk JTH, Van den Berg LH, Kalmijn S, et al. Axonal loss is an important determinant of weakness in multifocal motor neuropathy. J Neurol Neurosurg Psychiatry. 2006;77:743–7.

    Article  PubMed  Google Scholar 

  42. Vucic S, Black KR, Chong PS, Cros D. Multifocal motor neuropathy: decrease in conduction blocks and reinnervation with long-term IVIg. Neurology. 2004;63:1264–9.

    Article  PubMed  Google Scholar 

  43. Eftimov F, Vermeulen M, de Haan RJ, et al. Subcutaneous immunoglobulin therapy for multifocal motor neuropathy. J Peripher Nerv Syst. 2009;14:93–100.

    Article  PubMed  CAS  Google Scholar 

  44. Harbo T, Andersen H, Jacobsen J. Long-term therapy with high doses of subcutaneous immunoglobulin in multifocal motor neuropathy. Neurology. 2010;75:1377–80.

    Article  PubMed  CAS  Google Scholar 

  45. Misbah SA, Baumann A, Fazio R, et al. A smooth transition protocol going from intravenous to subcutaneous immunoglobulin therapy: an open-label proof-of-concept study. J Peripher Nerv Syst. 2011;16:92–7.

    Article  PubMed  CAS  Google Scholar 

  46. Harbo T, Andersen H, Hess A, et al. Subcutaneous versus intravenous immunoglobulin in multifocal motor neuropathy: a randomized single-blinded cross-over trial. Eur J Neurol. 2009;16:631–8.

    Article  PubMed  CAS  Google Scholar 

  47. Cocito D, Serra G, Paolasso I, et al. Economic and quality of life evaluation of different modalities of immunoglobulin therapy in chronic dysimmune neuropathies. J Peripher Nerv Sys. 2012;17:426–8.

    Article  Google Scholar 

  48. Bayry J, Lacroix-Desmazes S, Kazatchkine MD, Kaveri SV. Monoclonal antibodies and intravenous immunoglobulin for rheumatic diseases: rationale and mechanism of action. Nature Clin Pract Rheumatol. 2007;3:262–72.

    Article  CAS  Google Scholar 

  49. Van den Berg LH, Franssen H, Wokke JHJ. The long-term effect of intravenous immunoglobulin treatment in multifocal motor neuropathy. Brain. 1998;121:421–8.

    Article  PubMed  Google Scholar 

  50. Malik U, Oleksowicz L, Latov N, Cardo LJ. Intravenous γ-globulin inhibits binding of anti-GM1 on its target antigen. Ann Neurol. 1996;1996(39):136–9.

    Article  Google Scholar 

  51. Piepers S, Jansen MD, Cats EA, et al. IVIg inhibits classical pathway activity and anti-GM1 IgM mediated complement deposition in MMN. J Neuroimmunol. 2010;229:256–62.

    Article  PubMed  CAS  Google Scholar 

  52. Yuki N, Watanabe H, Nakajima T, Späeth PJ. IVIg blocks complement deposition mediated by anti-GM1 antibodies in multifocal motor neuropathy. J Neurol Neurosurg Psychiatry. 2011;82:87–91.

    Article  PubMed  CAS  Google Scholar 

  53. Donaghy M, Mills KR, Boniface SJ, et al. Pure motor demyelinating neuropathy: deterioration after steroid treatment and improvement with intravenous immunoglobulin. J Neurol Neurosurg Psychiatry. 1994;57:778–83.

    Article  PubMed  CAS  Google Scholar 

  54. Lehman HC, Hoffmann FR, Fusshoeller A, et al. The clinical value of therapeutic plasma exchange in multifocal motor neuropathy. J Neurol Sci. 2008;271:34–9.

    Article  Google Scholar 

  55. Carpo M, Cappellari A, Mora G, et al. Deterioration of multifocal motor neuropathy after plasma exchange. Neurology. 1998;50:1480–2.

    Article  PubMed  CAS  Google Scholar 

  56. Joint Task Force of the EFNS and the PNS. European Federation of Neurological Societies/Peripheral Nerve Society Guideline on management of chronic inflammatory demyelinating polyradiculoneuropathy: report of a joint task force of the European Federation of Neurological Societies and the Peripheral Nerve Society—first revision. J Peripher Nerv Sys. 2010;15:1–9.

    Article  Google Scholar 

  57. Umapathi T, Hughes R, Nobile-Orazio E, Leger J. Immunosuppressant and immunomodulatory treatments for multifocal motor neuropathy. Cochrane Database Syst Rev. 2012;4:CD003217.

    PubMed  CAS  Google Scholar 

  58. Nobile-Orazio E, Gallia F, Tuccillo F, Terenghi F. Chronic inflammatory demyelinating polyradiculoneuropathy and multifocal motor neuropathy: treatment update. Curr Opin Neurol. 2010;23:519–23.

    Article  PubMed  CAS  Google Scholar 

  59. Feldman EL, Bromberg MB, Albers JW, Pestronk A. Immunosuppressive treatment in multifocal motor neuropathy. Ann Neurol. 1991;30:397–401.

    Article  PubMed  CAS  Google Scholar 

  60. Krarup C, Stewart JD, Sumner AJ, et al. A syndrome of asymmetric limb weakness with motor conduction block. Neurology. 1990;40:118–27.

    Article  PubMed  CAS  Google Scholar 

  61. Pringle CE, Belden J, Veitch JE, Brown WF. Multifocal motor neuropathy presenting as ophthalmoplegia. Muscle Nerve. 1997;20:347–51.

    Article  PubMed  CAS  Google Scholar 

  62. Axelson HW, Oberg G, Ashmark H. No benefit of treatment with cyclophosphamide and autologous blood stem cell transplantation in multifocal motor neuropathy. Acta Neurol Scand. 2008;117:432–4.

    Article  PubMed  CAS  Google Scholar 

  63. Meucci N, Cappellari A, Barbieri S, et al. Long term effect of intravenous immunoglobulins and oral cyclophosphamide in multifocal motor neuropathy. J Neurol Neurosurg Psychiatry. 1997;63:765–9.

    Article  PubMed  CAS  Google Scholar 

  64. Bouche P, Moulonguet A, Younes-Chennoufi AB, et al. Multifocal motor neuropathy with conduction block: a study of 24 patients. J Neurol Neurosurg Psychiatry. 1995;59:38–44.

    Article  PubMed  CAS  Google Scholar 

  65. Hausmanowa-Petrusewicz I, Rowisnka-Marcinska K, Kopec K. Chronic acquired demyelinating motor neuropathy. Acta Neurol Scand. 1991;84:40–5.

    Article  PubMed  CAS  Google Scholar 

  66. Nemni R, Santuccio G, Calabrese E, Galardi G, Canal N. Efficacy of cyclosporine treatment in multifocal motor neuropathy. J Neurol. 2003;250:1118–20.

    Article  PubMed  Google Scholar 

  67. Nobile-Orazio E, Terenghi F, Cocito D, et al. Oral methotrexate as adjunctive therapy in patients with multifocal motor neuropathy on chronic IVIg therapy. J Peripher Nerv Syst. 2009;14:203–5.

    Article  PubMed  CAS  Google Scholar 

  68. Benedetti L, Grandis M, Nobbio L, et al. Mycophenolate mofetil in dysimmune neuropathies: a preliminary study. Muscle Nerve. 2004;29:748–9.

    Article  PubMed  Google Scholar 

  69. Piepers S, Van den Berg-Vos R, Van der Pol W-L, et al. Mycophenolate mofetil as adjunctive therapy for MMN patients: a randomized, controlled trial. Brain. 2007;130:2004–10.

    Article  PubMed  Google Scholar 

  70. Sanford M, Lyseng-Williamson KA. Subcutaneous recombinant interferon-β-1a (Rebif®): a review of its use in the treatment of relapsing multiple sclerosis. Drugs. 2011;71(14):1865–91.

    Article  PubMed  CAS  Google Scholar 

  71. Weinstock-Guttman B, Ransohoff RM, Kinkel P, et al. The interferon: biological effects, mechanism of action and use in multiple sclerosis. Ann Neurol. 1995;37:7–15.

    Article  PubMed  CAS  Google Scholar 

  72. Martina ISJ, van Doorn PA, Schmitz PIM, et al. Chronic motor neuropathies: response to interferon-β1a after failure of conventional therapies. J Neurol Neurosurg Psychiatry. 1999;66:197–201.

    Article  PubMed  CAS  Google Scholar 

  73. Van den Berg-Vos RM, Van den Berg LH, Franssen H, et al. Treatment of multifocal motor neuropathy with interferon-β1A. Neurology. 2000;54:1518–21.

    Article  PubMed  Google Scholar 

  74. Radziwill AJ, Botez S, Novy J, Kuntzer T. Interferon beta-1a as adjunctive treatment for multifocal motor neuropathy: an open label trial. J Peripher Nerv Syst. 2009;14:201–2.

    Article  PubMed  Google Scholar 

  75. Dalakas MC. Inhibition of B cell functions: implications for neurology. Neurology. 2008;70:2252–60.

    Article  PubMed  CAS  Google Scholar 

  76. Keating GM. Rituximab: a review of its use in chronic lymphocytic leukaemia, low-grade or follicular lymphoma and diffuse large B-cell lymphoma. Drugs. 2010;70(11):1445–76.

    Article  PubMed  CAS  Google Scholar 

  77. Benedetti L, Briani C, Fazio R, et al. Rituximab in patients with CIDP: a report of 13 cases and review of the literature. J Neurol Neurosurg Psychiatry. 2011;82:306–8.

    Article  PubMed  CAS  Google Scholar 

  78. Dalakas MC, Rakocevic G, Salajegheh M, et al. Placebo controlled trial of rituximab in IgM anti-myelin-associated glycoprotein antibody demyelinating neuropathy. Ann Neurol. 2009;65:286–93.

    Article  PubMed  CAS  Google Scholar 

  79. Pestronk A, Florence J, Miller T, et al. Treatment of IgM associated polyneuropathies using rituximab. J Neurol Neurosurg Psychiatry. 2003;74:485–9.

    Article  PubMed  CAS  Google Scholar 

  80. Rojas-Garcia R, Gallardo E, de Andrés I, et al. Chronic neuropathy with IgM anti-ganglioside antibodies: lack of long term response to rituximab. Neurology. 2003;61:1814–6.

    Article  PubMed  CAS  Google Scholar 

  81. Ruegg SJ, Fuhr P, Steck AJ. Rituximab stabilizes multifocal motor neuropathy increasingly less responsive to IVIg. Neurology. 2004;63:2178–9.

    Article  PubMed  Google Scholar 

  82. Gorson KC, Natarajan N, Ropper AH, Weinstein R. Rituximab treatment in patients with IVIg-dependent immune polyneuropathy: a prospective pilot trial. Muscle Nerve. 2007;35:66–9.

    Article  PubMed  CAS  Google Scholar 

  83. Stielgbauer K, Topakian R, Hinterberger G, Aichner FT. Beneficial effect of rituximab therapy in multifocal motor neuropathy. Neuromusc Disord. 2009;19:473–5.

    Article  Google Scholar 

  84. Chaudhry V, Cornblath DR. An open label trial of rituximab (Rituxan®) in multifocal motor neuropathy. J Peripher Nerv Syst. 2010;15:196–201.

    Article  PubMed  CAS  Google Scholar 

  85. Michaud A, Delmont E, Jeandel PY, Desnuelle C. Improvement of severe and intravenous immunoglobulin-dependent multifocal motor neuropathy with conduction block after long-term ritxumab (in French). Rev Neurol (Paris). 2011;167:916–20.

    Article  CAS  Google Scholar 

  86. Carson KR, Evens AM, Richey EA, et al. Progressive multifocal leukoencephalopathy following rituximab therapy in HIV negative patients: a report of 57 cases from the research on adverse drug event and reports project. Blood. 2009;113:4834–40.

    Article  PubMed  CAS  Google Scholar 

  87. Rother RP, Rollins SA, Mojcik CF, et al. Discovery and development of the complement inhibitor eculizumab for the treatment of paroxysmal nocturnal hemoglobinuria. Nat Biotechnol. 2007;25(11):1256–64.

    Article  PubMed  CAS  Google Scholar 

  88. Hillmen P, Young NS, Schubert J, et al. The complement inhibitor eculizumab in paroxysmal nocturnal hemoglobinuria. N Engl J Med. 2006;12:1233–43.

    Article  Google Scholar 

  89. Fitzpatrick AM, Mann CA, Barry S, et al. An open label clinical trial of complement inhibition in multifocal motor neuropathy. J Peripher Nerv Syst. 2011;16:84–91.

    Article  PubMed  Google Scholar 

  90. Qu H, Ricklin D, Lambris JD. Recent developments in low molecular weight complement inhibitors. Mol Immunol. 2009;47:185–95.

    Article  PubMed  CAS  Google Scholar 

  91. Phongsisay V, Susuki K, Matsuno K, et al. Complement inhibitor prevents disruption of sodium channel clusters in a rabbit model of Guillain–Barré syndrome. J Neuroimmunol. 2008;205:101–4.

    Article  PubMed  CAS  Google Scholar 

  92. Schweighofer CD, Wendtner C-M. First-line treatment of chronic lymphocytic leukemia: role of alemtuzumab. Onco Targets Ther. 2010;3:53–67.

    Article  PubMed  CAS  Google Scholar 

  93. Coles AJ, Compston DA, Selmaj KW, et al. Alemtuzumab vs. interferon beta-1a in early multiple sclerosis. N Engl J Med. 2008;359:1786–801.

    Article  PubMed  Google Scholar 

  94. Marsh EA, Hirst CL, Llewelyn JG, et al. Alemtuzumab in the treatment of IVIG-dependent chronic inflammatory demyelinating polyneuropathy. J Neurol. 2010;257:913–9.

    Article  PubMed  CAS  Google Scholar 

  95. Avivi I, Chakrabarti S, Kottaridis P, et al. Neurological complications following alemtuzumab-based reduced-intensity allogeneic transplantation. Bone Marrow Transpl. 2004;34:137–42.

    Article  CAS  Google Scholar 

  96. Scott LJ. Fingolimod: a review of its use in the management of relapsing-remitting multiple sclerosis. CNS Drugs. 2011;25:673–98.

    Article  PubMed  CAS  Google Scholar 

  97. Pinschewer DD, Ochsenbein AF, Odermatt B, et al. FTY720 immunosuppression impairs effector T-cell peripheral homing without affecting induction, expansion and memory. J Immunol. 2000;164:5761–70.

    PubMed  CAS  Google Scholar 

  98. Zhang Z, Zhang Z-Y, Fauser U, et al. FTY720 ameliorates experimental autoimmmune neuritis by inhibition of lymphocytes and monocytes infiltration in peripheral nerves. Exp Neurol. 2008;210:681–90.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflicts of interest

No sources of funding were used to assist in the preparation of this article. Eduardo Nobile-Orazio has acted as ad hoc consultant for Baxter, USA; CSL Behring, Australia; Kedrion, Italy; and Novartis, Switzerland. He has received personal compensation for lecturing from Baxter, Italy; Grifols, Spain; and Talecris, USA. He has received travel grants to attend Scientific Meetings from Baxter, Italy; Grifols, Italy; Kedrion, Italy; and Novartis, Italy. Francesca Gallia has nothing to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Nobile-Orazio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nobile-Orazio, E., Gallia, F. Multifocal Motor Neuropathy: Current Therapies and Novel Strategies. Drugs 73, 397–406 (2013). https://doi.org/10.1007/s40265-013-0029-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-013-0029-z

Keywords

Navigation