Skip to main content
Log in

Monitoring and Managing Lorlatinib Adverse Events in the Portuguese Clinical Setting: A Position Paper

  • Current Opinion
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

Rearrangements in the anaplastic lymphoma kinase (ALK) and proto-oncogene tyrosine-protein kinase ROS (ROS1) genes characterise two distinct molecular subsets of non-small cell lung cancer (NSCLC) tumours. Lorlatinib is a third-generation ALK/ROS1 tyrosine kinase inhibitor (TKI) shown to have systemic and intracranial activity in treatment-naive patients and in those who progressed on first- and second-generation TKIs. Despite being generally well tolerated, lorlatinib has a unique and challenging safety profile that includes hyperlipidaemia and central and peripheral nervous system adverse events (AEs). This article summarises a set of strategies designed to monitor and manage lorlatinib-related AEs that were agreed upon by a multidisciplinary panel of specialists in a meeting held in July 2020. Among the recommendations hereby described, special emphasis was placed on communication: prescribing physicians should inform patients and their families/caregivers about the likelihood and nature of lorlatinib AEs, encouraging them to report any symptoms, while at the same time reassuring them that most events are manageable and resolve spontaneously and have little to no interference with cancer treatment. Importantly, all patients should undergo a set of baseline assessments, including biochemical analysis, evaluation of cardiovascular risk, electrocardiogram (ECG), neurological evaluation and contrast-enhanced magnetic resonance imaging of the brain, which should be repeated regularly during lorlatinib treatment. Supportive medications to treat or relieve lorlatinib AEs were also discussed, as were the conditions requiring specialist consultations and/or adjustments in lorlatinib therapy. The overall goal of this article is to serve as a practical guide for oncologists to systematically and effectively approach lorlatinib AEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ferlay J, Colombet M, Soerjomataram I, Dyba T, Randi G, Bettio M, et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries and 25 major cancers in 2018. Eur J Cancer. 2018;103:356–87. https://doi.org/10.1016/j.ejca.2018.07.005.

    Article  CAS  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):7–30. https://doi.org/10.3322/caac.21590.

    Article  PubMed  Google Scholar 

  3. Schiller JH, Harrington D, Belani CP, Langer C, Sandler A, Krook J, et al. Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med. 2002;346(2):92–8. https://doi.org/10.1056/NEJMoa011954.

    Article  CAS  PubMed  Google Scholar 

  4. Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007;448(7153):561–6. https://doi.org/10.1038/nature05945.

    Article  CAS  PubMed  Google Scholar 

  5. Bergethon K, Shaw AT, Ou S-HI, Katayama R, Lovly CM, McDonald NT, et al. ROS1 rearrangements define a unique molecular class of lung cancers. J Clin Oncol. 2012;30(8):863–70. https://doi.org/10.1200/JCO.2011.35.6345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. de la Bellacasa RP, Karachaliou N, Estrada-Tejedor R, Teixidó J, Costa C, Borrell JI, et al. ALK and ROS1 as a joint target for the treatment of lung cancer: a review. Transl Lung Cancer Res. 2013;2(2):72–86. https://doi.org/10.3978/j.issn.2218-6751.2013.03.1.

    Article  Google Scholar 

  7. Shaw AT, Engelman JA. ALK in lung cancer: past, present, and future. J Clin Oncol. 2013;31(8):1105–11. https://doi.org/10.1200/JCO.2012.44.5353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shaw AT, Ou S-HI, Bang Y-J, Camidge DR, Solomon BJ, Salgia R, et al. Crizotinib in ROS1-rearranged non-small-cell lung cancer. N Engl J Med. 2014;371(21):1963–71. https://doi.org/10.1056/NEJMoa1406766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Solomon BJ, Mok T, Kim D-W, Wu Y-L, Nakagawa K, Mekhail T, et al. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N Engl J Med. 2014;371(23):2167–77. https://doi.org/10.1056/NEJMoa1408440.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang I, Zaorsky NG, Palmer JD, Mehra R, Lu B. Targeting brain metastases in ALK-rearranged non-small-cell lung cancer. Lancet Oncol. 2015;16(13):e510–21. https://doi.org/10.1016/S1470-2045(15)00013-3.

    Article  CAS  PubMed  Google Scholar 

  11. Dong X, Fernandez-Salas E, Li E, Wang S. Elucidation of resistance mechanisms to second-generation ALK inhibitors alectinib and ceritinib in non-small cell lung cancer cells. Neoplasia. 2016;18(3):162–71. https://doi.org/10.1016/j.neo.2016.02.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gainor JF, Dardaei L, Yoda S, Friboulet L, Leshchiner I, Katayama R, et al. Molecular mechanisms of resistance to first- and second-generation ALK inhibitors in ALK-rearranged lung cancer. Cancer Discov. 2016;6(10):1118–33. https://doi.org/10.1158/2159-8290.CD-16-0596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shaw AT, Felip E, Bauer TM, Besse B, Navarro A, Postel-vinay S, et al. Lorlatinib in non-small-cell lung cancer with ALK or ROS1 rearrangement: an international, multicentre, open-label, single-arm first-in-man phase 1 trial. Lancet Oncol. 2017;18:1590–9. https://doi.org/10.1016/S1470-2045(17)30680-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shaw AT, Felip E, Bauer TM, Besse B, Navarro A, Postel-vinay S, et al. Lorlatinib in advanced ROS1-positive non-small-cell lung cancer: a multicentre, open-label, single-arm, phase 1–2 trial. Lancet Oncol. 2017;18:1590–9. https://doi.org/10.1016/S1470-2045(19)30655-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Solomon BJ, Besse B, Bauer TM, Felip E, Soo RA, Camidge DR, et al. Lorlatinib in patients with ALK-positive non-small-cell lung cancer : results from a global phase 2 study. Lancet Oncol. 2018;19(12):1654–67. https://doi.org/10.1016/S1470-2045(18)30649-1.

    Article  CAS  PubMed  Google Scholar 

  16. Bauer TM, Shaw AT, Johnson ML, Navarro A, Gainor JF, Thurm H, et al. Brain penetration of lorlatinib: cumulative incidences of CNS and non-CNS progression with lorlatinib in patients with previously treated ALK-positive non-small-cell lung cancer. Target Oncol. 2020;15(1):55–65. https://doi.org/10.1007/s11523-020-00702-4.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bauer TM, Felip E, Solomon BJ, Thurm H, Peltz G, Chioda MD, et al. Clinical management of adverse events associated with lorlatinib. Oncologist. 2019;24(8):1103–10. https://doi.org/10.1634/theoncologist.2018-0380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. European Medicines Agency. Lorviqua: EPAR—product information. 2019. https://www.ema.europa.eu/en/documents/product-information/lorviqua-epar-product-information_en.pdf. Accessed 23 Mar 2021.

  19. European Medicines Agency. Lorviqua: EPAR—risk management plan summary. 2019. https://www.ema.europa.eu/en/documents/rmp-summary/lorviqua-epar-risk-management-plan-summary_en.pdf. Accessed 26 Mar 2021.

  20. Chen J, Xu H, Pawlak S, James LP, Peltz G, Lee K, et al. The effect of rifampin on the pharmacokinetics and safety of Lorlatinib: results of a phase one, open-label, crossover study in healthy participants. Adv Ther. 2020;37(2):745–58. https://doi.org/10.1007/s12325-019-01198-9.

    Article  CAS  PubMed  Google Scholar 

  21. Li W, Sparidans RW, Wang Y, Lebre MC, Beijnen JH, Schinkel AH. Oral coadministration of elacridar and ritonavir enhances brain accumulation and oral availability of the novel ALK/ROS1 inhibitor lorlatinib. Eur J Pharm Biopharm. 2019;136:120–30. https://doi.org/10.1016/j.ejpb.2019.01.016.

    Article  CAS  PubMed  Google Scholar 

  22. Patel M, Chen J, McGrory S, Gorman MO, Ginman K, Pithavala YK. The effect of itraconazole on the pharmacokinetics of lorlatinib: results of a phase I, open-label, crossover study in healthy participants. Invest New Drugs. 2020;38:131–9.

    Article  CAS  PubMed  Google Scholar 

  23. Mach F, Baigent C, Catapano AL, Koskinas KC, Casula M, Badimon L, et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J. 2020;41(1):111–88. https://doi.org/10.1093/eurheartj/ehz455.

    Article  PubMed  Google Scholar 

  24. Mullens W, Damman K, Harjola V-P, Mebazaa A, Brunner-La Rocca H-P, Martens P, et al. The use of diuretics in heart failure with congestion—a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2019;21(2):137–55. https://doi.org/10.1002/ejhf.1369.

    Article  PubMed  Google Scholar 

  25. Wolbrette D, Naccarelli G. Textbook of Cardiovascular Medicine. 3rd ed. Oxford: Oxford University Press; 2007.

    Google Scholar 

  26. Nagasaka M, Ge Y, Sukari A, Kukreja G, Ou S-HI. A user’s guide to lorlatinib. Crit Rev Oncol Hematol. 2020;151:102969. https://doi.org/10.1016/j.critrevonc.2020.102969.

    Article  PubMed  Google Scholar 

  27. Soffietti R, Abacioglu U, Baumert B, Combs SE, Kinhult S, Kros JM, et al. Diagnosis and treatment of brain metastases from solid tumors: guidelines from the European Association of Neuro-Oncology (EANO). Neuro Oncol. 2017;19(2):162–74. https://doi.org/10.1093/neuonc/now241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pope WB, Angeles L, States U. Brain metastases: neuroimaging. Handb Clin Neurol. 2018;149:89–112. https://doi.org/10.1016/B978-0-12-811161-1.00007-4.

    Article  PubMed  PubMed Central  Google Scholar 

  29. National Institute for Health and Care Excellence. Brain tumours (primary) and brain metastases in adults: NICE guideline [NG99]. London: National Institute for Health and Care Excellence; 2018.

    Google Scholar 

  30. Prior TI, Baker GB. Interactions between the cytochrome P450 system and the second-generation antipsychotics. J Psychiatry Neurosci. 2003;28(2):99–112.

    PubMed  PubMed Central  Google Scholar 

  31. National Comprehensive Cancer Network. NCCN clinical practice guidelines in oncology (NCCN Guidelines®): non-small cell lung cancer. 2021. https://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf. Accessed 23 Mar 2021.

  32. National Comprehensive Cancer Network. NCCN clinical practice guidelines in oncology (NCCN Guidelines®): central nervous system cancers. 2021. https://www.nccn.org/professionals/physician_gls/pdf/cns.pdf. Accessed 23 Mar 2021.

  33. Ayano G. Psychotropic medications metabolized by cytochromes P450 (CYP) 3A4 enzyme and relevant drug interactions: review of articles. Austin J Psychiatry Behav Sci. 2016;3(2):1054.

    Google Scholar 

  34. Dresser GK, Spence JD, Bailey DG. Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition. Clin Pharmacokinet. 2000;38(1):41–57. https://doi.org/10.2165/00003088-200038010-00003.

    Article  CAS  PubMed  Google Scholar 

  35. Low Y, Setia S, Lima G. Drug–drug interactions involving antidepressants: focus on desvenlafaxine. Neuropsychiatr Dis Treat. 2018;14:567–80. https://doi.org/10.2147/NDT.S157708.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Watson JC, Dyck PJB. Peripheral neuropathy: a practical approach to diagnosis and symptom management. Mayo Clin Proc. 2015;90(7):940–51. https://doi.org/10.1016/j.mayocp.2015.05.004.

    Article  PubMed  Google Scholar 

  37. Chincholkar M. Gabapentinoids: pharmacokinetics, pharmacodynamics and considerations for clinical practice. Br J Pain. 2020;14(2):104–14. https://doi.org/10.1177/2049463720912496.

    Article  PubMed  PubMed Central  Google Scholar 

  38. McQuoid P. Switching from gabapentin to pregabalin. N Z Med J. 2019;132(1491):101–3.

    PubMed  Google Scholar 

  39. Bockbrader HN, Wesche D, Miller R, Chapel S, Janiczek N, Burger P. A comparison of the pharmacokinetics and pharmacodynamics of pregabalin and gabapentin. Clin Pharmacokinet. 2010;49(10):661–9. https://doi.org/10.2165/11536200-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  40. Bockbrader HN, Budhwani MN, Wesche DL. Gabapentin to pregabalin therapy transition: a pharmacokinetic simulation. Am J Ther. 2013;20(1):32–6. https://doi.org/10.1097/MJT.0b013e318250f80e.

    Article  PubMed  Google Scholar 

  41. Ifuku M, Iseki M, Hidaka I, Morita Y, Komatus S, Inada E. Replacement of gabapentin with pregabalin in postherpetic neuralgia therapy. Pain Med. 2011;12(7):1112–6. https://doi.org/10.1111/j.1526-4637.2011.01162.x.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to Dr. Ricardo da Luz for critically reviewing the manuscript. Medical writing support was provided by Catarina L. Santos at Springer Healthcare Iberica, and editorial assistance was provided post-submission by Georgii Filatov of Springer Healthcare Communications. Medical writing and editorial assistance was funded by Pfizer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Barata.

Ethics declarations

Funding

This study was funded by Pfizer.

Conflicts of Interest

FB received speaker’s fees and honoraria from AstraZeneca, Boeringher Ingelheim, Bristol Myers Squibb, MSD Oncology, Pfizer, Roche and Takeda for participating in advisory boards. CA has received honoraria from Pfizer for consulting. TRM has conducted research funded by the Medical Research Council (UK), King´s Health Partners and King’s College London, and has received honoraria for speaking and chairing engagements from Lundbeck, Janssen, Astellas and Pfizer. JBM and VH received honoraria from Pfizer for participating in advisory boards.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All authors approved the publication of this article.

Availability of Data and Material

Data sharing is not applicable as no new data were created or analysed in this study.

Code Availability

Not applicable.

Author Contributions

FB devised and coordinated the project. All authors participated in the advisory board in which the recommendations were discussed, and contributed to the writing of the manuscript. All authors also read and approved the final version of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barata, F., Aguiar, C., Marques, T.R. et al. Monitoring and Managing Lorlatinib Adverse Events in the Portuguese Clinical Setting: A Position Paper. Drug Saf 44, 825–834 (2021). https://doi.org/10.1007/s40264-021-01083-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40264-021-01083-x

Navigation