Skip to main content
Log in

Critical Assessment of Pharmacokinetic Drug–Drug Interaction Potential of Tofacitinib, Baricitinib and Upadacitinib, the Three Approved Janus Kinase Inhibitors for Rheumatoid Arthritis Treatment

  • Review Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

The introduction of novel, small-molecule Janus kinase inhibitors namely tofacitinib, baricitinib and upadacitinib has provided an alternative treatment option for patients with rheumatoid arthritis outside of traditional drugs and expensive biologics. This review aimed to critically assess the drug–drug interaction potential of tofacitinib, baricitinib and upadacitinib and provide a balanced perspective for choosing the most appropriate Janus kinase inhibitor based on the needs of patients with rheumatoid arthritis including co-medications and renal/hepatic impairment status. Based on the critical assessment, all three approved Janus kinase inhibitors generally provide a favourable opportunity for co-prescription with a plethora of drugs. While cytochrome P450 3A4-related inhibition or induction altered the exposures (area under the curve) of tofacitinib and upadacitinib, it did not impact the exposure of baricitinib. Transporter drug–drug interaction studies revealed that the disposition of baricitinib was altered with certain transporter inhibitors as compared with either tofacitinib or upadacitinib. Adjustment of tofacitinib or baricitinib dosages but not that of upadacitinib is required with the progression of renal impairment from a mild to a severe condition. While the dosage of tofacitinib needs to be adjusted for patients with moderate hepatic impairment status, it is not the case for either baricitinib or upadacitinib. Assessment of the drug–drug interaction potential suggests that tofacitinib, baricitinib and upadacitinib generally show a favourable disposition with no perpetrator activity; however, as victim drugs, they show subtle pharmacokinetic differences that may be considered during polypharmacy. Moreover, careful choice of the three drugs could be made in patients with rheumatoid arthritis with varying degrees of renal/hepatic impairments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Guo Q, Wang Y, Xu D, Nossent J, Pavlos NJ, Xu J. Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. Bone Res. 2018;6:15.

    PubMed  PubMed Central  Google Scholar 

  2. Klareskog L, Catrina AI, Paget S. Rheumatoid arthritis. Lancet. 2009;373(9664):659–72.

    CAS  PubMed  Google Scholar 

  3. Zhang JM, An J. Cytokines, inflammation, and pain. Int Anesthesiol Clin. 2007;45(2):27–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Smolen JS, Aletaha D. Rheumatoid arthritis therapy reappraisal: strategies, opportunities and challenges. Nat Rev Rheumatol. 2015;11(5):276–89.

    PubMed  Google Scholar 

  5. Singh JA, Saag KG, Bridges SL Jr, Akl EA, Bannuru RR, Sullivan MC, et al. 2015 American College of Rheumatology guideline for the treatment of rheumatoid arthritis. Arthritis Rheumatol. 2016;68(1):1–26.

    PubMed  Google Scholar 

  6. Smolen JS, Landewe R, Bijlsma J, Burmester G, Chatzidionysiou K, Dougados M, et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2016 update. Ann Rheum Dis. 2017;76(6):960–77.

    PubMed  Google Scholar 

  7. Smolen JS, Breedveld FC, Burmester GR, Bykerk V, Dougados M, Emery P, et al. Treating rheumatoid arthritis to target: 2014 update of the recommendations of an international task force. Ann Rheum Dis. 2016;75(1):3–15.

    PubMed  Google Scholar 

  8. Taylor PC, Moore A, Vasilescu R, Alvir J, Tarallo M. A structured literature review of the burden of illness and unmet needs in patients with rheumatoid arthritis: a current perspective. Rheumatol Int. 2016;36(5):685–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Taylor PC, Abdul Azeez M, Kiriakidis S. Filgotinib for the treatment of rheumatoid arthritis. Expert Opin Investig Drugs. 2017;26(10):1181–7.

    CAS  PubMed  Google Scholar 

  10. Yamanaka H, Seto Y, Tanaka E, Furuya T, Nakajima A, Ikari K, et al. Management of rheumatoid arthritis: the 2012 perspective. Mod Rheumatol. 2013;23(1):1–7.

    CAS  PubMed  Google Scholar 

  11. Vaddi K, Luchi M. JAK inhibition for the treatment of rheumatoid arthritis: a new era in oral DMARD therapy. Expert Opin Investig Drugs. 2012;21(7):961–73.

    CAS  PubMed  Google Scholar 

  12. Schwartz DM, Kanno Y, Villarino A, Ward M, Gadina M, O’Shea JJ. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat Rev Drug Discov. 2017;16(12):843–62.

    CAS  PubMed  Google Scholar 

  13. Magyari L, Varszegi D, Kovesdi E, Sarlos P, Farago B, Javorhazy A, et al. Interleukins and interleukin receptors in rheumatoid arthritis: research, diagnostics and clinical implications. World J Orthop. 2014;5(4):516–36.

    PubMed  PubMed Central  Google Scholar 

  14. Seif F, Khoshmirsafa M, Aazami H, Mohsenzadegan M, Sedighi G, Bahar M. The role of JAK-STAT signaling pathway and its regulators in the fate of T helper cells. Cell Commun Signal. 2017;15(1):23.

    PubMed  PubMed Central  Google Scholar 

  15. Bechman K, Yates M, Galloway JB. The new entries in the therapeutic armamentarium: the small molecule JAK inhibitors. Pharmacol Res. 2019;147:104392.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Krishnaswami S, Boy M, Chow V, Chan G. Safety, tolerability, and pharmacokinetics of single oral doses of tofacitinib, a Janus kinase inhibitor, in healthy volunteers. Clin Pharmacol Drug Dev. 2015;4(2):83–8.

    CAS  PubMed  Google Scholar 

  17. Gupta P, Stock TC, Wang R, Alvey C, Choo HW, Krishnaswami S. A phase 1 study to estimate the absolute oral bioavailability of tofacitinib (CP-690,550) in healthy subjects. J Clin Pharmacol. 2011;51(9):1348.

    Google Scholar 

  18. CDER. Tofacitinib. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2012/203214Orig1s000ClinPharmR.pdf. Accessed 13 Dec 2019.

  19. Xeljanz® package insert. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/203214s018lbl.pdf. Accessed 13 Dec 2019.

  20. Niwa Y, Iio A, Niwa G, Sakane T, Tsunematsu T, Kanoh T. Serum-albumin metabolism in rheumatic diseases: relationship to corticosteroids and peptic-ulcer. J Clin Lab Immunol. 1990;31(1):11–6.

    CAS  PubMed  Google Scholar 

  21. Dowty ME, Lin JY, Ryder TF, Wang WW, Walker GS, Vaz A, et al. The pharmacokinetics, metabolism, and clearance mechanisms of tofacitinib, a Janus kinase inhibitor, in humans. Drug Metab Dispos. 2014;42(4):759–73.

    PubMed  Google Scholar 

  22. Dalvie D, Obach RS, Kang P, Prakash C, Loi CM, Hurst S, et al. Assessment of three human in vitro systems in the generation of major human excretory and circulating metabolites. Chem Res Toxicol. 2009;22(2):357–68.

    CAS  PubMed  Google Scholar 

  23. Guo XC, Li W, Li QM, Chen Y, Zhao GD, Peng Y, et al. Tofacitinib is a mechanism-based inactivator of cytochrome P450 3A4. Chem Res Toxicol. 2019;32(9):1791–800.

    CAS  PubMed  Google Scholar 

  24. Veeravalli V, Dash RP. Tofacitinib is a mechanism-based inactivator of cytochrome P450 3A4: revisiting the significance of the epoxide intermediate and glutathione trapping. Chem Res Toxicol. 2020;33(2):281–2.

    CAS  PubMed  Google Scholar 

  25. Abdulrahim H, Sharlala H, Adebajo AO. An evaluation of tofacitinib for the treatment of psoriatic arthritis. Expert Opin Pharmacother. 2019;20(16):1953–60.

    CAS  PubMed  Google Scholar 

  26. Bannwarth B, Kostine M, Poursac N. A pharmacokinetic and clinical assessment of tofacitinib for the treatment of rheumatoid arthritis. Expert Opin Drug Met. 2013;9(6):753–61.

    CAS  Google Scholar 

  27. Lamba M, Wang R, Fletcher T, Alvey C, Kushner J, Stock TC. Extended-release once-daily formulation of tofacitinib: evaluation of pharmacokinetics compared with immediate-release tofacitinib and impact of food. J Clin Pharmacol. 2016;56(11):1362–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Gupta P, Alvey C, Wang R, Dowty ME, Fahmi OA, Walsky RL, et al. Lack of effect of tofacitinib (CP-690,550) on the pharmacokinetics of the CYP3A4 substrate midazolam in healthy volunteers: confirmation of in vitro data. Br J Clin Pharmacol. 2012;74(1):109–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Menon S, Riese R, Wang R, Alvey CW, Shi HH, Petit W, et al. Evaluation of the effect of tofacitinib on the pharmacokinetics of oral contraceptive steroids in healthy female volunteers. Clin Pharmacol Drug Dev. 2016;5(5):336–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Cohen SB, Pope J, Haraoui B, Irazoque-Palazuelos F, Korkosz M, Diehl A, et al. Methotrexate withdrawal in patients with rheumatoid arthritis who achieve low disease activity with tofacitinib modified-release 11 mg once daily plus methotrexate: a randomised non-inferiority phase 3B/4 study. Ann Rheum Dis. 2019;78:260–1.

    Google Scholar 

  31. Gupta P, Chow V, Wang R, Kaplan I, Chan G, Alvey C, et al. Evaluation of the effect of fluconazole and ketoconazole on the pharmacokinetics of tofacitinib in healthy adult subjects. Clin Pharmacol Drug Dev. 2014;3(1):72–7.

    CAS  PubMed  Google Scholar 

  32. Klamerus KJ, Alvey C, Li L, Feng B, Wang R, Kaplan I, et al. Evaluation of the potential interaction between tofacitinib and drugs that undergo renal tubular secretion using metformin, an in vivo marker of renal organic cation transporter 2. Clin Pharmacol Drug Dev. 2014;3(6):499–507.

    CAS  PubMed  Google Scholar 

  33. Xie RJ, Deng CH, Wang Q, Kanik KS, Nicholas T, Menon S. Population pharmacokinetics of tofacitinib in patients with psoriatic arthritis. Int J Clin Pharm Ther. 2019;57(9):464–73.

    CAS  Google Scholar 

  34. Ruperto N, Brunner HI, Zuber Z, Tzaribachev N, Kingsbury DJ, Foeldvari I, et al. Pharmacokinetic and safety profile of tofacitinib in children with polyarticular course juvenile idiopathic arthritis: results of a phase 1, open-label, multicenter study. Pediatr Rheumatol Online J. 2017;15(1):86.

    PubMed  PubMed Central  Google Scholar 

  35. Lawendy N, Lamba M, Chan G, Wang R, Alvey CW, Krishnaswami S. The effect of mild and moderate hepatic impairment on the pharmacokinetics of tofacitinib, an orally active Janus kinase inhibitor. Clin Pharmacol Drug Dev. 2014;3(6):421–7.

    CAS  PubMed  Google Scholar 

  36. Krishnaswami S, Chow V, Boy M, Wang C, Chan G. Pharmacokinetics of tofacitinib, a Janus kinase inhibitor, in patients with impaired renal function and end-stage renal disease. J Clin Pharmacol. 2014;54(1):46–52.

    CAS  PubMed  Google Scholar 

  37. Krishnaswami S, Kudlacz E, Wang R, Chan G. A supratherapeutic dose of the Janus kinase inhibitor tasocitinib (CP-690,550) does not prolong QTc interval in healthy participants. J Clin Pharmacol. 2011;51(9):1256–63.

    CAS  PubMed  Google Scholar 

  38. Shi JG, Chen XJ, Lee F, Emm T, Scherle PA, Lo Y, et al. The pharmacokinetics, pharmacodynamics, and safety of baricitinib, an oral JAK 1/2 inhibitor, in healthy volunteers. J Clin Pharmacol. 2014;54(12):1354–61.

    CAS  PubMed  Google Scholar 

  39. Olumiant® package insert. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/207924s000lbl.pdf. Accessed 13 Dec 2019.

  40. Mogul A, Corsi K, McAuliffe L. Baricitinib: the second FDA-approved JAK inhibitor for the treatment of rheumatoid arthritis. Ann Pharmacother. 2019;53(9):947–53.

    CAS  PubMed  Google Scholar 

  41. CDER. Baricitinib. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/207924Orig1s000ClinPharmR.pdf. Accessed 13 Dec 2019.

  42. Payne C, Zhang X, Shahri N, Williams W, Cannady E. AB0492 evaluation of potential drug-drug interactions with baricitinib. Ann Rheum Dis. 2015;74:1063.

    Google Scholar 

  43. Markham A. Baricitinib: first global approval. Drugs. 2017;77(6):697–704.

    CAS  PubMed  Google Scholar 

  44. Posada MM, Cannady EA, Payne CD, Zhang X, Bacon JA, Pak YA, et al. Prediction of transporter-mediated drug-drug interactions for baricitinib. Clin Transl Sci. 2017;10(6):509–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Al-Salama ZT, Scott LJ. Baricitinib: a review in rheumatoid arthritis. Drugs. 2018;78(7):761–72.

    CAS  PubMed  Google Scholar 

  46. Mohamed MEF, Camp HS, Jiang P, Padley RJ, Asatryan A, Othman AA. Pharmacokinetics, safety and tolerability of ABT-494, a novel selective JAK 1 inhibitor, in healthy volunteers and subjects with rheumatoid arthritis. Clin Pharmacokinet. 2016;55(12):1547–58.

    CAS  PubMed  Google Scholar 

  47. Klunder B, Mittapalli RK, Mohamed MEF, Friedel A, Noertersheuser P, Othman AA. Population pharmacokinetics of upadacitinib using the immediate-release and extended-release formulations in healthy subjects and subjects with rheumatoid arthritis: analyses of phase I–III clinical trials. Clin Pharmacokinet. 2019;58(8):1045–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Klunder B, Mohamed MEF, Othman AA. Population pharmacokinetics of upadacitinib in healthy subjects and subjects with rheumatoid arthritis: analyses of phase I and II clinical trials. Clin Pharmacokinet. 2018;57(8):977–88.

    PubMed  Google Scholar 

  49. Mohamed MEF, Zeng JW, Jiang P, Hosmane B, Othman AA. Use of early clinical trial data to support thorough QT study waiver for upadacitinib and utility of food effect to demonstrate ECG assay sensitivity. Clin Pharmacol Ther. 2018;103(5):836–42.

    PubMed  Google Scholar 

  50. Rinvoq® package insert. https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/211675s000lbl.pdf. Accessed 13 Dec 2019.

  51. CDER. Upadacitinib. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2019/211675Orig1s000ClinPharmR.pdf. Accessed 13 Dec 2019.

  52. Mohamed MEF, Trueman S, Feng T, Friedman A, Othman AA. The JAK1 inhibitor upadacitinib has no effect on the pharmacokinetics of levonorgestrel and ethinylestradiol: a study in healthy female subjects. J Clin Pharmacol. 2019;59(4):510–6.

    CAS  PubMed  Google Scholar 

  53. Zhang H, Cui D, Wang B, Han YH, Balimane P, Yang Z, et al. Pharmacokinetic drug interactions involving 17alpha-ethinylestradiol: a new look at an old drug. Clin Pharmacokinet. 2007;46(2):133–57.

    CAS  PubMed  Google Scholar 

  54. Mohamed MEF, Jungerwirth S, Asatryan A, Jiang P, Othman AA. Assessment of effect of CYP3A inhibition, CYP induction, OATP1B inhibition, and high-fat meal on pharmacokinetics of the JAK1 inhibitor upadacitinib. Br J Clin Pharmacol. 2017;83(10):2242–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Mohamed MEF, Zeng JW, Marroum PJ, Song IH, Othman AA. Pharmacokinetics of upadacitinib with the clinical regimens of the extended-release formulation utilized in rheumatoid arthritis phase 3 trials. Clin Pharmacol Drug Dev. 2019;8(2):208–16.

    CAS  PubMed  Google Scholar 

  56. Trueman S, Mohamed MEF, Feng T, Lacerda AP, Marbury T, Othman AA. Characterization of the effect of hepatic impairment on upadacitinib pharmacokinetics. J Clin Pharmacol. 2019;59(9):1188–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Mohamed MEF, Trueman S, Feng T, Anderson J, Marbury TC, Othman AA. Characterization of the effect of renal impairment on upadacitinib pharmacokinetics. J Clin Pharmacol. 2019;59(6):856–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Abbasi M, Mousavi MJ, Jamalzehi S, Alimohammadi R, Bezvan MH, Mohammadi H, et al. Strategies toward rheumatoid arthritis therapy; the old and the new. J Cell Physiol. 2019;234(7):10018–31.

    CAS  PubMed  Google Scholar 

  59. Mazouyes A, Clay M, Bernard AC, Gaudin P, Baillet A. Efficacy of triple association methotrexate, sulfasalazine and hydroxychloroquine in early treatment of rheumatoid arthritis with insufficient response to methotrexate: meta-analysis of randomized controlled trials. Jt Bone Spine. 2017;84(5):563–70.

    CAS  Google Scholar 

  60. Curtis JR, Singh JA. Use of biologics in rheumatoid arthritis: current and emerging paradigms of care. Clin Ther. 2011;33(6):679–707.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. McInnes IB, Byers NL, Higgs RE, Lee J, Macias WL, Na SQ, et al. Comparison of baricitinib, upadacitinib, and tofacitinib mediated regulation of cytokine signaling in human leukocyte subpopulations. Arthritis Res Ther. 2019;21(1):183.

    PubMed  PubMed Central  Google Scholar 

  62. McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. New Engl J Med. 2011;365(23):2205–19.

    CAS  PubMed  Google Scholar 

  63. Smolen JS, Beaulieu A, Rubbert-Roth A, Ramos-Remus C, Rovensky J, Alecock E, et al. Effect of interleukin-6 receptor inhibition with tocilizumab in patients with rheumatoid arthritis (OPTION study): a double-blind, placebo-controlled, randomised trial. Lancet. 2008;371(9617):987–97.

    CAS  PubMed  Google Scholar 

  64. Mohamed MEF, Feng T, Enejosa JV, Fisniku O, Othman AA. Effects of upadacitinib coadministration on the pharmacokinetics of sensitive cytochrome P450 probe substrates: a study with the modified cooperstown 5+1 cocktail. J Clin Pharmacol. 2020;60(1):86–95.

    CAS  PubMed  Google Scholar 

  65. Giri P, Patel H, Srinivas NR. Use of cocktail probe drugs for indexing cytochrome p450 enzymes in clinical pharmacology studies: review of case studies. Drug Metab Lett. 2019;13(1):3–18.

    CAS  PubMed  Google Scholar 

  66. Lee JS, Kim SH. Dose-dependent pharmacokinetics of tofacitinib in rats: influence of hepatic and intestinal first-pass metabolism. Pharmaceutics. 2019;11(7):318.

    CAS  PubMed Central  Google Scholar 

  67. Namour F, Desrivot J, Van der Aa A, Harrison P, Tasset C, van’t Klooster G. Clinical confirmation that the selective JAK1 inhibitor filgotinib (GLPG0634) has a low liability for drug-drug interactions. Drug Metab Lett. 2016;10(1):38–48.

    CAS  PubMed  Google Scholar 

  68. Lilly. FDA approves Olumiant® (baricitinib) 2-mg tablets for the treatment of adults with moderately-to-severely active rheumatoid arthritis. https://investor.lilly.com/news-releases/news-release-details/fda-approves-olumiantr-baricitinib-2-mg-tablets-treatment-adults. Accessed 13 Dec 2019.

  69. Westhovens R. Clinical efficacy of new JAK inhibitors under development. Just more of the same? Rheumatology (Oxford). 2019;58(Suppl 1):i27–i33.

    CAS  Google Scholar 

  70. Gilead. Gilead submits filgotinib new drug application to U.S. Food and Drug Administration under priority review for rheumatoid arthritis treatment [press release]. https://www.gilead.com/news-and-press/press-room/press-releases/2019/12/gilead-submits-filgotinib-new-drug-application-to-us-food-and-drug-administration-under-priority-review-for-rheumatoid-arthritis-treatment. Accessed 31 Mar 2020.

  71. Gilead. European Medicines Agency validates marketing application for filgotinib for the treatment of rheumatoid arthritis [press release]. https://www.gilead.com/news-and-press/press-room/press-releases/2019/8/european-medicines-agency-validates-marketing-application-for-filgotinib-for-the-treatment-of-rheumatoid-arthritis. Accessed 31 Mar 2020.

  72. Gilead. Gilead and Eisai enter into agreement in Japan for the co-promotion of the investigational rheumatoid arthritis therapy filgotinib, pending regulatory approval [press release]. https://www.gilead.com/news-and-press/press-room/press-releases/2019/12/gilead-and-eisai-enter-into-agreement-in-japan-for-the-copromotion-of-the-investigational-rheumatoid-arthritis-therapy-filgotinib-pending-regulatory. Accessed on 31 Mar 2020.

  73. thepharmaletter. Oral JAK inhibitor Smyraf approved in Japan for RA. https://www.thepharmaletter.com/article/oral-jak-inhibitor-smyraf-approved-in-japan-for-ra. Accessed 13 Dec 2019.

  74. Tanaka Y, Takeuchi T, Tanaka S, Kawakami A, Iwasaki M, Song YW, et al. Efficacy and safety of peficitinib (ASP015K) in patients with rheumatoid arthritis and an inadequate response to conventional DMARDs: a randomised, double-blind, placebo-controlled phase III trial (RAJ3). Ann Rheum Dis. 2019;78(10):1320–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. PMDA. Report on the deliberation results. https://www.pmda.go.jp/files/000153609.pdf. Accessed 13 Dec 2019.

  76. AbbVie. AbbVie receives FDA approval of RINVOQ™ (upadacitinib), an oral JAK inhibitor for the treatment of moderate to severe rheumatoid arthritis. https://news.abbvie.com/news/press-releases/abbvie-receives-fda-approval-rinvoq-upadacitinib-an-oral-jak-inhibitor-for-treatment-moderate-to-severe-rheumatoid-arthritis.htm. Accessed 13 Dec 2019.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuggehally R. Srinivas.

Ethics declarations

Funding

No funding was received for the preparation of this article.

Conflict of interest

Vijayabhaskar Veeravalli, Ranjeet P. Dash, Jennifer A. Thomas, R. Jayachandra Babu, Lakshmi Mohan Vamsi Madgula and Nuggehally R. Srinivas have no conflicts of interest or competing interests that are directly relevant to the content of this article. Ranjeet P. Dash is currently an employee of Charles River Laboratories, Ashland, OH, USA.

Data Sharing

Data sharing is not applicable to this article as no datasets were generated or analysed.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 65 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veeravalli, V., Dash, R.P., Thomas, J.A. et al. Critical Assessment of Pharmacokinetic Drug–Drug Interaction Potential of Tofacitinib, Baricitinib and Upadacitinib, the Three Approved Janus Kinase Inhibitors for Rheumatoid Arthritis Treatment. Drug Saf 43, 711–725 (2020). https://doi.org/10.1007/s40264-020-00938-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40264-020-00938-z

Navigation