Drug Safety

pp 1–13 | Cite as

Sirolimus and mTOR Inhibitors: A Review of Side Effects and Specific Management in Solid Organ Transplantation

  • Lee S. NguyenEmail author
  • Mathieu Vautier
  • Yves Allenbach
  • Noel Zahr
  • Olivier Benveniste
  • Christian Funck-Brentano
  • Joe-Elie Salem
Review Article


Inhibitors of mechanistic target of rapamycin (mTOR inhibitors) are used as antiproliferative immunosuppressive drugs and have many clinical applications in various drug combinations. Experience in transplantation studies has been gained regarding the side effect profile of these drugs and the potential benefits and limitations compared with other immunosuppressive agents. This article reviews the adverse effects of mTOR inhibitors in solid organ transplantation, with special attention given to mechanisms hypothesized to cause adverse events and their management strategies.


Author Contributions

LSN wrote the manuscript and contributed to its documentation and figures. MV contributed to the figures and the internal review of the paper. YA contributed to the internal review of the paper. NZ contributed to the internal review of the paper and to the table. OB provided critical insight into its documentation. CF-B and J-ES supervised the paper and provided critical insight in its internal review.

Compliance with Ethical Standards

Conflict of interest

Lee S. Nguyen, Mathieu Vautier, Yves Allenbach, Noel Zahr, Olivier Benveniste, Christian Funck-Brentano and Joe-Elie Salem have no conflicts of interest that are directly relevant to the content of this study.


No funding was used to assist with the preparation of this manuscript.


  1. 1.
    Vezina C, Kudelski A, Sehgal SN. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot. 1975;28(10):721–6.CrossRefPubMedGoogle Scholar
  2. 2.
    Chung J, Grammer TC, Lemon KP, Kazlauskas A, Blenis J. PDGF- and insulin-dependent pp70S6k activation mediated by phosphatidylinositol-3-OH kinase. Nature. 1994;370(6484):71–5.CrossRefPubMedGoogle Scholar
  3. 3.
    Chung J, Kuo CJ, Crabtree GR, Blenis J. Rapamycin-FKBP specifically blocks growth-dependent activation of and signaling by the 70 kd S6 protein kinases. Cell. 1992;69(7):1227–36.CrossRefPubMedGoogle Scholar
  4. 4.
    Kuo CJ, Chung J, Fiorentino DF, Flanagan WM, Blenis J, Crabtree GR. Rapamycin selectively inhibits interleukin-2 activation of p70 S6 kinase. Nature. 1992;358(6381):70–3.CrossRefPubMedGoogle Scholar
  5. 5.
    Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012;149(2):274–93.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Cornu M, Albert V, Hall MN. mTOR in aging, metabolism, and cancer. Curr Opin Genet Dev. 2013;23(1):53–62.CrossRefPubMedGoogle Scholar
  7. 7.
    Ma XM, Blenis J. Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol. 2009;10(5):307–18.CrossRefPubMedGoogle Scholar
  8. 8.
    Li J, Kim SG, Blenis J. Rapamycin: one drug, many effects. Cell Metab. 2014;19(3):373–9.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kahan BD. Efficacy of sirolimus compared with azathioprine for reduction of acute renal allograft rejection: a randomised multicentre study. The Rapamune US Study Group. Lancet (London, England). 2000;356(9225):194–202.CrossRefGoogle Scholar
  10. 10.
    Budde K, Becker T, Arns W, Sommerer C, Reinke P, Eisenberger U, et al. Everolimus-based, calcineurin-inhibitor-free regimen in recipients of de-novo kidney transplants: an open-label, randomised, controlled trial. Lancet (London, England). 2011;377(9768):837–47.CrossRefGoogle Scholar
  11. 11.
    Groth CG, Backman L, Morales JM, Calne R, Kreis H, Lang P, et al. Sirolimus (rapamycin)-based therapy in human renal transplantation: similar efficacy and different toxicity compared with cyclosporine. Sirolimus European Renal Transplant Study Group. Transplantation. 1999;67(7):1036–42.CrossRefPubMedGoogle Scholar
  12. 12.
    Fishbane S, Cohen DJ, Coyne DW, Djamali A, Singh AK, Wish JB. Posttransplant anemia: the role of sirolimus. Kidney Int. 2009;76(4):376–82.CrossRefPubMedGoogle Scholar
  13. 13.
    McDonald MA, Gustafsson F, Almasood A, Barth D, Ross HJ. Sirolimus is associated with impaired hematopoiesis in heart transplant patients? A retrospective analysis. Transpl Proc. 2010;42(7):2693–6.CrossRefGoogle Scholar
  14. 14.
    MacDonald AS. A worldwide, phase III, randomized, controlled, safety and efficacy study of a sirolimus/cyclosporine regimen for prevention of acute rejection in recipients of primary mismatched renal allografts. Transplantation. 2001;71(2):271–80.CrossRefPubMedGoogle Scholar
  15. 15.
    Sofroniadou S, Kassimatis T, Goldsmith D. Anaemia, microcytosis and sirolimus—is iron the missing link? Nephrol Dial Transpl. 2010;25(5):1667–75.CrossRefGoogle Scholar
  16. 16.
    Zhou J, Fan J, Wang Z, Wu Z-Q, Qiu S-J, Huang X-W, et al. Conversion to sirolimus immunosuppression in liver transplantation recipients with hepatocellular carcinoma: report of an initial experience. World J Gastroenterol. 2006;12(19):3114–8.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Augustine JJ, Knauss TC, Schulak JA, Bodziak KA, Siegel C, Hricik DE. Comparative effects of sirolimus and mycophenolate mofetil on erythropoiesis in kidney transplant patients. Am J Transpl. 2004;4(12):2001–6.CrossRefGoogle Scholar
  18. 18.
    Cahill BC, Somerville KT, Crompton JA, Parker ST, O’Rourke MK, Stringham JC, et al. Early experience with sirolimus in lung transplant recipients with chronic allograft rejection. J Heart Lung Transpl. 2003;22(2):169–76.CrossRefGoogle Scholar
  19. 19.
    Geissler EK, Schnitzbauer AA, Zulke C, Lamby PE, Proneth A, Duvoux C, et al. Sirolimus use in liver transplant recipients with hepatocellular carcinoma: a randomized, multicenter, open-label phase 3 trial. Transplantation. 2016;100(1):116–25.CrossRefPubMedGoogle Scholar
  20. 20.
    Jacobson PA, Schladt D, Oetting WS, Leduc R, Guan W, Matas AJ, et al. Genetic determinants of mycophenolate-related anemia and leukopenia after transplantation. Transplantation. 2011;91(3):309–16.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Hong JC, Kahan BD. Sirolimus-induced thrombocytopenia and leukopenia in renal transplant recipients: risk factors, incidence, progression, and management. Transplantation. 2000;69(10):2085–90.CrossRefPubMedGoogle Scholar
  22. 22.
    Ahya VN, McShane PJ, Baz MA, Valentine VG, Arcasoy SM, Love RB, et al. Increased risk of venous thromboembolism with a sirolimus-based immunosuppression regimen in lung transplantation. J Heart Lung Transpl. 2011;30(2):175–81.CrossRefGoogle Scholar
  23. 23.
    Eisenreich A, Celebi O, Goldin-Lang P, Schultheiss HP, Rauch U. Upregulation of tissue factor expression and thrombogenic activity in human aortic smooth muscle cells by irradiation, rapamycin and paclitaxel. Int Immunopharmacol. 2008;8(2):307–11.CrossRefPubMedGoogle Scholar
  24. 24.
    Luscher TF, Steffel J, Eberli FR, Joner M, Nakazawa G, Tanner FC, et al. Drug-eluting stent and coronary thrombosis: biological mechanisms and clinical implications. Circulation. 2007;115(8):1051–8.CrossRefPubMedGoogle Scholar
  25. 25.
    Steffel J, Latini RA, Akhmedov A, Zimmermann D, Zimmerling P, Luscher TF, et al. Rapamycin, but not FK-506, increases endothelial tissue factor expression: implications for drug-eluting stent design. Circulation. 2005;112(13):2002–11.CrossRefPubMedGoogle Scholar
  26. 26.
    Babinska A, Markell MS, Salifu MO, Akoad M, Ehrlich YH, Kornecki E. Enhancement of human platelet aggregation and secretion induced by rapamycin. Nephrol Dialysis Transpl. 1998;13(12):3153–9.CrossRefGoogle Scholar
  27. 27.
    de Fijter JW, Holdaas H, Oyen O, Sanders JS, Sundar S, Bemelman FJ, et al. Early conversion from calcineurin inhibitor- to everolimus-based therapy following kidney transplantation: results of the randomized ELEVATE Trial. Am J Transpl. 2017;17(7):1853–67.CrossRefGoogle Scholar
  28. 28.
    Saliba F, Duvoux C, Gugenheim J, Kamar N, Dharancy S, Salame E, et al. Efficacy and safety of everolimus and mycophenolic acid with early tacrolimus withdrawal after liver transplantation: a multicenter randomized trial. Am J Transpl. 2017;17(7):1843–52.CrossRefGoogle Scholar
  29. 29.
    Dong M, Parsaik AK, Eberhardt NL, Basu A, Cosio FG, Kudva YC. Cellular and physiological mechanisms of new-onset diabetes mellitus after solid organ transplantation. Diabet Med. 2012;29(7):e1–12.CrossRefPubMedGoogle Scholar
  30. 30.
    Johnston O, Rose CL, Webster AC, Gill JS. Sirolimus is associated with new-onset diabetes in kidney transplant recipients. J Am Soc Nephrol. 2008;19(7):1411–8.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Lebranchu Y, Thierry A, Toupance O, Westeel PF, Etienne I, Thervet E, et al. Efficacy on renal function of early conversion from cyclosporine to sirolimus 3 months after renal transplantation: concept study. Am J Transpl. 2009;9(5):1115–23.CrossRefGoogle Scholar
  32. 32.
    Holdaas H, Rostaing L, Seron D, Cole E, Chapman J, Fellstrom B, et al. Conversion of long-term kidney transplant recipients from calcineurin inhibitor therapy to everolimus: a randomized, multicenter, 24-month study. Transplantation. 2011;92(4):410–8.CrossRefPubMedGoogle Scholar
  33. 33.
    Schena FP, Pascoe MD, Alberu J, del Carmen Rial M, Oberbauer R, Brennan DC, et al. Conversion from calcineurin inhibitors to sirolimus maintenance therapy in renal allograft recipients: 24-month efficacy and safety results from the CONVERT trial. Transplantation. 2009;87(2):233–42.CrossRefPubMedGoogle Scholar
  34. 34.
    Asleh R, Briasoulis A, Kremers WK, Adigun R, Boilson BA, Pereira NL, et al. Long-term sirolimus for primary immunosuppression in heart transplant recipients. J Am Coll Cardiol. 2018;71(6):636–50.CrossRefPubMedGoogle Scholar
  35. 35.
    Massoud O, Wiesner RH. The use of sirolimus should be restricted in liver transplantation. J Hepatol. 2012;56(1):288–90.CrossRefPubMedGoogle Scholar
  36. 36.
    Vivarelli M, Dazzi A, Cucchetti A, Gasbarrini A, Zanello M, Di Gioia P, et al. Sirolimus in liver transplant recipients: a large single-center experience. Transpl Proc. 2010;42(7):2579–84.CrossRefGoogle Scholar
  37. 37.
    Fraenkel M, Ketzinel-Gilad M, Ariav Y, Pappo O, Karaca M, Castel J, et al. mTOR inhibition by rapamycin prevents beta-cell adaptation to hyperglycemia and exacerbates the metabolic state in type 2 diabetes. Diabetes. 2008;57(4):945–57.CrossRefPubMedGoogle Scholar
  38. 38.
    Houde VP, Brule S, Festuccia WT, Blanchard PG, Bellmann K, Deshaies Y, et al. Chronic rapamycin treatment causes glucose intolerance and hyperlipidemia by upregulating hepatic gluconeogenesis and impairing lipid deposition in adipose tissue. Diabetes. 2010;59(6):1338–48.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Kasiske BL, Snyder JJ, Gilbertson D, Matas AJ. Diabetes mellitus after kidney transplantation in the United States. Am J Transpl. 2003;3(2):178–85.CrossRefGoogle Scholar
  40. 40.
    Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev. 2004;18(16):1926–45.CrossRefPubMedGoogle Scholar
  41. 41.
    Di Paolo S, Teutonico A, Leogrande D, Capobianco C, Schena PF. Chronic inhibition of mammalian target of rapamycin signaling downregulates insulin receptor substrates 1 and 2 and AKT activation: a crossroad between cancer and diabetes? J Am Soc Nephrol. 2006;17(8):2236–44.CrossRefPubMedGoogle Scholar
  42. 42.
    Manning BD. Balancing Akt with S6K: implications for both metabolic diseases and tumorigenesis. J Cell Biol. 2004;167(3):399–403.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Elghazi L, Weiss AJ, Barker DJ, Callaghan J, Staloch L, Sandgren EP, et al. Regulation of pancreas plasticity and malignant transformation by Akt signaling. Gastroenterology. 2009;136(3):1091–103.CrossRefPubMedGoogle Scholar
  44. 44.
    Altomare DA, Khaled AR. Homeostasis and the importance for a balance between AKT/mTOR activity and intracellular signaling. Curr Med Chem. 2012;19(22):3748–62.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Bussiere CT, Lakey JR, Shapiro AM, Korbutt GS. The impact of the mTOR inhibitor sirolimus on the proliferation and function of pancreatic islets and ductal cells. Diabetologia. 2006;49(10):2341–9.CrossRefPubMedGoogle Scholar
  46. 46.
    Kwon G, Marshall CA, Liu H, Pappan KL, Remedi MS, McDaniel ML. Glucose-stimulated DNA synthesis through mammalian target of rapamycin (mTOR) is regulated by KATP channels: effects on cell cycle progression in rodent islets. J Biol Chem. 2006;281(6):3261–7.CrossRefPubMedGoogle Scholar
  47. 47.
    Lewis GF, Carpentier A, Adeli K, Giacca A. Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes. Endocr Rev. 2002;23(2):201–29.CrossRefPubMedGoogle Scholar
  48. 48.
    Mittelman SD, Bergman RN. Inhibition of lipolysis causes suppression of endogenous glucose production independent of changes in insulin. Am J Physiol Endocrinol Metab. 2000;279(3):E630–7.CrossRefPubMedGoogle Scholar
  49. 49.
    Teutonico A, Schena PF, Di Paolo S. Glucose metabolism in renal transplant recipients: effect of calcineurin inhibitor withdrawal and conversion to sirolimus. J Am Soc Nephrol. 2005;16(10):3128–35.CrossRefPubMedGoogle Scholar
  50. 50.
    Lamming DW, Sabatini DM. A central role for mTOR in lipid homeostasis. Cell Metab. 2013;18(4):465–9.CrossRefPubMedGoogle Scholar
  51. 51.
    Syed NA, Khandelwal RL. Reciprocal regulation of glycogen phosphorylase and glycogen synthase by insulin involving phosphatidylinositol-3 kinase and protein phosphatase-1 in HepG2 cells. Mol Cell Biochem. 2000;211(1–2):123–36.CrossRefPubMedGoogle Scholar
  52. 52.
    Taha C, Liu Z, Jin J, Al-Hasani H, Sonenberg N, Klip A. Opposite translational control of GLUT1 and GLUT4 glucose transporter mRNAs in response to insulin. Role of mammalian target of rapamycin, protein kinase b, and phosphatidylinositol 3-kinase in GLUT1 mRNA translation. J Biol Chem. 1999;274(46):33085–91.CrossRefPubMedGoogle Scholar
  53. 53.
    Kaplan B, Qazi Y, Wellen JR. Strategies for the management of adverse events associated with mTOR inhibitors. Transpl Rev (Orlando, Fla). 2014;28(3):126–33.CrossRefGoogle Scholar
  54. 54.
    Holdaas H, Potena L, Saliba F. mTOR inhibitors and dyslipidemia in transplant recipients: a cause for concern? Transpl Rev (Orlando, Fla). 2015;29(2):93–102.CrossRefGoogle Scholar
  55. 55.
    Lindenfeld J, Miller GG, Shakar SF, Zolty R, Lowes BD, Wolfel EE, et al. Drug therapy in the heart transplant recipient: part II: immunosuppressive drugs. Circulation. 2004;110(25):3858–65.CrossRefPubMedGoogle Scholar
  56. 56.
    Mendez R, Gonwa T, Yang HC, Weinstein S, Jensik S, Steinberg S. A prospective, randomized trial of tacrolimus in combination with sirolimus or mycophenolate mofetil in kidney transplantation: results at 1 year. Transplantation. 2005;80(3):303–9.CrossRefPubMedGoogle Scholar
  57. 57.
    Hoogeveen RC, Ballantyne CM, Pownall HJ, Opekun AR, Hachey DL, Jaffe JS, et al. Effect of sirolimus on the metabolism of apoB100-containing lipoproteins in renal transplant patients. Transplantation. 2001;72(7):1244–50.CrossRefPubMedGoogle Scholar
  58. 58.
    Zimmermann A, Zobeley C, Weber MM, Lang H, Galle PR, Zimmermann T. Changes in lipid and carbohydrate metabolism under mTOR- and calcineurin-based immunosuppressive regimen in adult patients after liver transplantation. Eur J Intern Med. 2016;29:104–9.CrossRefPubMedGoogle Scholar
  59. 59.
    Eisen HJ, Kobashigawa J, Starling RC, Pauly DF, Kfoury A, Ross H, et al. Everolimus versus mycophenolate mofetil in heart transplantation: a randomized, multicenter trial. Am J Transpl. 2013;13(5):1203–16.CrossRefGoogle Scholar
  60. 60.
    Tenderich G, Fuchs U, Zittermann A, Muckelbauer R, Berthold HK, Koerfer R. Comparison of sirolimus and everolimus in their effects on blood lipid profiles and haematological parameters in heart transplant recipients. Clin Transpl. 2007;21(4):536–43.CrossRefGoogle Scholar
  61. 61.
    Kasiske BL, de Mattos A, Flechner SM, Gallon L, Meier-Kriesche HU, Weir MR, et al. Mammalian target of rapamycin inhibitor dyslipidemia in kidney transplant recipients. Am J Transpl. 2008;8(7):1384–92.CrossRefGoogle Scholar
  62. 62.
    Charlton M, Rinella M, Patel D, McCague K, Heimbach J, Watt K. Everolimus is associated with less weight gain than tacrolimus 2 years after liver transplantation: results of a randomized multicenter study. Transplantation. 2017;101(12):2873–82.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Pallet N, Legendre C. Adverse events associated with mTOR inhibitors. Expert Opin Drug Saf. 2013;12(2):177–86.CrossRefPubMedGoogle Scholar
  64. 64.
    Letavernier E, Legendre C. mToR inhibitors-induced proteinuria: mechanisms, significance, and management. Transpl Rev (Orlando, Fla). 2008;22(2):125–30.CrossRefGoogle Scholar
  65. 65.
    Stephany BR, Augustine JJ, Krishnamurthi V, Goldfarb DA, Flechner SM, Braun WE, et al. Differences in proteinuria and graft function in de novo sirolimus-based vs. calcineurin inhibitor-based immunosuppression in live donor kidney transplantation. Transplantation. 2006;82(3):368–74.CrossRefPubMedGoogle Scholar
  66. 66.
    Wiseman AC, McCague K, Kim Y, Geissler F, Cooper M. The effect of everolimus versus mycophenolate upon proteinuria following kidney transplant and relationship to graft outcomes. Am J Transpl. 2013;13(2):442–9.CrossRefGoogle Scholar
  67. 67.
    Arnau A, Ruiz JC, Rodrigo E, Quintanar JA, Arias M. Is proteinuria reversible, after withdrawal of mammalian target of rapamycin inhibitors? Transpl Proc. 2011;43(6):2194–5.CrossRefGoogle Scholar
  68. 68.
    Saurina A, Campistol JM, Piera C, Diekmann F, Campos B, Campos N, et al. Conversion from calcineurin inhibitors to sirolimus in chronic allograft dysfunction: changes in glomerular haemodynamics and proteinuria. Nephrol Dial Transpl. 2006;21(2):488–93.CrossRefGoogle Scholar
  69. 69.
    Pelle G, Xu Y, Khoury N, Mougenot B, Rondeau E. Thrombotic microangiopathy in marginal kidneys after sirolimus use. Am J Kidney Dis. 2005;46(6):1124–8.CrossRefPubMedGoogle Scholar
  70. 70.
    Sartelet H, Toupance O, Lorenzato M, Fadel F, Noel LH, Lagonotte E, et al. Sirolimus-induced thrombotic microangiopathy is associated with decreased expression of vascular endothelial growth factor in kidneys. Am J Transpl. 2005;5(10):2441–7.CrossRefGoogle Scholar
  71. 71.
    Cutler C, Henry NL, Magee C, Li S, Kim HT, Alyea E, et al. Sirolimus and thrombotic microangiopathy after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transpl. 2005;11(7):551–7.CrossRefGoogle Scholar
  72. 72.
    Paramesh AS, Grosskreutz C, Florman SS, Gondolesi GE, Sharma S, Kaufman SS, et al. Thrombotic microangiopathy associated with combined sirolimus and tacrolimus immunosuppression after intestinal transplantation. Transplantation. 2004;77(1):129–31.CrossRefPubMedGoogle Scholar
  73. 73.
    Lawsin L, Light JA. Severe acute renal failure after exposure to sirolimus-tacrolimus in two living donor kidney recipients. Transplantation. 2003;75(1):157–60.CrossRefPubMedGoogle Scholar
  74. 74.
    Fervenza FC, Fitzpatrick PM, Mertz J, Erickson SB, Liggett S, Popham S, et al. Acute rapamycin nephrotoxicity in native kidneys of patients with chronic glomerulopathies. Nephrol Dial Transpl. 2004;19(5):1288–92.CrossRefGoogle Scholar
  75. 75.
    Dittrich E, Schmaldienst S, Soleiman A, Horl WH, Pohanka E. Rapamycin-associated post-transplantation glomerulonephritis and its remission after reintroduction of calcineurin-inhibitor therapy. Transpl Int. 2004;17(4):215–20.CrossRefPubMedGoogle Scholar
  76. 76.
    Smith KD, Wrenshall LE, Nicosia RF, Pichler R, Marsh CL, Alpers CE, et al. Delayed graft function and cast nephropathy associated with tacrolimus plus rapamycin use. J Am Soc Nephrol. 2003;14(4):1037–45.CrossRefPubMedGoogle Scholar
  77. 77.
    Izzedine H, Brocheriou I, Frances C. Post-transplantation proteinuria and sirolimus. N Engl J Med. 2005;353(19):2088–9.CrossRefPubMedGoogle Scholar
  78. 78.
    Schonenberger E, Ehrich JH, Haller H, Schiffer M. The podocyte as a direct target of immunosuppressive agents. Nephrol Dial Transpl. 2011;26(1):18–24.CrossRefGoogle Scholar
  79. 79.
    Cina DP, Onay T, Paltoo A, Li C, Maezawa Y, De Arteaga J, et al. Inhibition of MTOR disrupts autophagic flux in podocytes. J Am Soc Nephrol. 2012;23(3):412–20.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Kirsch AH, Riegelbauer V, Tagwerker A, Rudnicki M, Rosenkranz AR, Eller K. The mTOR-inhibitor rapamycin mediates proteinuria in nephrotoxic serum nephritis by activating the innate immune response. Am J Physiol Renal Physiol. 2012;303(4):F569–75.CrossRefPubMedGoogle Scholar
  81. 81.
    Diekmann F, Andres A, Oppenheimer F. mTOR inhibitor-associated proteinuria in kidney transplant recipients. Transpl Rev (Orlando, Fla). 2012;26(1):27–9.CrossRefGoogle Scholar
  82. 82.
    Stallone G, Infante B, Pontrelli P, Gigante M, Montemurno E, Loverre A, et al. Sirolimus and proteinuria in renal transplant patients: evidence for a dose-dependent effect on slit diaphragm-associated proteins. Transplantation. 2011;91(9):997–1004.CrossRefPubMedGoogle Scholar
  83. 83.
    Podder H, Podbielski J, Hussein I, Katz S, Van Buren C, Kahan BD. Sirolimus improves the two-year outcome of renal allografts in African-American patients. Transpl Int. 2001;14(3):135–42.CrossRefPubMedGoogle Scholar
  84. 84.
    Shihab FS, Bennett WM, Yi H, Choi SO, Andoh TF. Sirolimus increases transforming growth factor-beta1 expression and potentiates chronic cyclosporine nephrotoxicity. Kidney Int. 2004;65(4):1262–71.CrossRefPubMedGoogle Scholar
  85. 85.
    Andoh TF, Lindsley J, Franceschini N, Bennett WM. Synergistic effects of cyclosporine and rapamycin in a chronic nephrotoxicity model. Transplantation. 1996;62(3):311–6.CrossRefPubMedGoogle Scholar
  86. 86.
    Letavernier E, Bruneval P, Mandet C, Duong Van Huyen JP, Peraldi MN, Helal I, et al. High sirolimus levels may induce focal segmental glomerulosclerosis de novo. Clin J Am Soc Nephrol. 2007;2(2):326–33.CrossRefPubMedGoogle Scholar
  87. 87.
    Christians U, Gottschalk S, Miljus J, Hainz C, Benet LZ, Leibfritz D, et al. Alterations in glucose metabolism by cyclosporine in rat brain slices link to oxidative stress: interactions with mTOR inhibitors. Br J Pharmacol. 2004;143(3):388–96.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Bakris GL. Slowing nephropathy progression: focus on proteinuria reduction. Clin J Am Soc Nephrol. 2008;3(Suppl 1):S3–10.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Liu J, Liu D, Li J, Zhu L, Zhang C, Lei K, et al. Efficacy and safety of everolimus for maintenance immunosuppression of kidney transplantation: a meta-analysis of randomized controlled trials. PLoS One. 2017;12(1):e0170246.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Sanchez-Fructuoso AI, Ruiz JC, Perez-Flores I, Gomez Alamillo C, Calvo Romero N, Arias M. Comparative analysis of adverse events requiring suspension of mTOR inhibitors: everolimus versus sirolimus. Transpl Proc. 2010;42(8):3050–2.CrossRefGoogle Scholar
  91. 91.
    Sonis S, Treister N, Chawla S, Demetri G, Haluska F. Preliminary characterization of oral lesions associated with inhibitors of mammalian target of rapamycin in cancer patients. Cancer. 2010;116(1):210–5.PubMedGoogle Scholar
  92. 92.
    Mahe E, Morelon E, Lechaton S, Sang KH, Mansouri R, Ducasse MF, et al. Cutaneous adverse events in renal transplant recipients receiving sirolimus-based therapy. Transplantation. 2005;79(4):476–82.CrossRefPubMedGoogle Scholar
  93. 93.
    Stallone G, Infante B, Grandaliano G, Gesualdo L. Management of side effects of sirolimus therapy. Transplantation. 2009;87(8 Suppl):S23–6.CrossRefPubMedGoogle Scholar
  94. 94.
    van Gelder T, ter Meulen CG, Hene R, Weimar W, Hoitsma A. Oral ulcers in kidney transplant recipients treated with sirolimus and mycophenolate mofetil. Transplantation. 2003;75(6):788–91.CrossRefPubMedGoogle Scholar
  95. 95.
    Martins F, de Oliveira MA, Wang Q, Sonis S, Gallottini M, George S, et al. A review of oral toxicity associated with mTOR inhibitor therapy in cancer patients. Oral Oncol. 2013;49(4):293–8.CrossRefPubMedGoogle Scholar
  96. 96.
    Campistol JM, de Fijter JW, Flechner SM, Langone A, Morelon E, Stockfleth E. mTOR inhibitor-associated dermatologic and mucosal problems. Clin Transpl. 2010;24(2):149–56.CrossRefGoogle Scholar
  97. 97.
    Rugo HS, Hortobagyi GN, Yao J, Pavel M, Ravaud A, Franz D, et al. Meta-analysis of stomatitis in clinical studies of everolimus: incidence and relationship with efficacy. Ann Oncol. 2016;27(3):519–25.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Peterson DE, O’Shaughnessy JA, Rugo HS, Elad S, Schubert MM, Viet CT, et al. Oral mucosal injury caused by mammalian target of rapamycin inhibitors: emerging perspectives on pathobiology and impact on clinical practice. Cancer Med. 2016;5(8):1897–907.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Pilotte AP, Hohos MB, Polson KM, Huftalen TM, Treister N. Managing stomatitis in patients treated with mammalian target of rapamycin inhibitors. Clin J Oncol Nurs. 2011;15(5):E83–9.CrossRefPubMedGoogle Scholar
  100. 100.
    Chuang P, Langone AJ. Clobetasol ameliorates aphthous ulceration in renal transplant patients on sirolimus. Am J Transpl. 2007;7(3):714–7.CrossRefGoogle Scholar
  101. 101.
    Zuckermann A, Barten MJ. Surgical wound complications after heart transplantation. Transpl Int. 2011;24(7):627–36.CrossRefPubMedGoogle Scholar
  102. 102.
    Pengel LH, Liu LQ, Morris PJ. Do wound complications or lymphoceles occur more often in solid organ transplant recipients on mTOR inhibitors? A systematic review of randomized controlled trials. Transpl Int. 2011;24(12):1216–30.CrossRefPubMedGoogle Scholar
  103. 103.
    Tiong HY, Flechner SM, Zhou L, Wee A, Mastroianni B, Savas K, et al. A systematic approach to minimizing wound problems for de novo sirolimus-treated kidney transplant recipients. Transplantation. 2009;87(2):296–302.CrossRefPubMedGoogle Scholar
  104. 104.
    Montalti R, Mimmo A, Rompianesi G, Serra V, Cautero N, Ballarin R, et al. Early use of mammalian target of rapamycin inhibitors is an independent risk factor for incisional hernia development after liver transplantation. Liver Transpl. 2012;18(2):188–94.CrossRefPubMedGoogle Scholar
  105. 105.
    Mills RE, Taylor KR, Podshivalova K, McKay DB, Jameson JM. Defects in skin gamma delta T cell function contribute to delayed wound repair in rapamycin-treated mice. J Immunol (Baltimore, Md). 2008;181(6):3974–83.Google Scholar
  106. 106.
    Squarize CH, Castilho RM, Bugge TH, Gutkind JS. Accelerated wound healing by mTOR activation in genetically defined mouse models. PLoS One. 2010;5(5):e10643.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Langer RM, Kahan BD. Incidence, therapy, and consequences of lymphocele after sirolimus-cyclosporine-prednisone immunosuppression in renal transplant recipients. Transplantation. 2002;74(6):804–8.CrossRefPubMedGoogle Scholar
  108. 108.
    Pham PT, Pham PC, Danovitch GM, Ross DJ, Gritsch HA, Kendrick EA, et al. Sirolimus-associated pulmonary toxicity. Transplantation. 2004;77(8):1215–20.CrossRefPubMedGoogle Scholar
  109. 109.
    Baas MC, Struijk GH, Moes DJ, van den Berk IA, Jonkers RE, de Fijter JW, et al. Interstitial pneumonitis caused by everolimus: a case-cohort study in renal transplant recipients. Transpl Int. 2014;27(5):428–36.CrossRefPubMedGoogle Scholar
  110. 110.
    Fischer L, Saliba F, Kaiser GM, De Carlis L, Metselaar HJ, De Simone P, et al. Three-year outcomes in de novo liver transplant patients receiving everolimus with reduced tacrolimus: follow-up results from a randomized, multicenter study. Transplantation. 2015;99(7):1455–62.CrossRefPubMedGoogle Scholar
  111. 111.
    Lopez P, Kohler S, Dimri S. Interstitial lung disease associated with mTOR inhibitors in solid organ transplant recipients: results from a large phase III clinical trial program of everolimus and review of the literature. J Transpl. 2014;2014:305931.Google Scholar
  112. 112.
    Holdaas H, Midtvedt K, Asberg A. A drug safety evaluation of everolimus in kidney transplantation. Expert Opin Drug Saf. 2012;11(6):1013–22.CrossRefPubMedGoogle Scholar
  113. 113.
    Porta C, Osanto S, Ravaud A, Climent MA, Vaishampayan U, White DA, et al. Management of adverse events associated with the use of everolimus in patients with advanced renal cell carcinoma. Eur J Cancer (Oxford, England). 2011;47(9):1287–98.CrossRefGoogle Scholar
  114. 114.
    Feagans J, Victor D, Moehlen M, Florman SS, Regenstein F, Balart LA, et al. Interstitial pneumonitis in the transplant patient: consider sirolimus-associated pulmonary toxicity. J La State Med Soc. 2009;161(3):166, 8–72.Google Scholar
  115. 115.
    Morelon E, Stern M, Israel-Biet D, Correas JM, Danel C, Mamzer-Bruneel MF, et al. Characteristics of sirolimus-associated interstitial pneumonitis in renal transplant patients. Transplantation. 2001;72(5):787–90.CrossRefPubMedGoogle Scholar
  116. 116.
    Champion L, Stern M, Israel-Biet D, Mamzer-Bruneel MF, Peraldi MN, Kreis H, et al. Brief communication: sirolimus-associated pneumonitis: 24 cases in renal transplant recipients. Ann Intern Med. 2006;144(7):505–9.CrossRefPubMedGoogle Scholar
  117. 117.
    Rehm B, Keller F, Mayer J, Stracke S. Resolution of sirolimus-induced pneumonitis after conversion to everolimus. Transpl Proc. 2006;38(3):711–3.CrossRefGoogle Scholar
  118. 118.
    Morath C, Schwenger V, Ksoll-Rudek D, Sommerer C, Beimler J, Schmidt J, et al. Four cases of sirolimus-associated interstitial pneumonitis: identification of risk factors. Transpl Proc. 2007;39(1):99–102.CrossRefGoogle Scholar
  119. 119.
    Garrean S, Massad MG, Tshibaka M, Hanhan Z, Caines AE, Benedetti E. Sirolimus-associated interstitial pneumonitis in solid organ transplant recipients. Clin Transpl. 2005;19(5):698–703.CrossRefGoogle Scholar
  120. 120.
    Rodriguez-Pascual J, Cheng E, Maroto P, Duran I. Emergent toxicities associated with the use of mTOR inhibitors in patients with advanced renal carcinoma. Anti-cancer Drugs. 2010;21(5):478–86.CrossRefPubMedGoogle Scholar
  121. 121.
    Filippone EJ, Carson JM, Beckford RA, Jaffe BC, Newman E, Awsare BK, et al. Sirolimus-induced pneumonitis complicated by pentamidine-induced phospholipidosis in a renal transplant recipient: a case report. Transpl Proc. 2011;43(7):2792–7.CrossRefGoogle Scholar
  122. 122.
    Kaplan AP. Clinical practice. Chronic urticaria and angioedema. N Engl J Med. 2002;346(3):175–9.CrossRefPubMedGoogle Scholar
  123. 123.
    Wadei H, Gruber SA, El-Amm JM, Garnick J, West MS, Granger DK, et al. Sirolimus-induced angioedema. Am J Transpl. 2004;4(6):1002–5.CrossRefGoogle Scholar
  124. 124.
    Burdese M, Rossetti M, Guarena C, Consiglio V, Mezza E, Soragna G, et al. Sirolimus and ACE-inhibitors: a note of caution. Transplantation. 2005;79(2):251–2.CrossRefPubMedGoogle Scholar
  125. 125.
    Stallone G, Infante B, Di Paolo S, Schena A, Grandaliano G, Gesualdo L, et al. Sirolimus and angiotensin-converting enzyme inhibitors together induce tongue oedema in renal transplant recipients. Nephrol Dial Transpl. 2004;19(11):2906–8.CrossRefGoogle Scholar
  126. 126.
    Mohaupt MG, Vogt B, Frey FJ. Sirolimus-associated eyelid edema in kidney transplant recipients. Transplantation. 2001;72(1):162–4.CrossRefPubMedGoogle Scholar
  127. 127.
    Romagnoli J, Citterio F, Nanni G, Tondolo V, Castagneto M. Severe limb lymphedema in sirolimus-treated patients. Transpl Proc. 2005;37(2):834–6.CrossRefGoogle Scholar
  128. 128.
    Thanaraj V, Woywodt A, Anderton J. A transplant patient with a swollen leg. Clin Kidney J. 2012;5(5):467–70.CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Desai N, Heenan S, Mortimer PS. Sirolimus-associated lymphoedema: eight new cases and a proposed mechanism. Br J Dermatol. 2009;160(6):1322–6.CrossRefPubMedGoogle Scholar
  130. 130.
    Huber S, Bruns CJ, Schmid G, Hermann PC, Conrad C, Niess H, et al. Inhibition of the mammalian target of rapamycin impedes lymphangiogenesis. Kidney Int. 2007;71(8):771–7.CrossRefPubMedGoogle Scholar
  131. 131.
    Al-Otaibi T, Ahamed N, Nampoory MR, Al-Kandari N, Nair P, Hallm MA, et al. Lymphedema: an unusual complication of sirolimus therapy. Transpl Proc. 2007;39(4):1207–10.CrossRefGoogle Scholar
  132. 132.
    Abel Mahedi Mohamed H, Nielsen CEN, Schiodt M. Medication related osteonecrosis of the jaws associated with targeted therapy as monotherapy and in combination with antiresorptives. A report of 7 cases from the Copenhagen Cohort. Oral Surg Oral Med Oral Pathol Oral Radiol. 2018;125(2):157–63.CrossRefPubMedGoogle Scholar
  133. 133.
    Omarini C, Filieri ME, Depenni R, Grizzi G, Cascinu S, Piacentini F. Osteonecrosis of the jaw in a breast cancer patient treated with everolimus and a single dose of zoledronic acid. Breast J. 2017;23(5):610–1.CrossRefPubMedGoogle Scholar
  134. 134.
    Kubo T, Fujioka M, Yamazoe S, Yoshimura N, Oka T, Ushijima Y, et al. Relationship between steroid dosage and osteonecrosis of the femoral head after renal transplantation as measured by magnetic resonance imaging. Transpl Proc. 1998;30(7):3039–40.CrossRefGoogle Scholar
  135. 135.
    Bhandari S, Eris J. Drug points: Premature osteonecrosis and sirolimus treatment in renal transplantation. BMJ (Clin Res Ed). 2001;323(7314):665.CrossRefGoogle Scholar
  136. 136.
    Franz DN, Belousova E, Sparagana S, Bebin EM, Frost M, Kuperman R, et al. Efficacy and safety of everolimus for subependymal giant cell astrocytomas associated with tuberous sclerosis complex (EXIST-1): a multicentre, randomised, placebo-controlled phase 3 trial. Lancet (London, England). 2013;381(9861):125–32.CrossRefGoogle Scholar
  137. 137.
    Bissler JJ, Kingswood JC, Radzikowska E, Zonnenberg BA, Frost M, Belousova E, et al. Everolimus for angiomyolipoma associated with tuberous sclerosis complex or sporadic lymphangioleiomyomatosis (EXIST-2): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet (London, England). 2013;381(9869):817–24.CrossRefGoogle Scholar
  138. 138.
    Boobes Y, Bernieh B, Saadi H, Raafat Al Hakim M, Abouchacra S. Gonadal dysfunction and infertility in kidney transplant patients receiving sirolimus. Int Urol Nephrol. 2010;42(2):493–8.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Clinical Pharmacology & Center of Clinical Investigation Paris-EstSorbonne Université, AP-HP, INSERMParisFrance
  2. 2.Service de chirurgie cardiaque, Institut de Cardiologie, AP-HP, Pitié-Salpétrière University Hospital, ICAN, INSERMSorbonne UniversitéParisFrance
  3. 3.Department of Internal Medicine, Pitié-Salpétrière University Hospital, AP-HPSorbonne UniversitéParisFrance

Personalised recommendations