Using Human ‘Experiments of Nature’ to Predict Drug Safety Issues: An Example with PCSK9 Inhibitors

A Commentary to this article is available

Abstract

Introduction

When a new drug enters the market, its full array of side effects remains to be defined. Current surveillance approaches targeting these effects remain largely reactive. There is a need for development of methods to predict specific safety events that should be sought for a given new drug during development and postmarketing activities.

Objective

We present here a safety signal identification approach applied to a new set of drug entities, inhibitors of the serine protease proprotein convertase subtilisin/kexin type 9 (PCSK9).

Methods

Using phenome-wide association study (PheWAS) methods, we analyzed available genotype and clinical data from 29,722 patients, leveraging the known effects of changes in PCSK9 to identify novel phenotypes in which this protein and its inhibitors may have impact.

Results

PheWAS revealed a significantly reduced risk of hypercholesterolemia (odds ratio [OR] 0.68, p = 7.6 × 10−4) in association with a known loss-of-function variant in PCSK9, R46L. Similarly, laboratory data indicated significantly reduced beta mean low-density lipoprotein cholesterol (− 14.47 mg/dL, p = 2.58 × 10−23) in individuals carrying the R46L variant. The R46L variant was also associated with an increased risk of spina bifida (OR 5.90, p = 2.7 × 10−4), suggesting that further investigation of potential connections between inhibition of PCSK9 and neural tube defects may be warranted.

Conclusion

This novel methodology provides an opportunity to put in place new mechanisms to assess the safety and long-term tolerability of PCSK9 inhibitors specifically, and other new agents in general, as they move into human testing and expanded clinical use.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. 1.

    Cruz ML, Xu J, Kashoki M, Lurie P. Publication and reporting of the results of postmarket studies for drugs required by the US Food and Drug Administration, 2009 to 2013. JAMA Intern Med. 2017;177(8):1207–10.

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Noel ZR, Beavers CJ. Proprotein convertase subtilisin/kexin type 9 inhibitors: a brief overview. Am J Med. 2017;130:229.e1–4.

    Article  CAS  Google Scholar 

  3. 3.

    Abifadel M, Varret M, Rabès J-P, Allard D, Ouguerram K, Devillers M, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet. 2003;34:154–6.

    Article  PubMed  CAS  Google Scholar 

  4. 4.

    Stein EA, Raal F. Reduction of low-density lipoprotein cholesterol by monoclonal antibody inhibition of PCSK9. Annu Rev Med. 2014;65:417–31.

    Article  PubMed  CAS  Google Scholar 

  5. 5.

    Schmidt AF, Pearce LS, Wilkins JT, Overington JP, Hingorani AD, Casas JP. PCSK9 monoclonal antibodies for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2017;(4):CD011748.

  6. 6.

    Tavori H, Rashid S, Fazio S. On the function and homeostasis of PCSK9: reciprocal interaction with LDLR and additional lipid effects. Atherosclerosis. 2015;238:264–70.

    Article  PubMed  CAS  Google Scholar 

  7. 7.

    Walley KR. PCSK9 is a critical regulator of the innate immune response and septic shock outcome. Sci Transl Med. 2014;6:258ra143.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. 8.

    Awan Z, Baass A, Genest J. Proprotein convertase subtilisin/kexin type 9 (PCSK9): lessons learned from patients with hypercholesterolemia. Clin Chem. 2014;60:1380–9.

    Article  PubMed  CAS  Google Scholar 

  9. 9.

    Hooper AJ, Marais AD, Tanyanyiwa DM, Burnett JR. The C679X mutation in PCSK9 is present and lowers blood cholesterol in a Southern African population. Atherosclerosis. 2007;193:445–8.

    Article  PubMed  CAS  Google Scholar 

  10. 10.

    Zhao Z, Tuakli-Wosornu Y, Lagace TA, Kinch L, Grishin NV, Horton JD, et al. Molecular characterization of loss-of-function mutations in PCSK9 and identification of a compound heterozygote. Am J Hum Genet. 2006;79:514–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. 11.

    Kastelein JJP, Nissen SE, Rader DJ, Hovingh GK, Wang M-D, Shen T, et al. Safety and efficacy of LY3015014, a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 (PCSK9): a randomized, placebo-controlled phase 2 study. Eur Heart J. 2016;37:1360–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. 12.

    Schulz R, Schlüter K-D, Laufs U. Molecular and cellular function of the proprotein convertase subtilisin/kexin type 9 (PCSK9). Basic Res Cardiol. 2015;110:4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. 13.

    Saavedra YGL, Dufour R, Davignon J, Baass A. PCSK9 R46L, lower LDL, and cardiovascular disease risk in familial hypercholesterolemia: a cross-sectional cohort study. Arterioscler Thromb Vasc Biol. 2014;34:2700–5.

    Article  PubMed  CAS  Google Scholar 

  14. 14.

    Chernogubova E, Strawbridge R, Mahdessian H, Mälarstig A, Krapivner S, Gigante B, et al. Common and low-frequency genetic variants in the PCSK9 locus influence circulating PCSK9 levels. Arterioscler Thromb Vasc Biol. 2012;32:1526–34.

    Article  PubMed  CAS  Google Scholar 

  15. 15.

    Guella I, Asselta R, Ardissino D, Merlini PA, Peyvandi F, Kathiresan S, et al. Effects of PCSK9 genetic variants on plasma LDL cholesterol levels and risk of premature myocardial infarction in the Italian population. J Lipid Res. 2010;51:3342–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. 16.

    Benn M, Nordestgaard BG, Grande P, Schnohr P, Tybjaerg-Hansen A. PCSK9 R46L, low-density lipoprotein cholesterol levels, and risk of ischemic heart disease: 3 independent studies and meta-analyses. J Am Coll Cardiol. 2010;55:2833–42.

    Article  PubMed  CAS  Google Scholar 

  17. 17.

    Pulley JM, Shirey-Rice JK, Lavieri RR, Jerome RN, Zaleski NM, Aronoff DM, et al. Accelerating precision drug development and drug repurposing by leveraging human genetics. ASSAY Drug Dev Technol. 2017;15:113–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. 18.

    Nelson MR, Tipney H, Painter JL, Shen J, Nicoletti P, Shen Y, et al. The support of human genetic evidence for approved drug indications. Nat Genet. 2015;47:856–60.

    Article  PubMed  CAS  Google Scholar 

  19. 19.

    Scannell JW, Blanckley A, Boldon H, Warrington B. Diagnosing the decline in pharmaceutical R&D efficiency. Nat Rev Drug Discov. 2012;11:191–200.

    Article  PubMed  CAS  Google Scholar 

  20. 20.

    Roden DM, Pulley JM, Basford MA, Bernard GR, Clayton EW, Balser JR, et al. Development of a large-scale de-identified DNA biobank to enable personalized medicine. Clin Pharmacol Ther. 2008;84:362–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. 21.

    McGregor TL, Van Driest SL, Brothers KB, Bowton EA, Muglia LJ, Roden DM. Inclusion of pediatric samples in an opt-out biorepository linking DNA to de-identified medical records: pediatric BioVU. Clin Pharmacol Ther. 2013;93:204–11.

    Article  PubMed  CAS  Google Scholar 

  22. 22.

    Denny JC, Bastarache L, Ritchie MD, Carroll RJ, Zink R, Mosley JD, et al. Systematic comparison of phenome-wide association study of electronic medical record data and genome-wide association study data. Nat Biotechnol. 2013;31:1102–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. 23.

    Denny JC, Ritchie MD, Basford MA, Pulley JM, Bastarache L, Brown-Gentry K, et al. PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene-disease associations. Bioinformatics. 2010;26:1205–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. 24.

    Wei W-Q, Bastarache LA, Carroll RJ, Marlo JE, Osterman TJ, Gamazon ER, et al. Evaluating phecodes, clinical classification software, and ICD-9-CM codes for phenome-wide association studies in the electronic health record. PLoS One. 2017;12:e0175508.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. 25.

    Rousselet E, Marcinkiewicz J, Kriz J, Zhou A, Hatten ME, Prat A, et al. PCSK9 reduces the protein levels of the LDL receptor in mouse brain during development and after ischemic stroke. J Lipid Res. 2011;52:1383–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. 26.

    Poirier S, Prat A, Marcinkiewicz E, Paquin J, Chitramuthu BP, Baranowski D, et al. Implication of the proprotein convertase NARC-1/PCSK9 in the development of the nervous system. J Neurochem. 2006;98:838–50.

    Article  PubMed  CAS  Google Scholar 

  27. 27.

    Seidah NG, Benjannet S, Wickham L, Marcinkiewicz J, Jasmin SB, Stifani S, et al. The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation. Proc Natl Acad Sci USA. 2003;100:928–33.

    Article  PubMed  CAS  Google Scholar 

  28. 28.

    An D, Wei X, Li H, Gu H, Huang T, Zhao G, et al. Identification of PCSK9 as a novel serum biomarker for the prenatal diagnosis of neural tube defects using iTRAQ quantitative proteomics. Sci Rep. 2015;5:17559.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. 29.

    Banerjee Y, Santos RD, Al-Rasadi K, Rizzo M. Targeting PCSK9 for therapeutic gains: have we addressed all the concerns? Atherosclerosis. 2016;248:62–75.

    Article  PubMed  CAS  Google Scholar 

  30. 30.

    Kysenius K, Muggalla P, Mätlik K, Arumäe U, Huttunen HJ. PCSK9 regulates neuronal apoptosis by adjusting ApoER2 levels and signaling. Cell Mol Life Sci. 2012;69:1903–16.

    Article  PubMed  CAS  Google Scholar 

  31. 31.

    Liu L-S, Bai X-Q, Gao Y, Wu Q, Ren Z, Li Q, et al. PCSK9 promotes oxLDL-induced PC12 cell apoptosis through the Bcl-2/Bax-Caspase 9/3 signaling pathway. J Alzheimers Dis. 2017;57:723–34.

    Article  PubMed  CAS  Google Scholar 

  32. 32.

    Starup-Linde J, Gregersen S, Vestergaard P. Associations with fracture in patients with diabetes: a nested case-control study. BMJ Open. 2016;6:e009686.

    Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Gorski JP, Huffman NT, Cui C, Henderson EP, Midura RJ, Seidah NG. Potential role of proprotein convertase SKI-1 in the mineralization of primary bone. Cells Tissues Organs. 2009;189:25–32.

    Article  PubMed  CAS  Google Scholar 

  34. 34.

    Gorski JP, Huffman NT, Chittur S, Midura RJ, Black C, Oxford J, et al. Inhibition of proprotein convertase SKI-1 blocks transcription of key extracellular matrix genes regulating osteoblastic mineralization. J Biol Chem. 2011;286:1836–49.

    Article  PubMed  CAS  Google Scholar 

  35. 35.

    Prescribing information: REPATHA™ (evolocumab). Amgen; 2015.

  36. 36.

    Prescribing information: PRALUENT™ (alirocumab). Sanofi Regeneron; 2015 [cited 2017 May 22]. https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/125559Orig1s000lbledt.pdf.

  37. 37.

    Sullivan D, Olsson AG, Scott R, Kim JB, Xue A, Gebski V, et al. Effect of a monoclonal antibody to PCSK9 on low-density lipoprotein cholesterol levels in statin-intolerant patients: the GAUSS randomized trial. JAMA. 2012;308:2497–506.

    Article  PubMed  CAS  Google Scholar 

  38. 38.

    Blom DJ, Hala T, Bolognese M, Lillestol MJ, Toth PD, Burgess L, et al. A 52-week placebo-controlled trial of evolocumab in hyperlipidemia. N Engl J Med. 2014;370:1809–19.

    Article  PubMed  CAS  Google Scholar 

  39. 39.

    Schmidt AF, Swerdlow DI, Holmes MV, Patel RS, Fairhurst-Hunter Z, Lyall DM, et al. PCSK9 genetic variants and risk of type 2 diabetes: a mendelian randomisation study. Lancet Diabetes Endocrinol. 2017;5:97–105.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. 40.

    Saavedra YGL, Dufour R, Baass A. Familial hypercholesterolemia: PCSK9 InsLEU genetic variant and prediabetes/diabetes risk. J Clin Lipidol. 2015;9(786–793):e1.

    Google Scholar 

  41. 41.

    Ference BA, Robinson JG, Brook RD, Catapano AL, Chapman MJ, Neff DR, et al. Variation in PCSK9 and HMGCR and risk of cardiovascular disease and diabetes. N Engl J Med. 2016;375:2144–53.

    Article  PubMed  CAS  Google Scholar 

  42. 42.

    Bonnefond A, Yengo L, May CL, Fumeron F, Marre M, Balkau B, et al. The loss-of-function PCSK9 p. R46L genetic variant does not alter glucose homeostasis. Diabetologia. 2015;58:2051–5.

    Article  PubMed  CAS  Google Scholar 

  43. 43.

    Hasselman CT, Vogt MT, Stone KL, Cauley JA, Conti SF. Foot and ankle fractures in elderly white women. Incidence and risk factors. J Bone Joint Surg Am. 2003;85-A:820–4.

    Article  PubMed  Google Scholar 

  44. 44.

    Center for Drug Evaluation and Research. FDA Adverse Events Reporting System (FAERS). Potential signals of serious risks/new safety information identified from the FDA adverse event reporting system (FAERS) [cited 2017 May 12]. https://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/AdverseDrugEffects/UCM082196.

  45. 45.

    Walker VM, Davey Smith G, Davies NM, Martin RM. Mendelian randomization: a novel approach for the prediction of adverse drug events and drug repurposing opportunities. Int J Epidemiol. 2017. https://doi.org/10.1093/ije/dyx207.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We extend our sincere thanks to Nicole Zaleski, MA, MPH, for her valuable input and assistance with preparing the figures and tables for this paper, and Xinnan Niu for his assistance with preparing the data for publication.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rebecca N. Jerome.

Ethics declarations

Funding

The project described herein is supported by Clinical and Translational Science Award award number UL1TR000445 from the National Center for Advancing Translational Sciences. Its contents are solely the responsibility of the authors and do not necessarily represent official views of the National Center for Advancing Translational Sciences or the National Institutes of Health.

Ethical approval

This project was reviewed and received a non-human subjects research determination from the Vanderbilt University Institutional Review Board (IRB number 151121).

Conflict of interest

Rebecca N. Jerome, Jill M. Pulley, Dan M. Roden, Jana K. Shirey-Rice, Lisa A. Bastarache, Gordon Bernard, Leeland Ekstrom, William J. Lancaster, and Joshua C. Denny have no conflicts of interest to declare that are directly relevant to the content of this study.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jerome, R.N., Pulley, J.M., Roden, D.M. et al. Using Human ‘Experiments of Nature’ to Predict Drug Safety Issues: An Example with PCSK9 Inhibitors. Drug Saf 41, 303–311 (2018). https://doi.org/10.1007/s40264-017-0616-0

Download citation