Species Adulteration in the Herbal Trade: Causes, Consequences and Mitigation

Abstract

The global economy of the international trade of herbal products has been increasing by 15% annually, with the raw material for most herbal products being sourced from South and Southeast Asian countries. In India, of the 8000 species of medicinal plants harvested from the wild, approximately 960 are in the active trade. With increasing international trade in herbal medicinal products, there is also increasing concern about the widespread adulteration and species admixtures in the raw herbal trade. The adverse consequences of such species adulteration on the health and safety of consumers have only recently begun to be recognised and documented. We provide a comprehensive review of the nature and magnitude of species adulteration in the raw herbal trade, and identify the underlying drivers that might lead to such adulteration. We also discuss the possible biological and chemical equivalence of species that are used as adulterants and substitutes, and the consequences thereof to consumer health and safety, and propose a framework for the development of a herbal trade authentication service that can help regulate the herbal trade market.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. 1.

    Newmaster SG, Grguric M, Shanmughanandhan M, Ramalingam S, Ragupathy S. DNA barcoding detects contamination and substitution in North American herbal products. BMC Med. 2013;11:222–35.

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    Gutierrez S, Ang-Lee MK, Walker DJ, Zacny JP. Assessing subjective and psychomotor effects of the herbal medication valerian in healthy volunteers. Pharmacol Biochem Behav. 2004;78:57–64.

    CAS  PubMed  Google Scholar 

  3. 3.

    McCabe S. Complementary herbal and alternative drugs in clinical practice. Perspect Psychiatr Care. 2002;38:98–107.

    PubMed  Google Scholar 

  4. 4.

    De-Smet PAGM. Drug therapy: herbal remedies. N Engl J Med. 2002;347:2046–56.

    PubMed  Google Scholar 

  5. 5.

    Khan H. Medicinal plants in light of history: recognized therapeutic modality. J Evid Based Complementary Altern Med. 2014;19:216–9.

    PubMed  Google Scholar 

  6. 6.

    Khan H, Rauf A. Medicinal plants: economic perspective and recent developments. World Appl Sci J. 2014;31:1925–9.

    Google Scholar 

  7. 7.

    Olsen CS, Finn H. Market efficiency and benefit distribution in medicinal plant markets: empirical evidence from South Asia. Int J Biodivers Sci Manag 2009;5(2):53–62.

    Google Scholar 

  8. 8.

    Shanmughanandhan D, Ragupathy S, Newmaster SG, Mohanasundaram S, Sathishkumar R. Estimating herbal product authentication and adulteration in India using a vouchered, DNA-based biological reference material library. Drug Saf. 2016;39(12):1211–27.

    PubMed  Google Scholar 

  9. 9.

    Kumar MR, Janagam D. Proceedings of the “Global Environmental and its sustainability: implications and Strategies” held at Chennai, India (7th Nov. 2010) & Bangkok, Thailand (25th–29th Nov. 2010). Indian J Sci Technol. 2011;4:245–8.

    Google Scholar 

  10. 10.

    Mishra P, Kumar A, Nagireddy A, Mani DN, Shukla AK, Tiwari R, et al. DNA barcoding: an efficient tool to overcome authentication challenges in the herbal market. Plant Biotechnol J. 2016;14:8–21.

    CAS  PubMed  Google Scholar 

  11. 11.

    Techen N, Parveen I, Pan Z, Khan IA. DNA barcoding of medicinal plant material for identification. Curr Opin Biotechnol. 2014;25:103–10.

    CAS  PubMed  Google Scholar 

  12. 12.

    Walker KM, Applequist WL. Adulteration of selected unprocessed botanicals in the US retail herbal trade. Econ Bot. 2012;66:321–7.

    Google Scholar 

  13. 13.

    Seethapathy GS, Ganesh D, Santhosh Kumar JU, Senthilkumar U, Newmaster SG, Ragupathy S, et al. Assessing product adulteration in natural health products for laxative yielding plants, Cassia, Senna, and Chamaecrista, in Southern India using DNA barcoding. Int J Legal Med. 2015;129(4):693–700.

    PubMed  Google Scholar 

  14. 14.

    de Boer HJ, Ichim MC, Newmaster SG. DNA barcoding and pharmacovigilance of herbal medicines. Drug Saf. 2015;38:611–20.

    PubMed  Google Scholar 

  15. 15.

    Gupta AK, Vats SK, Brij L. How cheap can a medicinal plant species be? Curr Sci. 1998;74:565–6.

    Google Scholar 

  16. 16.

    Mitra SK, Kannan R. A note on unintentional adulterations in ayurvedic herbs. Ethnobot Leafl. 2007;11:11–5.

    Google Scholar 

  17. 17.

    Poornima B. Adulteration and substitution in herbal drugs a critical analysis. Int J Res Ayur Pharm. 2010;1:8–12.

    Google Scholar 

  18. 18.

    Song J, Yao H, Li Y, Li X, Lin Y, Liu C, et al. Authentication of the family Polygonaceae in Chinese pharmacopoeia by DNA barcoding technique. J Ethnopharmacol. 2009;124:434–9.

    CAS  PubMed  Google Scholar 

  19. 19.

    Han J, Pang X, Liao B, Yao H, Song J, Chen S. An authenticity survey of herbal medicines from markets in China using DNA barcoding. Sci Rep. 2016;6:18723.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Marini R, et al. Reliable low-cost capillary electrophoresis device for drug quality control and counterfeit medicines. J Pharm Biomed Anal. 2010;53:1278–87.

    CAS  PubMed  Google Scholar 

  21. 21.

    Pandey R, Tiwari RK, Shukla SS. Omics: a newer technique in herbal drug standardization and quantification. Young Pharm. 2016;8(2):76–81.

    CAS  Google Scholar 

  22. 22.

    Torelli A, Marieschi M, Bruni R. Authentication of saffron (Crocus sativus L.) in different processed, retail products by means of SCAR markers. Food Control. 2014;36:126–31.

    CAS  Google Scholar 

  23. 23.

    Palhares RM, Gonçalves Drummond M, dos Santos Alves Figueiredo Brasil B, Pereira Cosenza G, das Graças Lins Brandão M, Oliveira G. Medicinal plants recommended by the World Health Organization: DNA barcode identification associated with chemical analyses guarantees their quality. PLoS One. 2015;10(5):e0127866.

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Beena C, Radhakrishnan VV. Quality assessment evaluation of the market samples of important ayurvedic drug asoka bark. Ann Phytomed. 2012;1:95–8.

    CAS  Google Scholar 

  25. 25.

    Begum N, Ravikumar K, Ved DK. ‘Asoka’: an important medicinal plant, its market scenario and conservation measures in India. Curr Sci. 2014;107:26–8.

    Google Scholar 

  26. 26.

    Santhosh Kumar JU, Gogna N, Newmaster SG, Venkatarangaiah K, Ragupathy S, Seethapathy GS, et al. DNA barcoding and NMR spectroscopy-based assessment of species adulteration in the raw herbal trade of Saraca asoca (Roxb.) Willd, an important medicinal plant. Int J Legal Med. 2016;130(6):1457–70.

    Google Scholar 

  27. 27.

    Newmaster SG, Fazekas A, Ragupathy S. DNA barcoding in the land plants: evaluation of rbcL in a multigene tiered approach. Can J Bot. 2006;84:335–41.

    CAS  Google Scholar 

  28. 28.

    Zuo Y, Zhongjian C, Katsuhiko K, Tsuneo F, Jun W, Shiliang Z. DNA barcoding of Panax species. Planta Med. 2011;77:182–7.

    CAS  PubMed  Google Scholar 

  29. 29.

    Guo X, Wang X, Su W, Zhang G, Zhou R. DNA barcodes for discriminating the medicinal plant Scutellaria baicalensis (Lamiaceae) and its adulterants. Biol Pharm Bull. 2011;34(8):1198–203.

    CAS  PubMed  Google Scholar 

  30. 30.

    Sui XY, Huang Y, Tan Y, Guo Y, Long CL. Molecular authentication of the ethnomedicinal plant Sabia parviflora and its adulterants by DNA barcoding technique. Planta Med. 2011;77:492–6.

    CAS  PubMed  Google Scholar 

  31. 31.

    Costa J, Campos B, Amaral JS, Nunes ME, Oliveira MBPP, Mafra I. HRM analysis targeting ITS1 and matK loci as potential DNA mini-barcodes for the authentication of Hypericum perforatum and Hypericum androsaemum in herbal infusions. Food Control. 2016;61:105–14.

    CAS  Google Scholar 

  32. 32.

    Osathanunkul M, Suwannapoom C, Osathanunkul K, Madesise P, de Boer H. Evaluation of DNA barcoding coupled high resolution melting for discrimination of closely related species in phytopharmaceuticals. Phytomedicine. 2016;23:156–65.

    CAS  PubMed  Google Scholar 

  33. 33.

    Yu N, Gu H, Wei Y, Zhu N, Wang Y, Zhang H, et al. Suitable DNA barcoding for identification and supervision of Piper kadsura in Chinese medicine markets. Molecules. 2016;21:1221.

    PubMed Central  Google Scholar 

  34. 34.

    Zhao Z. Application of microscopic techniques for the authentication of herbal medicines. In: Méndez-Vilas A, Díaz J, editors. Microscopy: science, technology, applications and education. Badajoz: Formatex; 2010. p. 803–12.

    Google Scholar 

  35. 35.

    Arya D, Joshi GC, Tiwari LM. Status and trade of crude drug in Uttarakhand. J Med Plants Res. 2012;6:3434–44.

    Google Scholar 

  36. 36.

    Parvathy VA, Swetha VP, Sheeja TE, Leela NK, Chempakam B, Sasikumar B. DNA barcoding to detect chilli adulteration in traded black pepper powder. Food Biotechnol. 2014;28:25–40.

    CAS  Google Scholar 

  37. 37.

    Santhosh Kumar JU, Krishna V, Seethapathy GS, Senthilkumar U, Ragupathy S, Ganeshaiah KN, et al. DNA barcoding to assess species adulteration in raw drug trade of “Bala” (Genus: Sida L.) herbal products in South India. Biochem Sys Ecol. 2015;61:501–9.

    CAS  Google Scholar 

  38. 38.

    Lum JHK, Fung KL, Cheung PY, Wong MS, Lee CH, Kwok FSL, et al. Proteome of oriental ginseng Panax ginseng C.A. Meyer and the potential to use it as an identification tool. Proteomics. 2002;2:1123–30.

    CAS  PubMed  Google Scholar 

  39. 39.

    Kang J, Lee S, Kang S, Kwon HN, Park JH, Kwon SW, et al. NMR- based metabolomics approach for the differentiation of Ginseng (Panax ginseng) roots from different origins. Arch Pharm Res. 2008;31(3):330–6.

    CAS  PubMed  Google Scholar 

  40. 40.

    Ivanova NV, Kuzmina ML, Braukmann TWA, Borisenko AV, Zakharov EV. Authentication of herbal supplements using next-generation sequencing. PloS One. 2016;11(5):e0156426.

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Srirama R, Senthilkumar U, Sreejayan N, Ravikanth G, Gurumurthy BR, Shivanna MB, et al. Assessing species adulteration in raw drug trade of Phyllanthus, a hepato-protective plant using molecular tools. J Ethnopharmacol. 2010;130:208–15.

    CAS  PubMed  Google Scholar 

  42. 42.

    Srivastava S, Rawat AKS. Quality evaluation of ayurvedic crude drug daruharidra, its allied species, and commercial samples from herbal drug markets of India. Evid Based Complement Altern Med. 2013;2013:472973. doi:10.1155/2013/472973.

    Article  Google Scholar 

  43. 43.

    Ved DK, Goraya GS. Demand and supply of medicinal plants in India. Bangalore: Foundation for Revitalisation of Local Health Traditions; 2008.

    Google Scholar 

  44. 44.

    Vinay T. Camp workshop: plants under threat—new list forged. Medicinal plant conservation. Newsletter of the IUCN Species Survival Commission. Bonn, Germany Bundesamt für Naturschutz; 1996. p. 2.

  45. 45.

    Menon P. Conservation and consumption: a study on the crude drug trade in threatened medicinal plants in Thiruvananthapuram District, Kerala. Kerala Research Programme on Local Level Development. Trivandrum: Centre for Development Studies; 2003.

    Google Scholar 

  46. 46.

    Smillie TJ, Khan IA. A comprehensive approach to identifying and authenticating botanical products. Clin Pharmacol Ther. 2010;87:175–86.

    CAS  Google Scholar 

  47. 47.

    Chen S, Yao H, Han J, Liu C, Song J, Shi L, et al. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PloS One. 2010;5:e8613.

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    Mundkinajeddu D, Sawant LP, Koshy R, Akunuri P, Singh VK, Mayachari A, et al. Development and validation of high performance liquid chromatography method for simultaneous estimation of flavonoid Glycosides in Withania somnifera aerial parts. ISRN Anal Chem. 2014;2014:351547. doi:10.1155/2014/351547.

    Google Scholar 

  49. 49.

    De Smet PA. Health risks of herbal remedies: an update. Clin Pharmacol Ther. 2004;76:1–17.

    PubMed  Google Scholar 

  50. 50.

    Johanns ES, et al. An epidemic of epileptic seizures after consumption of herbal tea. Ned Tijdschr Geneeskd. 2002;146:813–6.

    CAS  PubMed  Google Scholar 

  51. 51.

    Chen SPL, et al. Aconite poisoning over 5 years: a case series in Hong Kong and lessons towards herbal safety. Drug Saf. 2012;35:575–87.

    PubMed  Google Scholar 

  52. 52.

    Phua D, Cham G, Seow E. Two instances of Chinese herbal medicine poisoning in Singapore. Singap Med J. 2008;49:e131–3.

    CAS  Google Scholar 

  53. 53.

    Wallace LJ, Boilard SMAL, Eagle SHC, Spall JL, Shokralla S, Hajibabaei M. DNA barcodes for everyday life: routine authentication of natural health products. Food Res Int. 2012;49:446–52.

    CAS  Google Scholar 

  54. 54.

    Daglish C. The determination and occurrence of a hydrojugloneglucoside in the walnut. Biochem J. 1950;47:458–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Gilbert N. Herbal medicine rule book: can Western guidelines govern Eastern herbal traditions? Nature. 2011;480:S98–9.

    CAS  PubMed  Google Scholar 

  56. 56.

    Chen S, Pang X, Song J, Shi L, Yao H, Han J, et al. A renaissance in herbal medicine identification: from morphology to DNA. Biotechnol Adv. 2014;32:1237–44.

    CAS  PubMed  Google Scholar 

  57. 57.

    Swethaa VP, Parvathya VA, Sheejaa TE, Sasikumara B. DNA barcoding for discriminating the economically important Cinnamomum verum from its adulterants. Food Biotechnol. 2014;28:183–94.

    Google Scholar 

  58. 58.

    WHO. Coumarin: a strong association with hepatotoxicity. WHO Drug Info. 1995;9:159.

    Google Scholar 

  59. 59.

    Dondorp A, et al. Fake antimalarials in Southeast Asia are a major impediment to malaria control: multinational cross-sectional survey on the prevalence of fake antimalarials. Trop Med Int Health. 2004;9:1241–6.

    CAS  PubMed  Google Scholar 

  60. 60.

    Roulette H. Consumer reports, November 16. 1995. p. 698–705.

  61. 61.

    Canada Health. Foreign product alert. Herbal Flos Lonicerae (Herbal Xenicol) natural weight loss formula. Foreign Product Alert; 2011: 03-22.

  62. 62.

    Venkatasubramanian P, Kumar K, Nair VSN. Cyperus rotundus, a substitute for Aconitum heterophyllum: studies on the Ayurvedic concept of Abhava Pratinidhi Dravya (drug substitution). J Ayurveda Integr Med. 2010;1:33–9.

    PubMed  PubMed Central  Google Scholar 

  63. 63.

    Pandeya G. Caraka Samhita of Agnivesa with Cakrapanidatta Tika. 1st ed. Varanasi: Chaukhambha Sanskrit Sansthan; 1997.

    Google Scholar 

  64. 64.

    Chunekar KC. Bhavaprakasa Nighantu of Bhavamisra. 1st ed. Varanasi: Chaukhambha Bharati Academy; 2004.

    Google Scholar 

  65. 65.

    Sastry R. Bhaishajya Ratnavali of Govind Das Sen. 1st ed. Varanasi: Chaukhamba Sanskrit Bhavan’; 2002.

    Google Scholar 

  66. 66.

    Singh S, Gautam A, Sharma A, Batra A. Centella asiatica (l.): a plant with immense medicinal potential but threatened. Int J Pharm Sci Rev Res. 2010;4:9–17.

    CAS  Google Scholar 

  67. 67.

    Mukherjee S, Dugad S, Bhandare R, Pawar N, Jagtap S, Pawar PK, et al. Evaluation of comparative free radical quenching potential of Brahmi (Bacopa monnieri) and Mandookparni (Centella asiatica). Ayush. 2011;32:258–64.

    Google Scholar 

  68. 68.

    Kumar VM, Gupta YK. Effect of different extracts of Centella asiatica on cognition and markers of oxidative stress in rats. J Ethnopharmacol. 2002;79:253–60.

    Google Scholar 

  69. 69.

    Sethiya NK, Nahata A, Mishra SH, Dixit VK. An update on Shankhpushpi, a cognition-boosting Ayurvedic medicine. J Chin Integr Med. 2009;7:1001–22.

    CAS  Google Scholar 

  70. 70.

    World Health Organization. WHO traditional medicine strategy: 2014–2023. Geneva: World Health Organization; 2013. Available at: www.who.int/medicines/publications/traditional/trm-strategy14-23/en/.

    Google Scholar 

  71. 71.

    Pandey MM, Katara A, Pandey G, Rastogi S, Rawat AKS. An important Indian traditional drug of Ayurveda Jatamansi and its substitute Bhootkeshi: chemical profiling and antioxidant activity. Evid Based Complement Altern Med. 2013;2013:142517.

    Google Scholar 

  72. 72.

    Seshadri TR, Sood MS, Handa KL. Vishwapaul. Chemical components of the roots of Selinum vaginatum-1. Coumarins of the petroleum ether extract. Tetrahedron. 1967;23(4):1883–91.

    CAS  Google Scholar 

  73. 73.

    Chauhan NS. Medicinal and aromatic plants of Himachal Pradesh. New Delhi: Indus; 1999.

    Google Scholar 

  74. 74.

    Wiesner J, Knöss W. Future visions for traditional and herbal medicinal products: a global practice for evaluation and regulation? J Ethnopharmacol. 2014;158:516–8.

    PubMed  Google Scholar 

  75. 75.

    Vlietinck A, Pieters L, Apers S. Legal requirements for the quality of herbal substances and herbal preparations for the manufacturing of herbal medicinal products in the European union. Planta Med. 2009;75:683–8.

    CAS  PubMed  Google Scholar 

  76. 76.

    Zakaryan A, Martin IG. Regulation of herbal dietary supplements: is there a better way? Ther Innov Regul Sci. 2012;46:532–44.

    Google Scholar 

  77. 77.

    Wenzig EMP, Bauer R. The relevance of pharmacognosy in pharmacological research on herbal medicinal products. Epilepsy Behav. 2015;52:344–62.

    Google Scholar 

  78. 78.

    Jian C, Deyi Q, Qiaoyun Y, Jia H, Dexing L, Xiaoya W, et al. A successful case of DNA barcoding used in an international trade dispute. DNA Barcodes. 2014;2:21–8.

    Google Scholar 

  79. 79.

    Al-Qurainy F, Khan S, Ali MA, Al-Hemaid FM, Tarroum M, Ashraf M. Authentication of Ruta graveolens and its adulterant using Internal Transcribed Spacer (ITS) sequences of nuclear ribosomal DNA. Pak J Bot. 2011;43:1613–20.

    CAS  Google Scholar 

  80. 80.

    Chen X, Liao B, Song J, Pang X, Han J, Chen S. A fast SNP identification and analysis of intraspecific variation in the medicinal Panax species based on DNA barcoding. Gene. 2013;530:39–43.

    CAS  PubMed  Google Scholar 

  81. 81.

    Wohlmuth H, Savage K, Dowell A, Mouatta P. Adulteration of Gingko biloba products and a simple method to improve its detection. Phytomedicine. 2014;21:912–8.

    CAS  PubMed  Google Scholar 

  82. 82.

    Vermaak I, Hamman JH, Viljoen AM. High performance thin layer chromatography as a method to authenticate Hoodia gordonii raw material and products. S Afr J Bot. 2010;76:119–24.

    CAS  Google Scholar 

  83. 83.

    Feng T, Liu S, He X-J. Molecular authentication of the traditional Chinese medicinal plant Angelica sinensis based on internal transcribed spacer of nrDNA. Electron J Biotechnol. 2010;13:1–10.

    Google Scholar 

  84. 84.

    Wang CZ, Li P, Ding JY, Jin GQ, Yuan CS. Identification of Fritillaria pallidiflora using diagnostic PCR and PCR–RFLP based on nuclear ribosomal DNA internal transcribed spacer sequences. Planta Med. 2005;1:384–6.

    Google Scholar 

  85. 85.

    Khan S, Mirza KJ, Abdin MZ. Development of RAPD markers for authentication of medicinal plant Cuscutare flexa. Eurasia J Biosci. 2010;4:1–7.

    Google Scholar 

  86. 86.

    Khan S, Mirza KJ, Tayaab MD, Abdin MZ. RAPD profile for authentication of medicinal plant Glycyrrhiza glabra Linn. Int J Food Saf. 2009;11:24–8.

    Google Scholar 

  87. 87.

    Duan C, Mei Z, Gong S, Yu H. Genetic characterization and authentication of Pentorum species using RAPD and SCAR markers. Res J Bot. 2011;6:87–94.

    CAS  Google Scholar 

  88. 88.

    Yadav A, Javed A, Chaudhary AA, Ahmad A. Development of Sequence Characterized Amplified Region (SCAR) marker for the authentication of Bacopa monnieri (L.) Wettst. Eur J Med Plants. 2012;2:186–98.

    Google Scholar 

  89. 89.

    Srirama R, Deepak HB, Senthilkumar U, Ravikanth G, Gurumurthy BR, Shivanna MB, et al. Hepatoprotective activity of Indian Phyllanthus L. Pharm. Biol. 2012;50:948–53.

    CAS  PubMed  Google Scholar 

  90. 90.

    Khatoon S, Singh N, Kumar S, Srivastava N, Rathi A, Mehrotra S. Authentication and quality evaluation of an important Ayurvedic drug—Ashoka bark. J Sci Ind Res. 2009;60:393–400.

    Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Amit Agarwal and Dr. K. Chandrashekara for their many incisive comments and suggestions to improve the article.

Author information

Affiliations

Authors

Contributions

All the authors took part in the discussions on the herbal product authentication. The authors RUS, GR worked on the conception and the article composition. RUS, GR, RS, JUSK and GSS contributed to the review and in writing the manuscript. RS, GR and RUS worked on the discussion and critical revisions. KNG, SGN and SR contributed by giving comments and editing the manuscript. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Gudasalamani Ravikanth.

Ethics declarations

Funding

Work reported in the article was supported by a grant from the Department of Biotechnology, Government of India (BT/IN/ISTP/05/RUS/2012).

Conflicts of interest

Ramanujam Srirama, J. U. Santhosh Kumar, G. S. Seethapathy, Steven G. Newmaster, S. Ragupathy, K. N. Ganeshaiah, R. Uma Shaanker and Gudasalamani Ravikanth have no conflicts of interest that are directly relevant to the content of this review.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Srirama, R., Santhosh Kumar, J.U., Seethapathy, G.S. et al. Species Adulteration in the Herbal Trade: Causes, Consequences and Mitigation. Drug Saf 40, 651–661 (2017). https://doi.org/10.1007/s40264-017-0527-0

Download citation