Authors’ Reply to Jouanjus and Colleagues’ Comment on “Social Media Mining for Toxicovigilance: Automatic Monitoring of Prescription Medication Abuse from Twitter”

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Jouanjus E, Mallaret M, Micallef J, et al. Comment on ‘Social media mining for toxicovigilance: monitoring prescription medication abuse from Twitter. Drug Saf. 2017. doi: 10.1007/s40264-016-0497-7

  2. 2.

    Sarker A, O’Connor K, Ginn R, et al. Social media mining for toxicovigilance: automatic monitoring of prescription medication abuse from Twitter. Drug Saf. 2016;39(3):231–40.

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Jouanjus E, Pourcel L, Saivin S, et al. Use of multiple sources and capture-recapture method to estimate the frequency of hospitalizations related to drug abuse. Pharmacoepidemiol Drug Saf. 2012;21(7):733–41.

    Article  PubMed  Google Scholar 

  4. 4.

    Manasco AT, Griggs C, Leeds R, et al. Characteristics of state prescription drug monitoring programs: a state-by-state survey. Pharmacoepidemiol Drug Saf. 2016;25(7):847–51.

    Article  PubMed  Google Scholar 

  5. 5.

    Sarker A, Ginn R, Nikfarjam A, et al. Utilizing social media data for pharmacovigilance: a review. J Biomed Inform. 2015;54:202–12.

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Paul MJ, Sarker A, Brownstein JS, et al. Social media mining for public health monitoring and surveillance. Pac Symp Biocomput. 2016;21:468–79.

    Google Scholar 

  7. 7.

    Sarker A, Gonzalez G. A corpus for mining drug-related knowledge from Twitter chatter: language models and their utilities. Data Brief. 2016;10:122–31.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Abeed Sarker.

Ethics declarations

Funding

No sources of funding were used to assist in the preparation of this authors’ response.

Conflict of interest

Abeed Sarker, Dan Malone, and Graciela Gonzalez have no conflicts of interest that are directly relevant to the content of this authors’ response.

Ethics approval

Not applicable.

Informed consent

Not applicable.

Additional information

This reply refers to the letter article available at doi:10.1007/s40264-016-0497-7.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sarker, A., Malone, D. & Gonzalez, G. Authors’ Reply to Jouanjus and Colleagues’ Comment on “Social Media Mining for Toxicovigilance: Automatic Monitoring of Prescription Medication Abuse from Twitter”. Drug Saf 40, 187–188 (2017). https://doi.org/10.1007/s40264-016-0498-6

Download citation

Keywords

  • Social Media
  • Natural Language Processing
  • Social Media Data
  • Supervise Learning Technique
  • Automate Monitoring System