Skip to main content
Log in

Estimating Herbal Product Authentication and Adulteration in India Using a Vouchered, DNA-Based Biological Reference Material Library

  • Original Research Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

Introduction

India is considered the ‘medicinal garden’ of the world, with 8000 medicinal plants of which 960 are commercial species that are traded nationally and globally. Although scientific studies estimate herbal product adulteration as 42–66 % in North America, India does not have any published marketplace studies and subsequent estimates of adulteration in an industry facing considerable supply demands.

Objectives

The goal of this project is to provide an initial assessment of herbal product authentication and adulteration in the marketplace in India by (1) developing a biological reference material (BRM) herbal DNA library for Indian herbal species using DNA barcode regions (ITS2 and rbcL) in order to facilitate accurate species resolution when testing the herbal products; and (2) assessing herbal product identification using our BRM library; and (3) comparing the use of our BRM library to identify herbal products with that of GenBank.

Methods

A BRM herbal DNA library consisting of 187 herbal species was prepared to authenticate the herbal products within India. Ninty-three herbal products representing ten different companies were procured from local stores located at Coimbatore, India. These samples were subjected to blind testing for authenticity using the DNA barcode regions rbcL and ITS2.

Results

The results indicate that 40 % of the products tested are authentic, and 60 % of the products may be adulterated (i.e. contained species of plants not listed on the product labels). The adulterated samples included contamination (50 %), substitution (10 %) and fillers (6 %). Our BRM library provided a 100 % Basic Local Alignment Search Tool (BLAST) match for all species, whereas the GenBank match was 64 %.

Conclusions

Our findings suggest that most Indian herbal medicinal products are essentially mixed with one or a few other herbs that could lessen the therapeutic activity of the main ingredients. We do not recommend the use of GenBank to identify herbal products because the use of this non-curated and/or vouchered database will result in inaccurate species identification. These DNA-based tools provide a scientific foundation for herbal pharmacovigilance to ensure the safety and efficacy of natural drugs. This study provides curated BRMs that will underpin innovations in molecular diagnostic biotechnology, which will soon provide more robust estimates of adulteration and commercial tools that will strengthen due diligence in quality assurance within the herbal industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Joy PP, Thomas J, Mathew S, Skaria PB. Medicinal plants. Kerala Agricultural University. Aromatic and Medicinal Plants Research Station. 1998;2:1–211.

  2. Mukherjee PK, Venkatesh M, Kumar V. An overview on the development in regulation and control of medicinal and aromatic plants in the Indian system of medicine. Bol Latinoam Caribe Plant Med Aromat. 2007;6:129–36.

    Google Scholar 

  3. World Health Organization. Traditional medicine. 2003. http://www.who.int/mediacentre/factsheets/2003/fs134/en/. Accessed 11 July 2016.

  4. Meena AK, Bansal P, Kumar S. Plants-herbal wealth as a potential source of ayurvedic drugs. Asian J Tradit Med. 2009;4(4):152–70.

    CAS  Google Scholar 

  5. Kamboj VP. Herbal medicine. Curr Sci India. 2000;78(1):35–8.

    Google Scholar 

  6. Dubey NK, Kumar R, Tripathi P. Global promotion of herbal medicine: India’s opportunity. Curr Sci. 2004;86(1):37–41.

    Google Scholar 

  7. National Medicinal Plants Board, Government of India. 2000. http://nmpb.nic.in. Accessed 11 July 2016.

  8. Isola OI. The “relevance” of the African traditional medicine (alternative medicine) to health care delivery system in Nigeria. J Dev Areas. 2013;47:319–38.

    Article  Google Scholar 

  9. Schippmann U, Leaman DJ, Cunningham AB. Impact of cultivation and gathering of medicinal plants on biodiversity: global trends and issues. Biodiversity and the ecosystem approach in agriculture, forestry and fisheries. 2002. http://www.fao.org/docrep/005/y4586e/y4586e00.html. Accessed 14 May 2016.

  10. Environmental Information System (ENVIS) Centre on Floral Diversity. 1994. http://bsienvis.nic.in/Database/RedlistedPlants_3940.aspx. Accessed 11 July 2016.

  11. Hassali MA, Thambyappa J, Nambiar S, Shafie AA, Löfgren H. TRIPS, free trade agreements and the pharmaceutical industry in Malaysia. In: The new political economy of pharmaceuticals: production, innovation and TRIPS in the Global South. Basingstoke: Palgrave Macmillan; 2013. p. 152–66.

  12. Dixit S, Pandey RC, Das M, Khanna SK. Food quality surveillance on colours in eatables sold in rural markets of Uttar Pradesh. J Food Sci Tech. 1995;32(5):373–6.

    Google Scholar 

  13. Kannan K, Tanabe S, Giesy JP, Tatsukawa R. Organochlorine pesticides and polychlorinated biphenyls in foodstuffs from Asian and oceanic countries. In: Reviews of environmental contamination and toxicology. New York: Springer; 1997. p. 1–55.

  14. Jonnalagadda PR, Bhat RV. Quality of shrimp sold in the markets of Hyderabad. India. J Food Quality. 2004;27:163–70.

    Article  Google Scholar 

  15. Aneesh TP, Hisham M, Sekhar MS, Madhu M, Deepa TV. International market scenario of traditional Indian herbal drugs—India declining. Int J Green Pharm. 2009;3:184–90.

    Article  Google Scholar 

  16. Lalitha S, Adams SJ, Deepthi PM, Krishnamurthy KV, Padma V. Comparative pharmacognosy of medicinal plant species used as Prsniparni. Int J Green Pharm. 2012;6:303–9.

    Article  Google Scholar 

  17. Venkatasubramanian P, Kumar SK, Nair VS. Cyperus rotundus, a substitute for Aconitum heterophyllum: studies on the Ayurvedic concept of Abhava Pratinidhi Dravya (drug substitution). J Ayurveda Integr Med. 2010;1:33–9.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Seethapathy GS, Ganesh D, Kumar JUS, Senthilkumar U, Newmaster SG, Ragupathy S, et al. Assessing product adulteration in natural health products for laxative yielding plants, Cassia, Senna, and Chamaecrista, in Southern India using DNA barcoding. Int J Legal Med. 2015;129(4):693–700.

    Article  PubMed  Google Scholar 

  19. Swetha VP, Parvathy VA, Sheeja TE, Sasikumar B. DNA barcoding for discriminating the economically important Cinnamomum verum from its adulterants. Food Biotechnol. 2014;28:183–94.

    Article  CAS  Google Scholar 

  20. Garlic A. The impediments preventing India from becoming a herbal giant. Curr Sci. 2004;87(3):275.

    Google Scholar 

  21. Selvaraj D, Shanmughanandhan D, Sarma RK, Joseph JC, Srinivasan RV, Ramalingam S. DNA barcode ITS effectively distinguishes the medicinal plant Boerhavia diffusa from its adulterants. Genomics Proteomics Bioinform. 2012;10:364–7.

    Article  CAS  Google Scholar 

  22. Mahadani P, Ghosh SK. DNA barcoding: a tool for species identification from herbal juices. DNA Barcodes. 2013;1:35–8.

    Article  Google Scholar 

  23. Posadzki P, Watson L, Ernst E. Contamination and adulteration of herbal medicinal products (HMPs): an overview of systematic reviews. Eur J Clin Pharmacol. 2013;69:295–307.

    Article  PubMed  Google Scholar 

  24. World Health Organization. WHO guidelines on good agricultural and collection practices (GACP) for medicinal plants. Geneva: WHO; 2003.

    Google Scholar 

  25. Gad HA, El-Ahmady SH, Abou-Shoer MI, Al-Azizi MM. Application of chemometrics in authentication of herbal medicines: a review. Phytochem Anal. 2013;24:1–24.

    Article  CAS  PubMed  Google Scholar 

  26. Jiangang F, Ling D, Zhang L, Hongmei L. Houttuyniacordata Thunb: a review of phytochemistry and pharmacology and quality control. Chin Med. 2013;4:101–23.

    Article  CAS  Google Scholar 

  27. Revathy SS, Rathinamala R, Murugesan M. Authentication methods for drugs used in Ayurveda, Siddha and Unani Systems of medicine: an overview. Int J Pharm Sci Res. 2012;38:2352–61.

    Google Scholar 

  28. Sahoo N, Manchikanti P. Herbal drug regulation and commercialization: an Indian industry perspective. J Altern Complement Med. 2013;19:957–63.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Galimberti A, Labra M, Sandionigi A, Bruno A, Mezzasalma V, De Mattia F. DNA barcoding for minor crops and food traceability. Adv Agric. 2014;2014:8. doi:10.1155/2014/831875.

    Google Scholar 

  30. Yip PY, Chau CF, Mak CY, Kwan HS. DNA methods for identification of Chinese medicinal materials. Chin Med J. 2007;2:9.

    Article  CAS  Google Scholar 

  31. Hebert PD, Cywinska A, Ball SL. Biological identifications through DNA barcodes. Proc Biol Sci. 2003;270:313–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chase MW, Salamin N, Wilkinson M, Dunwell JM, Kesanakurthi RP, Haidar N, et al. Land plants and DNA barcodes: short-term and long-term goals. Philos Trans R Soc London Biol Sci. 2005;360:1889–95.

    Article  CAS  Google Scholar 

  33. Srirama R, Senthilkumar U, Sreejayan N, Ravikanth G, Gurumurthy BR, Shivanna MB, et al. Assessing species admixtures in raw drug trade of Phyllanthus, a hepato-protective plant using molecular tools. J Ethnopharmacol. 2010;130:208–15.

    Article  CAS  PubMed  Google Scholar 

  34. Stoeckle MY, Gamble CC, Kirpekar R, Young G, Ahmed S, Little DP. Commercial teas highlight plant DNA barcode identification successes and obstacles. Nat Sci Rep. 2011;1:42.

    Google Scholar 

  35. Dhanya K, Sasikumar B. Molecular marker based adulteration detection in traded food and agricultural commodities of plant origin with special reference to spices. Curr Trends Biotechnol Pharm. 2010;4:454–89.

    CAS  Google Scholar 

  36. Kumar A, Sharma S. An evaluation of multipurpose oil seed crop for industrial uses (Jatropha curcas L.): a review. Ind Crops. Prod. 2008;28:1–10.

    CAS  Google Scholar 

  37. Kool A, de Boer HJ, Krüger Å, Rydberg A, Abbad A, Björk L, et al. Molecular identification of commercialized medicinal plants in Southern Morocco. PLoS One. 2012;7:e39459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gismondi A, Fanali F, Labarga JMM, Caiola MG, Canini A. Crocus sativus L. genomics and different DNA barcode applications. Plant Syst Evol. 2013;299:1859–63.

    Article  CAS  Google Scholar 

  39. Hussain A, Wahab S, Rizvi A, Hussain MS. Macroscopical, anatomical and physico-chemical studies on leaves of Coccinia indica Wight & Arn., growing wildly in eastern Uttar Pradesh region of India. Ind J Nat Prod Resour. 2011;2:74–80.

    Google Scholar 

  40. Halde UK, Wake R, Patil N. Genus Sida—the plants with ethno medicinal and therapeutic potential. Golden Res Thoughts. 2011;1:1–4.

    Google Scholar 

  41. Parvathy VA, Swetha VP, Sheeja TE, Leela NK, Chempakam B, Sasikumar B. DNA barcoding to detect chilli adulteration in traded black pepper powder. Food Biotechnol. 2014;28:25–40.

    Article  CAS  Google Scholar 

  42. Baker DA. DNA barcode identification of black cohosh herbal dietary supplements. J AOAC Int. 2012;95:1023–34.

    Article  CAS  PubMed  Google Scholar 

  43. Wallace LJ, Boilard SM, Eagle SH, Spall JL, Shokralla S, Hajibabaei M. DNA barcodes for everyday life: routine authentication of natural health products. Food Res Int. 2012;49:446–52.

    Article  CAS  Google Scholar 

  44. Newmaster SG, Grguric M, Shanmughanandhan D, Ramalingam S, Ragupathy S. DNA barcoding detects contamination and substitution in North American herbal products. BMC Med. 2013;11:222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Newmaster SG, Fazekas AJ, Ragupathy S. DNA barcoding in land plants: evaluation of rbcL in a multigene tiered approach. Can J Bot. 2006;84:335–41.

    Article  CAS  Google Scholar 

  46. Chen S, Yao H, Han J, Liu C, Song J, Shi L, et al. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS One. 2010;5:e8613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fazekas AJ, Kuzmina ML, Newmaster SG, Hollingsworth PM. DNA barcoding methods for land plants. In: Kress WJ, Erickson DL, editors. DNA barcodes—methods in molecular biology. New York: Humana Press; 2012. p. 223–52.

    Google Scholar 

  48. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30(12):2725–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Parasuraman S, Thing GS, Dhanaraj SA. Polyherbal formulation: concept of ayurveda. Pharmacogn Rev. 2014;8:73–80.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ekor M. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol. 2013;4:177.

    Google Scholar 

  51. Ndhlala AR, Ncube B, Okem A, Mulaudzi RB, Van Staden J. Toxicology of some important medicinal plants in southern Africa. Food Chem Toxicol. 2013;62:609–21.

    Article  CAS  PubMed  Google Scholar 

  52. Adepoju-Bello AA, Issa OA, Oguntibeju OO, Ayoola GA, Adejumo OO. Analysis of some selected toxic metals in registered herbal products manufactured in Nigeria. Afr J Biotechnol. 2014;11(26):6918–22.

    Google Scholar 

  53. Ernst E. Toxic heavy metals and undeclared drugs in Asian herbal medicines. Trends Pharmacol Sci. 2002;23:136–9.

    Article  CAS  PubMed  Google Scholar 

  54. Chan K. Some aspects of toxic contaminants in herbal medicines. Chemosphere. 2003;52:1361–71.

    Article  CAS  PubMed  Google Scholar 

  55. Saper RB, Kales SN, Paquin J, Burns MJ, Eisenberg DM, Davis RB, et al. Heavy metal content of ayurvedic herbal medicine products. JAMA. 2004;292:2868–73.

    Article  CAS  PubMed  Google Scholar 

  56. Gair R. Heavy metal poisoning from ayurvedic medicines. B C Med J. 2008;50:105.

    Google Scholar 

  57. de Boer HJ, Ichim MC, Newmaster SG. DNA barcoding and pharmacovigilance of herbal medicines. Drug Saf. 2015;38(7):611–20.

    Article  CAS  PubMed  Google Scholar 

  58. Jamil SS, Nizami Q, Salam M. Centella asiatica (Linn.) Urban: a review. Nat Prod Radiance. 2007;6(2):158–70.

    Google Scholar 

  59. Rameshkumar A. Profiling of phenolic compound through UPLC-MS/MS and study on pharmaceutical properties of Merremia emarginata (Burm. F.) [PhD thesis]. Bharathidasan University, Tiruchirappalli, Tamil Nadu, India 2013.

  60. Gohil KJ, Patel JA, Gajjar AK. Pharmacological review on Centella asiatica: a potential herbal cure-all. Indian J Pharm Sci. 2010;72:546.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Subramanian S, Subramanian MP. Merremia emarginata (Burm. F.) Hall. F.: a substituted market source for Centella asiatica (L.) Urban: an observation from Salem district, Tamil Nadu. Anc Sci Life. 2013;33(2):139–40.

    PubMed  PubMed Central  Google Scholar 

  62. Purushothaman N, Newmaster SG, Ragupathy S, Stalin N, Suresh D, Arunraj DR, et al. A tiered barcode authentication tool to differentiate medicinal Cassia species in India. Genet Mol Res. 2014;13:2959–68.

    Article  CAS  PubMed  Google Scholar 

  63. Kumar JUS, Krishna V, Seethapathy GS, Senthilkumar U, Ragupathy S, Ganeshaiah KN, et al. DNA barcoding to assess species adulteration in raw drug trade of “Bala” (genus: Sida L.) herbal products in South India. Biochem Syst Ecol. 2015;61:501–9. doi:10.1016/j.bse.2015.07.024.

    Article  CAS  Google Scholar 

  64. Peesa JP. Nephroprotective potential of herbal medicines: a review. Asian J Pharm Tech. 2013;3(3):115–8.

    Google Scholar 

  65. Malhotra SP, Dutta BK, Gupta RK, Gaur YD. Medicinal plants of the Indian arid zone. J Agric Trop Bot Appl. 1966;13:247–88.

    Google Scholar 

  66. Mary DA, Franco FM, Babu V. Assessing the contribution of local and traded biodiversity in community health care: a case study from Keelakodankulam village, South India. Ethnobot Res Appl. 2011;9:275–86.

    Article  Google Scholar 

  67. Namita P, Mukesh R. Medicinal plants used as antimicrobial agents: a review. Int Res J Pharm. 2012;3(1):31–40.

    Google Scholar 

  68. Brandon DL. Detection of ricin contamination in ground beef by electrochemiluminescence immunosorbent assay. Toxins. 2012;3:398–408.

    Article  CAS  Google Scholar 

  69. Rodriguez-Saona LE, Allendorf ME. Use of FTIR for rapid authentication and detection of adulteration of food. Annu Rev Food Sci Technol. 2011;2:467–83.

    Article  CAS  PubMed  Google Scholar 

  70. Omaye ST. Food and nutritional toxicology. Boca Raton: CRC Press; 2004.

    Google Scholar 

  71. Morris CA, Avorn J. Internet marketing of herbal products. JAMA. 2003;290:1505–9.

    Article  CAS  PubMed  Google Scholar 

  72. Fazekas AJ, Burgress KS, Kesanakurti PR, Percy DM, Hajibabaei M, Graham SW, et al. Assessing the utility of coding and non-coding genomic regions for plant DNA barcoding. PLoS One. 2008;3:1–12.

    Article  CAS  Google Scholar 

  73. Yao H, Song J, Liu C, Luo K, Han J, Li Y, et al. Use of ITS2 region as the universal DNA barcode for plants and animals. PLoS One. 2010;5:e13102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hollingsworth PM, Graham SW, Little DP. Choosing and using a plant DNA barcode. PLoS One. 2011;6:e19254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. China Plant BOL Group, Li D-Z, Gao L-M, Li H-T, Wang H, Ge X-J, et al. Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proc Natl Acad Sci USA. 2011;108:19641–6.

    Article  PubMed Central  Google Scholar 

  76. Cimino MT. Successful isolation and PCR amplification of DNA from National Institute of Standards and Technology herbal dietary supplement standard reference material powders and extracts. Planta Med. 2010;76:495–7.

    Article  CAS  PubMed  Google Scholar 

  77. Fazekas AJ, Kesanakurti PR, Burgess KS, Percy DM, Graham SW, Barrett SCH, et al. Are plant species inherently harder to discriminate than animal species using DNA barcoding markers? Mol Ecol Resour. 2009;9:130–9.

    Article  CAS  PubMed  Google Scholar 

  78. Shokralla S, Spall JL, Gibson JF, Hajibabaei M. Next-generation sequencing technologies for environmental DNA research. Mol Ecol. 2012;21:1794–805.

    Article  CAS  PubMed  Google Scholar 

  79. Verma N. Herbal medicines: regulation and practice in Europe, United States and India. Int J Herb Med. 2013;1:1–5.

    Google Scholar 

  80. UNESCO. Report of the International Bioethics Committee on Traditional Medicine Systems and their ethical implications. 2013. SHS/EGC/IBC-19/12/3 Rev. Paris: UNESCO; 2013.

  81. Gupta AK. Quality standards of Indian medicinal plants, vol. 1. New Delhi: Indian Council of Medical Research (ICMR); 2003.

    Google Scholar 

  82. WHO. WHO traditional medicine strategy 2002–2005. http://whqlibdoc.who.int/hq/2002/who_edm_trm_2002.1.pdf. Accessed 1 June 2016.

  83. Sucher NJ, Carles MC. Genome-based approaches to the authentication of medicinal plants. Planta Med. 2008;74:603–23.

    Article  CAS  PubMed  Google Scholar 

Download references

Author contributions

RS, SGN, SR and DS conceived and designed the study; DS and SM carried out the wet lab analysis; DS, RS, SGN and SR contributed in writing the manuscript; SGN, RS and SR carried out the final edits and submission; all authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Steven G. Newmaster or Ramalingam Sathishkumar.

Ethics declarations

Funding

This work was supported in India by the Bharathiar University, University Grants Commission—Special Assistance Programme, Department of Science and Technology—Funds for Improvement of Science and Technology (DST-FIST) funds and Department of Biotechnology India (to RS), and in Canada by the International Science and Technology Partnership Canada and the Ontario Ministry of Economic Development, Trade and Employment (MEDI) (to SGN).

Conflict of interest

Dhivya Shanmughanandhan, Subramanyam Ragupathy, Steven G. Newmaster, Saravanan Mohanasundaram and Ramalingam Sathishkumar have no conflicts of interest that are directly relevant to the content of this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shanmughanandhan, D., Ragupathy, S., Newmaster, S.G. et al. Estimating Herbal Product Authentication and Adulteration in India Using a Vouchered, DNA-Based Biological Reference Material Library. Drug Saf 39, 1211–1227 (2016). https://doi.org/10.1007/s40264-016-0459-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40264-016-0459-0

Keywords

Navigation