Skip to main content
Log in

Drug-Induced Hyperglycaemia and Diabetes

  • Review Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

Drug-induced hyperglycaemia and diabetes is a global issue. It may be a serious problem, as it increases the risk of microvascular and macrovascular complications, infections, metabolic coma and even death. Drugs may induce hyperglycaemia through a variety of mechanisms, including alterations in insulin secretion and sensitivity, direct cytotoxic effects on pancreatic cells and increases in glucose production. Antihypertensive drugs are not equally implicated in increasing serum glucose levels. Glycaemic adverse events occur more frequently with thiazide diuretics and with certain beta-blocking agents than with calcium-channel blockers and inhibitors of the renin–angiotensin system. Lipid-modifying agents may also induce hyperglycaemia, and the diabetogenic effect seems to differ between the different types and daily doses of statins. Nicotinic acid may also alter glycaemic control. Among the anti-infectives, severe life-threatening events have been reported with fluoroquinolones, especially when high doses are used. Protease inhibitors and, to a lesser extent, nucleoside reverse transcriptase inhibitors have been reported to induce alterations in glucose metabolism. Pentamidine-induced hyperglycaemia seems to be related to direct dysfunction in pancreatic cells. Phenytoin and valproic acid may also induce hyperglycaemia. The mechanisms of second-generation antipsychotic-associated hyperglycaemia, diabetes mellitus and ketoacidosis are complex and are mainly due to insulin resistance. Antidepressant agents with high daily doses seem to be more frequently associated with an increased risk of diabetes. Ketoacidosis may occur in patients receiving beta-adrenergic stimulants, and theophylline may also induce hyperglycaemia. Steroid diabetes is more frequently associated with high doses of glucocorticoids. Some chemotherapeutic agents carry a higher risk of hyperglycaemia, and calcineurin inhibitor-induced hyperglycaemia is mainly due to a decrease in insulin secretion. Hyperglycaemia has been associated with oral contraceptives containing high doses of oestrogen. Growth hormone therapy and somatostatin analogues may also induce hyperglycaemia. Clinicians should be aware of medications that may alter glycaemia. Efforts should be made to identify and closely monitor patients receiving drugs that are known to induce hyperglycaemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. American Diabetes Association. Classification and diagnosis of diabetes. Diabetes Care. 2015;38(Suppl):S8–16.

    Article  Google Scholar 

  2. Liu XX, Zhu XM, Miao Q, Ye HY, Zhang ZY, Li YM. Hyperglycemia induced by glucocorticoids in nondiabetic patients: a meta-analysis. Ann Nutr Metab. 2014;65(4):324–32.

    Article  CAS  PubMed  Google Scholar 

  3. Heisel O, Heisel R, Balshaw R, Keown P. New onset diabetes mellitus in patients receiving calcineurin inhibitors: a systematic review and meta-analysis. Am J Transplant. 2004;4:583–95.

    Article  PubMed  Google Scholar 

  4. Luna B, Feinglos MN. Drug-induced hyperglycemia. JAMA. 2001;286(16):1945–8.

    Article  CAS  PubMed  Google Scholar 

  5. Chan JC, Cockram CS, Critchley JA. Drug-induced disorders of glucose metabolism: mechanisms and management. Drug Saf. 1996;15(2):135–57.

    Article  CAS  PubMed  Google Scholar 

  6. Pandit MK, Burke J, Gustafson AB, Minocha A, Peiris AN. Drug-induced disorders of glucose tolerance. Ann Intern Med. 1993;118(7):529–39.

    Article  CAS  PubMed  Google Scholar 

  7. Ferner RE. Drug-induced diabetes. Baillieres Clin Endocrinol Metab. 1992;6(4):849–66.

    Article  CAS  PubMed  Google Scholar 

  8. Chan JC, Cockram CS. Drug-induced disturbances of carbohydrate metabolism. Adverse Drug React Toxicol Rev. 1991;10(1):1–29.

    CAS  PubMed  Google Scholar 

  9. Springer Link. Reactions Weekly. http://link.springer.com/journal/40278. Accessed 24 Aug 2015.

  10. Dunder K, Lind L, Zethelius B, Berglund L, Lithell H. Increase in blood glucose concentration during antihypertensive treatment as a predictor of myocardial infarction: population based cohort study. BMJ. 2003;326:681.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Verdecchia P, Reboldi G, Angeli F, Borgioni C, Gattobigio R, Filippucci L, et al. Adverse prognostic significance of new diabetes in treated hypertensive subjects. Hypertension. 2004;43:963–9.

    Article  CAS  PubMed  Google Scholar 

  12. Dahlöf B, Devereux RB, Kjeldsen SE, Julius S, Beevers G, de Faire U, et al. LIFE Study Group. Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint Reduction in Hypertension Study (LIFE): a randomized trial against atenolol. Lancet. 2002;359:995–1003.

    Article  PubMed  Google Scholar 

  13. Jandeleit-Dahm KA, Tikellis C, Reid CM, Johnston CI, Cooper ME. Why blockade of the renin–angiotensin system reduces the incidence of new-onset diabetes. J Hypertens. 2005;23:463–73.

    Article  CAS  PubMed  Google Scholar 

  14. Adverse reactions to bendrofluazide and propranolol for the treatment of mild hypertension. Report of Medical Research Council Working Party on Mild to Moderate Hypertension. Lancet. 1981;2:539–543.

  15. Savage PJ, Pressel SL, Curb JD, Schron EB, Applegate WB, Black HR, et al. Influence of long-term, low dose, diuretic-based, antihypertensive therapy on glucose, lipid, uric acid, and potassium levels in older men and women with isolated systolic hypertension: the Systolic Hypertension in the Elderly Program. SHEP Cooperative Research Group. Arch Intern Med. 1998;158:741–51.

    Article  CAS  PubMed  Google Scholar 

  16. Brown MJ, Palmer CR, Castaigne A, de Leeuw PW, Mancia G, Rosenthal T, et al. Morbidity and mortality in patients randomized to double-blind treatment with a long-acting calcium-channel blocker or diuretic in the International Nifedipine GITS Study: Intervention as a Goal in Hypertension Treatment (INSIGHT). Lancet. 2000;356:366–72.

    Article  CAS  PubMed  Google Scholar 

  17. ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group. The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial. Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). JAMA. 2002;288:2981–97.

    Article  Google Scholar 

  18. Elliott WJ, Meyer PM. Incident diabetes in clinical trials of antihypertensive drugs: a network metaanalysis. Meta-analysis of clinical trials showing of all antihypertensives analyzed, β-blockers and thiazide diuretics are associated with the highest risk of diabetes. Lancet. 2007;369(9557):201–7.

    Article  CAS  PubMed  Google Scholar 

  19. Alderman MH. New onset diabetes during antihypertensive therapy. Am J Hypertens. 2008;21(5):493–9.

    Article  CAS  PubMed  Google Scholar 

  20. Hirst JA, Farmer AJ, Feakins BG, Aronson JK, Stevens RJ. Quantifying the effects of diuretics and beta-blockers on glycaemic control in diabetes mellitus—a systematic review and meta-analysis. Br J Clin Pharmacol. 2015;79(5):733–43.

    Article  CAS  PubMed  Google Scholar 

  21. Duarte JD, Cooper-DeHoff RM. Mechanisms for blood pressure lowering and metabolic effects of thiazide and thiazide-like diuretics. Expert Rev Cardiovasc Ther. 2010;8(6):793–802.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Ben Salem C, Hmouda H, Bouraoui K. Drug-induced hypokalaemia. Curr Drug Saf. 2009;4(1):55–61.

    Article  CAS  PubMed  Google Scholar 

  23. Tourniaire J, Bajard L, Harfouch M, Rebattu B, Garrel D. Restoration of insulin sensitivity after correction of hypokalemia due to chronic tubulopathy in a diabetic patient. Diabete Metab. 1988;14(6):717–20.

    CAS  PubMed  Google Scholar 

  24. Ayvaz G, Balos Törüner F, Karakoç A, Yetkin I, Cakir N, Arslan M. Acute and chronic effects of different concentrations of free fatty acids on the insulin secreting function of islets. Diabetes Metab. 2002;28:3S7–12.

    CAS  PubMed  Google Scholar 

  25. Eriksson JW, Jansson PA, Carlberg B, Hägg A, Kurland L, Svensson MK, et al. Hydrochlorothiazide, but not candesartan, aggravates insulin resistance and causes visceral and hepatic fat accumulation: the Mechanisms For the Diabetes Preventing Effect of Candesartan (MEDICA) study. Hypertension. 2008;52(6):1030–7.

    Article  CAS  PubMed  Google Scholar 

  26. Fernandez PG, Snedden W, Vasdev S, Bolli P. Bevantolol attenuates thiazide stimulated renin secretion and catecholamine release in diuretic resistant hypertensives. Can J Cardiol. 1989;5(2):93–7.

    CAS  PubMed  Google Scholar 

  27. Messerli FH, Bangalore S, Yao SS, Steinberg JS. Cardioprotection with beta-blockers: myths, facts and Pascal’s wager. J Intern Med. 2009;266(3):232–41.

    Article  CAS  PubMed  Google Scholar 

  28. Shen L, Shah BR, Reyes EM, Thomas L, Wojdyla D, Diem P, et al. Role of diuretics, β blockers, and statins in increasing the risk of diabetes in patients with impaired glucose tolerance: reanalysis of data from the NAVIGATOR study. BMJ. 2013;347.

  29. Gress TW, Nieto FJ, Shahar E, Wofford MR, Brancati FL. Hypertension and antihypertensive therapy as risk factors for type 2 diabetes mellitus. Atherosclerosis Risk in Communities Study. N Engl J Med. 2000;342:905–12.

    Article  CAS  PubMed  Google Scholar 

  30. Kostis JB, Wilson AC, Freudenberger RS, Cosgrove NM, Pressel SL, Davis BR. Long-term effect of diuretic-based therapy on fatal outcomes in subjects with isolated systolic hypertension with and without diabetes. Am J Cardiol. 2005;95:29–35.

    Article  CAS  PubMed  Google Scholar 

  31. Rizos CV, Elisaf MS. Antihypertensive drugs and glucose metabolism. World J Cardiol. 2014. 26;6(7):517–530.

  32. Samuelsson O, Hedner T, Berglund G, Persson B, Andersson OK, Wilhelmsen L. Diabetes mellitus in treated hypertension: incidence, predictive factors and the impact of non-selective beta-blockers and thiazide diuretics during 15 years treatment of middle-aged hypertensive men in the Primary Prevention Trial Goteborg, Sweden. J Hum Hypertens. 1994;8:257–63.

    CAS  PubMed  Google Scholar 

  33. Bangalore S, Parkar S, Grossman E, Messerli FH. A meta-analysis of 94,492 patients with hypertension treated with beta blockers to determine the risk of new-onset diabetes mellitus. Am J Cardiol. 2007;100(8):1254–62.

    Article  CAS  PubMed  Google Scholar 

  34. Jacob S, Rett K, Wicklmayr M, Agrawal B, Augustin HJ, Dietze GJ. Differential effect of chronic treatment with two beta-blocking agents on insulin sensitivity: the Carvedilol–Metoprolol Study. J Hypertens. 1996;14:489–94.

    Article  CAS  PubMed  Google Scholar 

  35. Bakris GL, Fonseca V, Katholi RE, McGill JB, Messerli FH, Phillips RA, et al. Metabolic effects of carvedilol vs metoprolol in patients with type 2 diabetes mellitus and hypertension: a randomized controlled trial. JAMA. 2004;292(18):2227–36.

    Article  CAS  PubMed  Google Scholar 

  36. Rosei EA, Rizzoni D. Metabolic profile of nebivolol, a beta-adrenoreceptor antagonist with unique characteristics. Drugs. 2007;67:1097–107.

    Article  CAS  Google Scholar 

  37. Wollheim CB, Kikuchi M, Renold AE, Sharp GW. The roles of intracellular and extracellular Ca++ in glucose-stimulated biphasic insulin release by rat islets. J Clin Investig. 1978;62(2):451–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Amorim S, Dias P, Rocha G, Gama G, de Campos M, Pires S. Poisoning with calcium channel blockers—a case report and review of the literature. Rev Port Cardiol. 2001;20(12):1249–57.

    CAS  PubMed  Google Scholar 

  39. Noto H, Goto A, Tsujimoto T, Noda M. Effect of calcium channel blockers on incidence of diabetes: a meta-analysis. Diabetes Metab Syndr Obes. 2013;6:257–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Ahmad S. Nicardipine-induced hyperglycemia. Am Fam Physician. 1992;45(2):449–52.

    CAS  PubMed  Google Scholar 

  41. Sharma SN, Iyengar SS, Hegde KP. Nifedipine induced hyperglycaemia. J Assoc Physicians India. 1990;38(9):673–4.

    CAS  PubMed  Google Scholar 

  42. Levine M, Boyer EW, Pozner CN, Geib AJ, Thomsen T, Mick N, et al. Assessment of hyperglycemia after calcium channel blocker overdoses involving diltiazem or verapamil. Crit Care Med. 2007;35(9):2071–5.

    Article  CAS  PubMed  Google Scholar 

  43. Salerno DM, Fifield J, Krejci J, Hodges M. Encainide-induced hyperglycemia. Am J Med. 1988;84(1):39–44.

    Article  CAS  PubMed  Google Scholar 

  44. Winter WE, Funahashi M, Koons J. Encainide-induced diabetes: analysis of islet cell function. Res Commun Chem Pathol Pharmacol. 1992;76(3):259–68.

    CAS  PubMed  Google Scholar 

  45. Politi A, Poggio G, Margiotta A. Can amiodarone induce hyperglycaemia and hypertriglyceridaemia? Br Med J. 1984;288:285.

    Article  CAS  Google Scholar 

  46. Yildirim SV, Azak E, Varan B, Tokel K. Unusual and early hyperglycemia following amiodarone infusion in two infants. Pediatr Cardiol. 2005;26(5):715–6.

    Article  CAS  PubMed  Google Scholar 

  47. Bang CN, Okin PM. Statin treatment, new-onset diabetes, and other adverse effects: a systematic review. Curr Cardiol Rep. 2014;16(3):461.

    Article  PubMed  Google Scholar 

  48. Rajpathak SN, Kumbhani DJ, Crandall J, Barzilai N, Alderman M, Ridker PM. Statin therapy and risk of developing type 2 diabetes: a meta-analysis. Diabetes Care. 2009;32:1924–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Sattar N, Preiss D, Murray HM, Welsh P, Buckley BM, de Craen AJ, et al. Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials. Lancet. 2010;375:735–42.

    Article  CAS  PubMed  Google Scholar 

  50. Shepherd J, Blauw GJ, Murphy MB, Bollen EL, Buckley BM, Cobbe SM, et al. Pravastatin in Elderly Individuals at Risk of Vascular Disease (PROSPER): a randomized controlled trial. Lancet. 2002;360:1623–30.

    Article  CAS  PubMed  Google Scholar 

  51. The Long-Term Intervention with Pravastatin in Ischaemic Disease (LIPID) Study Group. Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. N Engl J Med. 1998;339:1349–57.

    Article  Google Scholar 

  52. Sever PS, Dahlöf B, Poulter NR, Wedel H, Beevers G, Caulfield M, et al. Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial—Lipid Lowering Arm (ASCOT-LLA): a multicentre randomised controlled trial. Lancet. 2003;361:1149–58.

    Article  CAS  PubMed  Google Scholar 

  53. Waters DD, Ho JE, DeMicco DA, Breazna A, Arsenault BJ, Wun CC, et al. Predictors of new-onset diabetes in patients treated with atorvastatin: results from 3 large randomized clinical trials. J Am Coll Cardiol. 2011;57:1535–45.

    Article  CAS  PubMed  Google Scholar 

  54. Freeman DJ, Norrie J, Sattar N, Neely RD, Cobbe SM, Ford I, et al. Pravastatin and the development of diabetes mellitus evidence for a protective treatment effect in the West of Scotland Coronary Prevention Study. Circulation. 2001;103:357–62.

    Article  CAS  PubMed  Google Scholar 

  55. Ridker PM, Pradhan A, MacFadyen JG, Libby P, Glynn RJ. Cardiovascular benefits and diabetes risks of statin therapy in primary prevention: an analysis from the JUPITER trial. Lancet. 2012;380:565–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Ray K. Statin diabetogenicity: guidance for clinicians. Cardiovasc Diabetol. 2013;12:S3.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  57. Chan DC, Pang J, Watts GF. Pathogenesis and management of the diabetogenic effect of statins: a role for adiponectin and coenzyme q10? Curr Atheroscler Rep. 2015;17(1):472.

    Article  PubMed  CAS  Google Scholar 

  58. Pieper JA. Overview of niacin formulations: differences in pharmacokinetics, efficacy, and safety. Am J Health Syst Pharm. 2003;60:S9–14.

    CAS  PubMed  Google Scholar 

  59. Molnar GD, Berge KG, Rosevear JW, McGuckin WF, Achor RW. The effect of nicotinic acid in diabetes mellitus. Metabolism. 1964;13:181–90.

    Article  CAS  PubMed  Google Scholar 

  60. Chang AM, Smith MJ, Galecki AT, Bloem CJ, Halter JB. Impaired beta-cell function in human aging: response to nicotinic acid-induced insulin resistance. J Clin Endocrinol Metab. 2006;91(9):3303–9.

    Article  CAS  PubMed  Google Scholar 

  61. Koh Y, Bidstrup H, Nichols DL. Niacin increased glucose, insulin, and C-peptide levels in sedentary nondiabetic postmenopausal women. Int J Womens Health. 2014;6:913–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Kahn SE, Beard JC, Schwartz MW, Ward WK, Ding HL, Bergman RN, et al. Increased beta-cell secretory capacity as mechanism for islet adaptation to nicotinic acid-induced insulin resistance. Diabetes. 1989;38(5):562–8.

    Article  CAS  PubMed  Google Scholar 

  63. Mariot P, Gilon P, Nenquin M, Henquin JC. Tolbutamide and diazoxide influence insulin secretion by changing the concentration but not the action of cytoplasmic Ca2+inβ-cells. Diabetes. 1998;47:365–73.

    Article  CAS  PubMed  Google Scholar 

  64. Gill GV, Rauf O, MacFarlane IA. Diazoxide treatment for insulinoma: a national UK survey. Postgrad Med J. 1997;73:640–1.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Catero M. Dysglycemia and fluoroquinolones: are you putting patients at risk? J Fam Pract. 2007;56(2):101–7.

    PubMed  Google Scholar 

  66. Anderson VR, Perry CM. Levofloxacin: a review of its use as a high-dose, short-course treatment for bacterial infection. Drugs. 2008;68(4):535–65.

    Article  CAS  PubMed  Google Scholar 

  67. Liu HH. Safety profile of the fluoroquinolones: focus on levofloxacin. Drug Saf. 2010;33(5):353–69.

    Article  CAS  PubMed  Google Scholar 

  68. Yip C, Lee AJ. Gatifloxacin-induced hyperglycemia: a case report and summary of the current literature. Clin Ther. 2006;28(11):1857–66.

    Article  CAS  PubMed  Google Scholar 

  69. Ben Salem C, Fathallah N, Hmouda H, Bouraoui K. Drug-induced hypoglycaemia: an update. Drug Saf. 2011;34(1):21–45.

    Article  CAS  PubMed  Google Scholar 

  70. Pugi A, Longo L, Bartoloni A, Rossolini GM, Mugelli A, Vannacci A, et al. Cardiovascular and metabolic safety profiles of the fluoroquinolones. Expert Opin Drug Saf. 2012;11(1):53–69.

    Article  CAS  PubMed  Google Scholar 

  71. Ovartlarnporn M, Jongjaroenprasert W. Advancing age and renal impairment as important predisposing factors of gatifloxacin-induced hyperglycemia in non-diabetes patients. J Med Assoc Thai. 2007;90:569–73.

    PubMed  Google Scholar 

  72. Aspinall SL, Good CB, Jiang R, McCarren M, Dong D, Cunningham FE. Severe dysglycemia with the fluoroquinolones: a class effect? Clin Infect Dis. 2009;49(3):402–8.

    Article  CAS  PubMed  Google Scholar 

  73. Park-Wyllie LY, Juurlink DN, Kopp A, Shah BR, Stukel TA, Stumpo C, et al. Outpatient gatifloxacin therapy and dysglycemia in older adults. N Engl J Med. 2006;354:1352–61.

    Article  CAS  PubMed  Google Scholar 

  74. Manish G, Keshav GK, Syed RM, Sukriti K, Abhinav G. Isoniazid induced childhood diabetes: a rare phenomenon. J Basic Clin Pharm. 2015;6(2):74–6.

    Article  PubMed Central  PubMed  Google Scholar 

  75. Takasu N, Yamada T, Miura H, Sakamoto S, Korenaga M, Nakajima K, et al. Rifampicin-induced early phase hyperglycemia in humans. Am Rev Respir Dis. 1982;125(1):23–7.

    CAS  PubMed  Google Scholar 

  76. Hardy H, Esch LD, Morse GD. Glucose disorders associated with HIV and its drug therapy. Ann Pharmacother. 2001;35(3):343–51.

    Article  CAS  PubMed  Google Scholar 

  77. Albrecht H, Stellbrink HJ, Arastéh K. Didanosine-induced disorders of glucose tolerance. Ann Intern Med. 1993;119(10):1050.

    Article  CAS  PubMed  Google Scholar 

  78. Modest GA, Fuller J. Abacavir and diabetes. N Engl J Med. 2001;344(2):142–4.

    CAS  PubMed  Google Scholar 

  79. Reus S, Arroyo E, Boix V, Portilla J. Lipodystrophy and hyperglycemia produced by protease inhibitors. An Med Interna. 2000;17(3):123–6.

    CAS  PubMed  Google Scholar 

  80. Gómez-Vera J, de Alarcón A, Jiménez-Mejías ME, Acosta D, Prados D, Viciana P. Hyperglycemia associated with protease inhibitors in HIV-1-infected patients. Clin Microbiol Infect. 2000;6:391–4.

    PubMed  Google Scholar 

  81. Carr A, Samaras K, Thorisdottir A, Kaufmann GR, Chisholm DJ, Cooper DA. Diagnosis, prediction, and natural course of HIV-1 protease-inhibitor-associated lipodystrophy, hyperlipidaemia, and diabetes mellitus: a cohort study. Lancet. 1999;353(9170):2093–9.

    Article  CAS  PubMed  Google Scholar 

  82. Dubé MP, Edmondson-Melançon H, Qian D, Aqeel R, Johnson D, Buchanan TA. Prospective evaluation of the effect of initiating indinavir-based therapy on insulin sensitivity and B-cell function in HIV-infected patients. J Acquir Immune Defic Syndr. 2001;27(2):130–4.

    Article  PubMed  Google Scholar 

  83. Vyas AK, Koster JC, Tzekov A, Hruz PW. Effects of the HIV protease inhibitor ritonavir on GLUT4 knock-out mice. J Biol Chem. 2010;285(47):36395–400.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Johnston SS, Juday T, Esker S, Espindle D, Chu BC, Hebden T, et al. Comparative incidence and health care costs of medically attended adverse effects among US Medicaid HIV patients on atazanavir- or darunavir-based antiretroviral therapy. Value Health. 2013;16(2):418–25.

    Article  PubMed  Google Scholar 

  85. Kulkarni R, Kinikar A. Transient hyperglycemia in a H1N1 positive child on oseltamivir. Indian Pediatr. 2010;47(9):812–3.

    Article  PubMed  Google Scholar 

  86. Liegl U, Bogner JR, Goebel FD. Insulin-dependent diabetes mellitus following pentamidine therapy in a patient with AIDS. Clin Investig. 1994;72:1027–9.

    Article  CAS  PubMed  Google Scholar 

  87. Coyle P, Carr AD, Depczynski BB, Chisholm DJ. Diabetes mellitus associated with pentamidine use in HIV-infected patients. Med J Aust. 1996;165:587–8.

    CAS  PubMed  Google Scholar 

  88. Shen M, Orwoll ES, Conte JE Jr, Prince MJ. Pentamidine-induced pancreatic beta-cell dysfunction. Am J Med. 1989;86:726–8.

    Article  CAS  PubMed  Google Scholar 

  89. Fariss BL, Lutcher CL. Diphenylhdantoin-induced hyperglycemia and impaired insulin release: effect of dosage. Diabetes. 1971;20(3):177–81.

    Article  Google Scholar 

  90. Al-Rubeaan K, Ryan EA. Phenytoin-induced insulin insensitivity. Diabet Med. 1991;8:968–70.

    Article  CAS  PubMed  Google Scholar 

  91. Hurel SJ, Taylor R. Drugs and glucose tolerance. Advers Drug React Bull. 1995;174:659–62.

    Article  Google Scholar 

  92. Verrotti A, Manco R, Agostinelli S, Coppola G, Chiarelli F. The metabolic syndrome in overweight epileptic patients treated with valproic acid. Epilepsia. 2010;51:268–73.

    Article  CAS  PubMed  Google Scholar 

  93. Fertig MK, Brooks VG, Shelton PS, English CW. Hyperglycemia associated with olanzapine. J Clin Psychiatry. 1998;59:687–9.

    Article  CAS  PubMed  Google Scholar 

  94. Avella J, Wetli CV, Wilson JC, Katz M, Hahn T. Fatal olanzapine-induced hyperglycemic ketoacidosis. Am J Forensic Med Pathol. 2004;25:172–5.

    Article  PubMed  Google Scholar 

  95. Henderson DC, Cagliero E, Gray C, Nasrallah RA, Hayden DL, Schoenfeld DA, et al. Clozapine, diabetes mellitus, weight gain, and lipid abnormalities: a five-year naturalistic study. Am J Psychiatry. 2000;157:975–81.

    Article  CAS  PubMed  Google Scholar 

  96. Nakamura M, Nagamine T. Severe hyperglycemia induced by olanzapine was improved with a recovery of insulin secretion after switching to risperidone and introducing insulin therapy. Intern Med. 2010;49:2635–7.

    Article  PubMed  Google Scholar 

  97. Isaac MT, Isaac MB. Consensus development conference on antipsychotic drugs and obesity and diabetes: response to consensus statement. Diabetes Care. 2004;27:2088.

    Article  PubMed  Google Scholar 

  98. Casey DE, Haupt DW, Newcomer JW, Henderson DC, Sernyak MJ, Davidson M, et al. Antipsychotic-induced weight gain and metabolic abnormalities: implications for increased mortality in patients with schizophrenia. J Clin Psychiatry. 2004;65:4–18.

    Article  PubMed  Google Scholar 

  99. Lean ME, Pajonk FG. Patients on atypical antipsychotic drugs: another high-risk group for type 2 diabetes. Diabetes Care. 2003;26(5):1597–605.

    Article  CAS  PubMed  Google Scholar 

  100. Koller EA, Doraiswamy PM. Olanzapine-associated diabetes mellitus. Pharmacotherapy. 2002;22:841–52.

    Article  CAS  PubMed  Google Scholar 

  101. Létourneau G, Abdel-Baki A, Dubreucq S, Mahone M, Granger B. Hyperosmolar hyperglycemic state associated with ziprasidone treatment: a case report. J Clin Psychopharmacol. 2011;31:671–3.

    Article  PubMed  Google Scholar 

  102. Tsuchiyama N, Ando H, Ota T, Sakurai M, Takamura T. Modulating effects of olanzapine on the development of diabetic ketoacidosis. Diabet Med. 2004;21:300–1.

    Article  CAS  PubMed  Google Scholar 

  103. Baptista T, Lacruz A, de Mendoza S, Mendoza Guillen JM, Silvera R, Angeles F, et al. Body weight gain after administration of antipsychotic drugs: correlation with leptin, insulin and reproductive hormones. Pharmacopsychiatry. 2000;33:81–8.

    Article  CAS  PubMed  Google Scholar 

  104. Griffin ME, Marcucci MJ, Cline GW, Bell K, Barucci N, Lee D, et al. Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signalling cascade. Diabetes. 1999;48:1270–4.

    Article  CAS  PubMed  Google Scholar 

  105. Wirshing DA, Spellberg BJ, Erhart SM, Marder SR, Wirshing WC. Novel antipsychotics and new onset diabetes. Biol Psychiatry. 1998;44:778–83.

    Article  CAS  PubMed  Google Scholar 

  106. American Diabetes Association. Position statement: standards of medical care in diabetes. Diabetes Care. 2011;34:S11–61.

    Article  PubMed Central  CAS  Google Scholar 

  107. Rubin RR, Ma Y, Marrero DG, Peyrot M, Barrett-Connor EL, Kahn SE, et al. Elevated depression symptoms, antidepressant medicine use, and risk of developing diabetes during the Diabetes Prevention Program. Diabetes Care. 2008;31:420–6.

    Article  PubMed Central  PubMed  Google Scholar 

  108. Andersohn F, Schade R, Suissa S, Garbe E. Long-term use of antidepressants for depressive disorders and the risk of diabetes mellitus. Am J Psychiatry. 2009;166:591–8.

    Article  PubMed  Google Scholar 

  109. Derijks HJ, Meyboom RH, Heerdink ER, De Koning FH, Janknegt R, Lindquist M, et al. The association between antidepressant use and disturbances in glucose homeostasis: evidence from spontaneous reports. Eur J Clin Pharmacol. 2008;64:531–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  110. Kivimäki M, Batty GD, Jokela M, Ebmeier KP, Vahtera J, Virtanen M, et al. Antidepressant medication use and risk of hyperglycemia and diabetes mellitus: a noncausal association? Biol Psychiatry. 2011;70:978–84.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  111. Khoza S, Barner JC. Glucose dysregulation associated with antidepressant agents: an analysis of 17 published case reports. Int J Clin Pharm. 2011;33:484–92.

    Article  CAS  PubMed  Google Scholar 

  112. Aronne LJ, Segal KR. Weight gain in the treatment of mood disorders. J Clin Psychiatry. 2003;64:22–9.

    CAS  PubMed  Google Scholar 

  113. Lustman PJ, Freedland KE, Griffith LS, Clouse RE. Fluoxetine for depression in diabetes: a randomized double-blind placebo-controlled trial. Diabetes Care. 2000;23:618–23.

    Article  CAS  PubMed  Google Scholar 

  114. Maheux P, Ducros F, Bourque J, Garon J, Chiasson JL. Fluoxetine improves insulin sensitivity in obese patients with non-insulin-dependent diabetes mellitus independently of weight loss. Int J Obes Relat Metab Disord. 1997;21:97–102.

    Article  CAS  PubMed  Google Scholar 

  115. Lustman PJ, Clouse RE, Nix BD, Freedland KE, Rubin EH, McGill JB, et al. Sertraline for prevention of depression recurrence in diabetes mellitus: a randomized, double-blind, placebo-controlled trial. Arch Gen Psychiatry. 2006;63:521–9.

    Article  PubMed  Google Scholar 

  116. Demyttenaere K, Jaspers L. Review: bupropion and SSRI-induced side effects. Psychopharmacology. 2008;22:792–804.

    Article  CAS  Google Scholar 

  117. Kessler RC, Berglund P, Demler O, Jin R, Merikangas KR, Walters EE. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry. 2005;62:593–602.

    Article  PubMed  Google Scholar 

  118. Tollefson G, Lesar T. Nonketotic hyperglycemia associated with loxapine and amoxapine: case report. J Clin Psychiatry. 1983;44:347–8.

    CAS  PubMed  Google Scholar 

  119. Danenberg HD. Salbutamol intoxication. Harefuah. 1997;132:549–51.

    CAS  PubMed  Google Scholar 

  120. Thomas DJ, Gill B, Brown P, Stubbs WA. Salbutamol-induced diabetic ketoacidosis. Br Med J. 1977;2(6084):438.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  121. Moustafa F, Garrouste C, Bertrand PM, Kauffmann S, Schmidt J. Lactic acidosis after inhaled beta-2 agonists: about 2 cases. Ann Fr Anesth Reanim. 2014;33:49–51.

    Article  CAS  PubMed  Google Scholar 

  122. Chapman MG. Salbutamol-induced acidosis in pregnant diabetics. Br Med J. 1977;1(6061):639–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  123. Dawson KP, Penna AC, Manglick P. Acute asthma, salbutamol and hyperglycaemia. Acta Paediatr. 1995;84(3):305–7.

    Article  CAS  PubMed  Google Scholar 

  124. Koh YI, Choi IS. Lactic acidosis associated with the usual theophylline dose in a patient with asthma. Korean J Intern Med. 2002;17(2):147–9.

    Article  PubMed Central  PubMed  Google Scholar 

  125. Higbee MD, Kumar M, Galant SP. Stimulation of endogenous catecholamine release by theophylline: a proposed additional mechanism of action for theophylline effects. J Allergy Clin Immunol. 1982;70:377–82.

    Article  CAS  PubMed  Google Scholar 

  126. Kearney TE, Manoguerra AS, Curtis GP, Ziegler MG. Theophylline toxicity and the beta-adrenergic system. Ann Intern Med. 1985;102:766–9.

    Article  CAS  PubMed  Google Scholar 

  127. Shannon M, Lovejoy FH. The influence of age vs peak serum concentration on life-threatening events after chronic theophylline intoxication. Arch Intern Med. 1990;150:2045–8.

    Article  CAS  PubMed  Google Scholar 

  128. Yang JY, Cui XL, He XJ. Non-ketotic hyperosmolar coma complicating steroid treatment in childhood nephrosis. Pediatr Nephrol. 1995;9(5):621–2.

    Article  CAS  PubMed  Google Scholar 

  129. Jensen K, Steinthorsdottir KJ, Brandt B. In-hospital cardiac arrest due to unobserved steroid-induced hyperglycaemic hyperosmolar syndrome. Ugeskr Laeger. 2013;175(15):1044–5.

    PubMed  Google Scholar 

  130. Clore JN, Thurby-Hay L. Glucocorticoid-induced hyperglycemia. Endocr Pract. 2009;15:469–74.

    Article  PubMed  Google Scholar 

  131. Dhikav V, Anand KS. Inhaled steroids: hyperglycaemia—a side effect. J Indian Acad Clin Med. 2011;2:149.

    Google Scholar 

  132. Kallock E, Neher JO, Safranek S. Clinical inquiries. Do intra-articular steroid injections affect glycemic control in patients with diabetes? J Fam Pract. 2010;59:709–10.

    PubMed  Google Scholar 

  133. Fleming P, Drazek L, Shaw JC. Hyperglycemia following intralesional corticosteroid injection in a patient with type I diabetes mellitus. J Cutan Med Surg. 2014;18:275–6.

    Article  PubMed  Google Scholar 

  134. Gurwitz JH, Bohn RL, Glynn RJ, Monane M, Mogun H, Avorn J. Glucocorticoids and the risk for initiation of hypoglycemic therapy. Arch Intern Med. 1994;154:97–101.

    Article  CAS  PubMed  Google Scholar 

  135. Delaunay F, Khan A, Cintra A, Davani B, Ling ZC, Andersson A, et al. Pancreatic beta cells are important targets for the diabetogenic effects of glucocorticoids. J Clin Investig. 1997;100:2094–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  136. Crouthamel MC, Kahana JA, Korenchuk S, Zhang SY, Sundaresan G, Eberwein DJ, et al. Mechanism and management of AKT inhibitor-induced hyperglycemia. Clin Cancer Res. 2009;15(1):217–25.

    Article  CAS  PubMed  Google Scholar 

  137. Hershey DS, Bryant AL, Olausson J, Davis ED, Brady VJ, Hammer M. Hyperglycemic-inducing neoadjuvant agents used in treatment of solid tumors: a review of the literature. Oncol Nurs Forum. 2014;41:E343–54.

    Article  PubMed  Google Scholar 

  138. Derr RL, Ye X, Islas MU, Desideri S, Saudek CD, Grossman SA. Association between hyperglycemia and survival in patients with newly diagnosed glioblastoma. J Clin Oncol. 2009;27(7):1082–6.

    Article  PubMed Central  PubMed  Google Scholar 

  139. Haas NB, Quirt I, Hotte S, McWhirter E, Polintan R, Litwin S, et al. Phase II trial of vorinostat in advanced melanoma. Investig New Drugs. 2014;32(3):526–34.

    Article  CAS  Google Scholar 

  140. Benton CB, Thomas DA, Yang H, Ravandi F, Rytting M, O’Brien S, et al. Safety and clinical activity of 5-aza-2′-deoxycytidine (decitabine) with or without hyper-CVAD in relapsed/refractory acute lymphocytic leukaemia. Br J Haematol. 2014;167:356–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  141. Ciombor KK, Feng Y, Benson AB 3rd, Su Y, Horton L, Short SP, et al. Phase II trial of bortezomib plus doxorubicin in hepatocellular carcinoma (E6202): a trial of the Eastern Cooperative Oncology Group. Investig New Drugs. 2014;32:1017–27.

    Article  CAS  Google Scholar 

  142. Atlan-Gepner C, Bouabdallah R, Valero R, Coso D, Vialettes B. A cyclophosphamide-induced autoimmune diabetes. Lancet. 1998;352(9125):373–4.

    Article  CAS  PubMed  Google Scholar 

  143. Spinola-Castro AM, Siviero-Miachon AA, Andreoni S, Tosta-Hernandez PD, Macedo CR, Lee ML. Transient hyperglycemia during childhood acute lymphocytic leukemia chemotherapy: an old event revisited. Clin Adv Hematol Oncol. 2009;7(7):465–72.

    PubMed  Google Scholar 

  144. Mondal R, Nandi M, Tiwari A, Chakravorti S. Diabetic ketoacidosis with L-asparaginase therapy. Indian Pediatr. 2011;48(9):735–6.

    PubMed  Google Scholar 

  145. Roberson JR, Raju S, Shelso J, Pui CH, Howard SC. Diabetic ketoacidosis during therapy for pediatric acute lymphoblastic leukemia. Pediatr Blood Cancer. 2008;50(6):1207–12.

    Article  PubMed  Google Scholar 

  146. Hsu YJ, Chen YC, Ho CL, Kao WY, Chao TY. Diabetic ketoacidosis and persistent hyperglycemia as long-term complications of L-asparaginase-induced pancreatitis. Zhonghua Yi Xue Za Zhi (Taipei). 2002;65(9):441–5.

    Google Scholar 

  147. Penfornis A, Kury-Paulin S. Immunosuppressive drug-induced diabetes. Diabetes Metab. 2006;32:539–46.

    Article  CAS  PubMed  Google Scholar 

  148. Boots JM, van Duijnhoven EM, Christiaans MH, Wolffenbuttel BH, van Hooff JP. Glucose metabolism in renal transplant recipients on tacrolimus: the effect of steroid withdrawal and tacrolimus trough level reduction. J Am Soc Nephrol. 2002;13:221–7.

    CAS  PubMed  Google Scholar 

  149. Marchetti P, Vincenti F, Friman S. New-onset diabetes imapaired fasting glucose after renal transplantation: results of a prospective, randomised trial comparing cyclosporine versus tacrolimus. Diabetologia. 2006;49:500.

    Google Scholar 

  150. Bäckman LA. Post-transplant diabetes mellitus: the last 10 years with tacrolimus. Nephrol Dial Transplant. 2004;19:13–6.

    Article  Google Scholar 

  151. Teutonico A, Schena PF, Di Paolo S. Glucose metabolism in renal transplant recipients: effect of calcineurin inhibitor withdrawal and conversion to sirolimus. J Am Soc Nephrol. 2005;16:3128–35.

    Article  CAS  PubMed  Google Scholar 

  152. Gonwa T, Mendez R, Yang HC, Prograf Study Group. Randomized trial of tacrolimus in combination with sirolimus or mycophenolate mofetil in kidney transplantation: results at 6 months. Transplantation. 2005;75:1213–20.

    Article  CAS  Google Scholar 

  153. Okanoue T, Sakamoto S, Itoh Y, Minami M, Yasui K, Sakamoto M, et al. Side effects of high-dose interferon therapy for chronic hepatitis C. J Hepatol. 1996;25:283–91.

    Article  CAS  PubMed  Google Scholar 

  154. Fattovich G, Giustina G, Favarato S, Ruol A. A survey of adverse events in 11 241 patients with chronic viral hepatitis treated with alpha interferon. J Hepatol. 1996;24:38–47.

    Article  CAS  PubMed  Google Scholar 

  155. Fabris P, Floreani A, Tositti G, Vergani D, De Lalla F, Betterle C. Type 1 diabetes mellitus in patients with chronic hepatitis C before and after interferon therapy. Aliment Pharmacol Ther. 2003;18:549–58.

    Article  CAS  PubMed  Google Scholar 

  156. Panetta JD, Gilani N. Interferon-induced retinopathy and its risk in patients with diabetes and hypertension undergoing treatment for chronic hepatitis C virus infection. Aliment Pharmacol Ther. 2009;30:597–602.

    Article  CAS  PubMed  Google Scholar 

  157. Yamazaki M, Sato A, Takeda T, Komatsu M. Distinct clinical courses in type 1 diabetes mellitus induced by peg-interferon-alpha treatment for chronic hepatitis C. Intern Med. 2010;49(5):403–7.

    Article  CAS  PubMed  Google Scholar 

  158. Shiba T, Higashi N, Nishimura Y. Hyperglycaemia due to insulin resistance caused by interferon-gamma. Diabet Med. 1998;15:435–6.

    Article  CAS  PubMed  Google Scholar 

  159. Wu JJ, Tsai TF. Recurrent hyperglycemia during adalimumab treatment in a patient with psoriasis. Arch Dermatol. 2008;144(10):1403–4.

    Article  PubMed  Google Scholar 

  160. Crook D, Godsland I. Safety evaluation of modern oral contraceptives: effects on lipoprotein and carbohydrate metabolism. Contraception. 1998;57:189–201.

    Article  CAS  PubMed  Google Scholar 

  161. Friedrich A, Ludwig AK, Jauch-Chara K, Loebig M, Rudolf S, Tauchert S, et al. Oral contraception enhances growth hormone responsiveness to hyper- and hypoglycaemia. Diabet Med. 2012;29(3):345–50.

    Article  CAS  PubMed  Google Scholar 

  162. Lopez LM, Grimes DA, Schulz KF. Steroidal contraceptives: effect on carbohydrate metabolism in women without diabetes mellitus. Cochrane Database Syst Rev. 2014;4:CD006133.

    PubMed  Google Scholar 

  163. Reed ML, Merriam GR, Kargi AY. Adult growth hormone deficiency—benefits, side effects, and risks of growth hormone replacement. Front Endocrinol (Lausanne). 2013;4:64.

    Google Scholar 

  164. Dominici FP, Turyn D. Growth hormone-induced alterations in the insulin-signaling system. Exp Biol Med (Maywood). 2002;227:149–57.

    CAS  Google Scholar 

  165. Garg AK. Hyperglycemia during replacement growth hormone therapy. J Pediatr. 1994;125:329.

    Article  CAS  PubMed  Google Scholar 

  166. Johannsson G, Rosén T, Bengtsson B. Individualized dose titration of growth hormone (GH) during GH replacement in hypopituitary adults. Clin Endocrinol (Oxf). 1997;47:571–81.

    Article  CAS  Google Scholar 

  167. Hoffman A, Kuntze JE, Baptista J, Baum HB, Baumann GP, Biller BM, et al. Growth hormone replacement therapy in adult-onset GH deficiency: effects on body composition in men and women in a double-blind, randomized, placebo-controlled trial. J Clin Endocrinol Metab. 2004;89:204–56.

    Google Scholar 

  168. Hwang IT. Efficacy and safety of growth hormone treatment for children born small for gestational age. Korean J Pediatr. 2014;57(9):379–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  169. Batra YK, Rajeev S, Samra T, Rao KL. Octreotide-induced severe paradoxical hyperglycemia and bradycardia during subtotal pancreatectomy for congenital hyperinsulinism in an infant. Paediatr Anaesth. 2007;17(11):1117–9.

    Article  PubMed  Google Scholar 

  170. Samson SL. Long-term medical treatment of Cushing’s disease with pasireotide: a review of current evidence and clinical experience. Exp Clin Endocrinol Diabetes. 2014;122(8):445–50.

    Article  CAS  PubMed  Google Scholar 

  171. Singh PK, Kumar P. Acitretin induced reversible hyperglycemia. Indian J Dermatol Venereol Leprol. 2004;70(3):183.

    CAS  PubMed  Google Scholar 

  172. Pathak RD, Jayaraj K, Blonde L. Thalidomide-associated hyperglycemia and diabetes: case report and review of literature. Diabetes Care. 2003;26(4):1322–3.

    Article  PubMed  Google Scholar 

  173. Blanco-Coronado JL, Repetto M, Ginestal RJ, Vicente JR, Yelamos F, Lardelli A. Acute intoxication by endosulfan. J Toxicol Clin Toxicol. 1992;30(4):575–83.

    Article  CAS  PubMed  Google Scholar 

  174. Polo-Garvín A, García-Sánchez MJ, Perán F, Almazán A. Evaluation of the hemodynamic and endocrino-metabolic response to tracheal intubation in patients anesthetized with thiopental or propofol. Rev Esp Anestesiol Reanim. 1993;40(6):344–8.

    PubMed  Google Scholar 

  175. Hirai M, Yasuhi I, Ishimaru T, Yamabe T, Kubota K. Effect of prolonged intravenous ritodrine tocolysis on diurnal glucose profiles in pregnant women with normal carbohydrate tolerance. Nihon Sanka Fujinka Gakkai Zasshi. 1996;48(7):488–94.

    CAS  PubMed  Google Scholar 

  176. Jain P, Girardi LS, Sherman L, Berelowicz M, Smith LG. Insulin resistance and development of diabetes mellitus associated with megestrol acetate therapy. Postgrad Med J. 1996;72(848):365–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  177. Tkach JR. Indomethacin-induced hyperglycemia in psoriatic arthritis. J Am Acad Dermatol. 1982;7(6):802–3.

    Article  CAS  PubMed  Google Scholar 

  178. Gattereau A, Bielmann P, Durivage J, Davignon J, Larochelle P. Effect of acute and chronic administration of calcitonin on serum glucose in patients with Paget’s disease of bone. J Clin Endocrinol Metab. 1980;51(2):354–7.

    Article  CAS  PubMed  Google Scholar 

  179. Mimouni-Bloch A, Mimouni M. Clonidine-induced hyperglycemia in a young diabetic girl. Ann Pharmacother. 1993;27(7–8):980.

    CAS  PubMed  Google Scholar 

  180. Mandal AK, Hiebert LM. Is diuretic-induced hyperglycemia reversible and inconsequential? J Diabetes Res Clin Metab. 2012;1:1–5.

    Article  Google Scholar 

  181. Cohen MH, Nihill MR. Postoperative ketotic hyperglycaemia during prostaglandin E infusion in infancy. Pediatrics. 1983;71:842–4.

    CAS  PubMed  Google Scholar 

  182. Adams ME. Hype about glucosamine. Lancet. 1999;354:353–4.

    Article  CAS  PubMed  Google Scholar 

  183. Kurz M. Diamox and manifestation of diabetes mellitus. Wien Med Wochenschr. 1968;118(11):239–41.

    CAS  PubMed  Google Scholar 

  184. Ipp E, Schusdziarra V, Harris V, Unger RH. Morphine-induced hyperglycemia: role of insulin and glucagon. Endocrinology. 1980;107(2):461–3.

    Article  CAS  PubMed  Google Scholar 

  185. Cowley AJ, Elkeles RS. Diabetes and therapy with potent diuretics. Lancet. 1978;1:154.

    Article  CAS  PubMed  Google Scholar 

  186. Korenyi C, Lowenstein B. Chlorpromazine induced diabetes. Dis Nerv Syst. 1968;29(12):827–8.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

All authors attest that they are directly relevant to this work, and there has been no financial support for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neila Fathallah.

Ethics declarations

Funding

No sources of funding were used in the preparation of this study.

Conflicts of interest

Neila Fathallah, Raoudha Slim, Sofien Larif, Houssem Hmouda and Chaker Ben Salem have no conflicts of interest that are directly relevant to the content of this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fathallah, N., Slim, R., Larif, S. et al. Drug-Induced Hyperglycaemia and Diabetes. Drug Saf 38, 1153–1168 (2015). https://doi.org/10.1007/s40264-015-0339-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40264-015-0339-z

Keywords

Navigation