Drug Safety

, Volume 37, Issue 12, pp 1003–1010 | Cite as

Balancing Benefits and Risks in Patients Receiving Incretin-Based Therapies: Focus on Cardiovascular and Pancreatic Side Effects

  • Martin Haluzík
  • Miloš Mráz
  • Štěpán Svačina
Leading Article

Abstract

Incretin-based therapies either increase endogenous levels of glucagon-like peptide-1 by prolonging its half-life (DPP-4 inhibitors) or directly stimulate its receptor (glucagon-like peptide-1 analogues; GLP-1 RA). They are currently widely used for the treatment of patients with type 2 diabetes mellitus owing to good antidiabetic efficacy, low risk of hypoglycemia, and relatively few other side effects. They also offer potential additional benefits such as weight neutrality or weight loss, positive effects on blood pressure and lipid levels, and potential cardio- and neuroprotectivity. Some experimental and clinical studies have raised concerns with respect to potential cardiovascular and pancreatic side effects of these therapies such as increased risk of heart failure with DPP-4 inhibitors as well as acute pancreatitis and pancreatic cancer with both classes. The available data are at present not robust enough to enable firm conclusions regarding these potential associations. Nevertheless, some recent data suggest a possibility of slightly increased risk of acute pancreatitis with GLP-1 RAs while they do not indicate increased risk of pancreatic cancer. Ongoing cardiovascular outcome trials will shed more light on the possible cardioprotective effects of incretin-based therapies as well as on the possible interconnection of DPP-4 inhibitors and heart failure.

References

  1. 1.
    Reaven G. Metabolic syndrome: pathophysiology and implications for management of cardiovascular disease. Circulation. 2002;106(3):286–8.PubMedCrossRefGoogle Scholar
  2. 2.
    O’Rahilly S. Science, medicine, and the future. Non-insulin dependent diabetes mellitus: the gathering storm. BMJ. 1997;314(7085):955–9.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998;352(9131):854–65.Google Scholar
  4. 4.
    Gaede P, Lund-Andersen H, Parving HH, Pedersen O. Effect of a multifactorial intervention on mortality in type 2 diabetes. N Engl J Med. 2008;358(6):580–91.PubMedCrossRefGoogle Scholar
  5. 5.
    Grant RW, Pirraglia PA, Meigs JB, Singer DE. Trends in complexity of diabetes care in the United States from 1991 to 2000. Arch Intern Med. 2004;164(10):1134–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Skyler JS, Bergenstal R, Bonow RO, Buse J, Deedwania P, Gale EA, et al. Intensive glycemic control and the prevention of cardiovascular events: implications of the ACCORD, ADVANCE, and VA Diabetes Trials: a position statement of the American Diabetes Association and a Scientific Statement of the American College of Cardiology Foundation and the American Heart Association. J Am Coll Cardiol. 2009;53(3):298–304.PubMedCrossRefGoogle Scholar
  7. 7.
    Holst JJ, Deacon CF, Vilsboll T, Krarup T, Madsbad S. Glucagon-like peptide-1, glucose homeostasis and diabetes. Trends Mol Med. 2008;14(4):161–8.PubMedCrossRefGoogle Scholar
  8. 8.
    van Genugten RE, Moller-Goede DL, van Raalte DH, Diamant M. Extra-pancreatic effects of incretin-based therapies: potential benefit for cardiovascular-risk management in type 2 diabetes. Diabetes Obes Metab. 2013;15(7):593–606.Google Scholar
  9. 9.
    Hojberg PV, Zander M, Vilsboll T, Knop FK, Krarup T, Volund A, et al. Near normalisation of blood glucose improves the potentiating effect of GLP-1 on glucose-induced insulin secretion in patients with type 2 diabetes. Diabetologia. 2008;51(4):632–40.PubMedCrossRefGoogle Scholar
  10. 10.
    Aaboe K, Krarup T, Madsbad S, Holst JJ. GLP-1: physiological effects and potential therapeutic applications. Diabetes Obes Metab. 2008;10(11):994–1003.PubMedCrossRefGoogle Scholar
  11. 11.
    Drucker DJ. The biology of incretin hormones. Cell Metab. 2006;3(3):153–65.PubMedCrossRefGoogle Scholar
  12. 12.
    DeFronzo RA, Okerson T, Viswanathan P, Guan X, Holcombe JH, MacConell L. Effects of exenatide versus sitagliptin on postprandial glucose, insulin and glucagon secretion, gastric emptying, and caloric intake: a randomized, cross-over study. Curr Med Res Opin. 2008;24(10):2943–52.PubMedCrossRefGoogle Scholar
  13. 13.
    Madsbad S. Exenatide and liraglutide: different approaches to develop GLP-1 receptor agonists (incretin mimetics)–preclinical and clinical results. Best Pract Res. 2009;23(4):463–77.CrossRefGoogle Scholar
  14. 14.
    Drucker DJ, Sherman SI, Gorelick FS, Bergenstal RM, Sherwin RS, Buse JB. Incretin-based therapies for the treatment of type 2 diabetes: evaluation of the risks and benefits. Diabetes Care. 2010;33(2):428–33.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Abu-Hamdah R, Rabiee A, Meneilly GS, Shannon RP, Andersen DK, Elahi D. Clinical review: the extrapancreatic effects of glucagon-like peptide-1 and related peptides. J Clin Endocrinol Metab. 2009;94(6):1843–52.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Dunkley AJ, Charles K, Gray LJ, Camosso-Stefinovic J, Davies MJ, Khunti K. Effectiveness of interventions for reducing diabetes and cardiovascular disease risk in people with metabolic syndrome: systematic review and mixed treatment comparison meta-analysis. Diabetes Obes Metab. 2012;14(7):616–25.PubMedCrossRefGoogle Scholar
  17. 17.
    Duckworth W, Abraira C, Moritz T, Reda D, Emanuele N, Reaven PD, et al. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med. 2009;360(2):129–39.PubMedCrossRefGoogle Scholar
  18. 18.
    Gerstein HC, Miller ME, Byington RP, Goff DC Jr, Bigger JT, Buse JB, et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358(24):2545–59.PubMedCrossRefGoogle Scholar
  19. 19.
    Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007;356(24):2457–71.PubMedCrossRefGoogle Scholar
  20. 20.
    James WP, Caterson ID, Coutinho W, Finer N, Van Gaal LF, Maggioni AP, et al. Effect of sibutramine on cardiovascular outcomes in overweight and obese subjects. N Engl J Med. 2010;363(10):905–17.PubMedCrossRefGoogle Scholar
  21. 21.
    Johnston SS, Conner C, Aagren M, Smith DM, Bouchard J, Brett J. Evidence linking hypoglycemic events to an increased risk of acute cardiovascular events in patients with type 2 diabetes. Diabetes Care. 2011;34(5):1164–70.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Montanya E, Sesti G. A review of efficacy and safety data regarding the use of liraglutide, a once-daily human glucagon-like peptide 1 analogue, in the treatment of type 2 diabetes mellitus. Clin Ther. 2009;31(11):2472–88.PubMedCrossRefGoogle Scholar
  23. 23.
    Ristic S, Bates PC. Vildagliptin: a novel DPP-4 inhibitor with pancreatic islet enhancement activity for treatment of patients with type 2 diabetes. Drugs Today (Barc). 2006;42(8):519–31.CrossRefGoogle Scholar
  24. 24.
    Treiman M, Elvekjaer M, Engstrom T, Jensen JS. Glucagon-like peptide 1–a cardiologic dimension. Trends Cardiovasc Med. 2010;20(1):8–12.PubMedCrossRefGoogle Scholar
  25. 25.
    Noyan-Ashraf MH, Momen MA, Ban K, Sadi AM, Zhou YQ, Riazi AM, et al. GLP-1R agonist liraglutide activates cytoprotective pathways and improves outcomes after experimental myocardial infarction in mice. Diabetes. 2009;58(4):975–83.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Lonborg J, Vejlstrup N, Kelbaek H, Botker HE, Kim WY, Mathiasen AB, et al. Exenatide reduces reperfusion injury in patients with ST-segment elevation myocardial infarction. Eur Heart J. 2012;33(12):1491–9.Google Scholar
  27. 27.
    Ban K, Noyan-Ashraf MH, Hoefer J, Bolz SS, Drucker DJ, Husain M. Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways. Circulation. 2008;117(18):2340–50.PubMedCrossRefGoogle Scholar
  28. 28.
    Ossum A, van Deurs U, Engstrom T, Jensen JS, Treiman M. The cardioprotective and inotropic components of the postconditioning effects of GLP-1 and GLP-1(9-36)a in an isolated rat heart. Pharmacol Res. 2009;60(5):411–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Pyke C, Heller RS, Kirk RK, Orskov C, Reedtz-Runge S, Kaastrup P, et al. GLP-1 receptor localization in monkey and human tissue: novel distribution revealed with extensively validated monoclonal antibody. Endocrinology. 2014;155(4):1280–90.PubMedCrossRefGoogle Scholar
  30. 30.
    Robinson LE, Holt TA, Rees K, Randeva HS, O’Hare JP. Effects of exenatide and liraglutide on heart rate, blood pressure and body weight: systematic review and meta-analysis. BMJ Open. 2013;3(1).Google Scholar
  31. 31.
    Deacon CF. Dipeptidyl peptidase-4 inhibitors in the treatment of type 2 diabetes: a comparative review. Diabetes Obes Metab. 2011;13(1):7–18.PubMedCrossRefGoogle Scholar
  32. 32.
    Deacon CF, Mannucci E, Ahren B. Glycaemic efficacy of glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors as add-on therapy to metformin in subjects with type 2 diabetes-a review and meta analysis. Diabetes Obes Metab. 2012;14(8):762–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Petrie JR. The cardiovascular safety of incretin-based therapies: a review of the evidence. Cardiovasc Diabetol. 2013;12:130.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Hirshberg B, Raz I. Impact of the US Food and Drug Administration cardiovascular assessment requirements on the development of novel antidiabetes drugs. Diabetes Care. 2011;34(Suppl 2):S101–6.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    White WB, Cannon CP, Heller SR, Nissen SE, Bergenstal RM, Bakris GL, et al. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med. 2013;369(14):1327–35.PubMedCrossRefGoogle Scholar
  36. 36.
    Scirica BM, Bhatt DL, Braunwald E, Steg PG, Davidson J, Hirshberg B, et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med. 2013;369(14):1317–26.PubMedCrossRefGoogle Scholar
  37. 37.
    Monami M, Dicembrini I, Mannucci E. Dipeptidyl peptidase-4 inhibitors and heart failure: a meta-analysis of randomized clinical trials. Nutr Metab Cardiovasc Dis. 2014;24(7):689–97.PubMedCrossRefGoogle Scholar
  38. 38.
    Iqbal N, Parker A, Frederich R, Donovan M, Hirshberg B. Assessment of the cardiovascular safety of saxagliptin in patients with type 2 diabetes mellitus: pooled analysis of 20 clinical trials. Cardiovasc Diabetol. 2014;13:33.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Lo Re V 3rd, Haynes K, Ming EE, Wood Ives J, Horne LN, Fortier K, et al. Safety of saxagliptin: rationale for and design of a series of postmarketing observational studies. Pharmacoepidemiol Drug Saf. 2012;21(11):1202–15.PubMedCrossRefGoogle Scholar
  40. 40.
    Standl E, Erbach M, Schnell O. Dipeptidyl-peptidase-4 inhibitors and heart failure: class effect, substance-specific effect, or chance effect? Curr Treat Options Cardiovasc Med. 2014;16(12):353.PubMedCrossRefGoogle Scholar
  41. 41.
    Poornima I, Brown SB, Bhashyam S, Parikh P, Bolukoglu H, Shannon RP. Chronic glucagon-like peptide-1 infusion sustains left ventricular systolic function and prolongs survival in the spontaneously hypertensive, heart failure-prone rat. Circ Heart Fail. 2008;1(3):153–60.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Sokos GG, Nikolaidis LA, Mankad S, Elahi D, Shannon RP. Glucagon-like peptide-1 infusion improves left ventricular ejection fraction and functional status in patients with chronic heart failure. J Cardiac Fail. 2006;12(9):694–9.CrossRefGoogle Scholar
  43. 43.
    Hermansen K, Baekdal TA, During M, Pietraszek A, Mortensen LS, Jorgensen H, et al. Liraglutide suppresses postprandial triglyceride and apolipoprotein B48 elevations after a fat-rich meal in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled, cross-over trial. Diabetes Obes Metab. 2013;15(11):1040–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Monami M, Lamanna C, Desideri CM, Mannucci E. DPP-4 inhibitors and lipids: systematic review and meta-analysis. Adv Ther. 2012;29(1):14–25.PubMedCrossRefGoogle Scholar
  45. 45.
    Matikainen N, Manttari S, Schweizer A, Ulvestad A, Mills D, Dunning BE, et al. Vildagliptin therapy reduces postprandial intestinal triglyceride-rich lipoprotein particles in patients with type 2 diabetes. Diabetologia. 2006;49(9):2049–57.PubMedCrossRefGoogle Scholar
  46. 46.
    Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes. 2003;52(1):102–10.PubMedCrossRefGoogle Scholar
  47. 47.
    Wright A, Burden AC, Paisey RB, Cull CA, Holman RR, Group UKPDS. Sulfonylurea inadequacy: efficacy of addition of insulin over 6 years in patients with type 2 diabetes in the UK Prospective Diabetes Study (UKPDS 57). Diabetes Care. 2002;25(2):330–6.PubMedCrossRefGoogle Scholar
  48. 48.
    Kim W, Egan JM. The role of incretins in glucose homeostasis and diabetes treatment. Pharmacol Rev. 2008;60(4):470–512.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Farilla L, Bulotta A, Hirshberg B, Li Calzi S, Khoury N, Noushmehr H, et al. Glucagon-like peptide 1 inhibits cell apoptosis and improves glucose responsiveness of freshly isolated human islets. Endocrinology. 2003;144(12):5149–58.PubMedCrossRefGoogle Scholar
  50. 50.
    Farilla L, Hui H, Bertolotto C, Kang E, Bulotta A, Di Mario U, et al. Glucagon-like peptide-1 promotes islet cell growth and inhibits apoptosis in Zucker diabetic rats. Endocrinology. 2002;143(11):4397–408.PubMedCrossRefGoogle Scholar
  51. 51.
    Nyborg NC, Molck AM, Madsen LW, Knudsen LB. The human GLP-1 analog liraglutide and the pancreas: evidence for the absence of structural pancreatic changes in three species. Diabetes. 2012;61(5):1243–9.PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Perfetti R, Zhou J, Doyle ME, Egan JM. Glucagon-like peptide-1 induces cell proliferation and pancreatic-duodenum homeobox-1 expression and increases endocrine cell mass in the pancreas of old, glucose-intolerant rats. Endocrinology. 2000;141(12):4600–5.PubMedCrossRefGoogle Scholar
  53. 53.
    Zhou J, Wang X, Pineyro MA, Egan JM. Glucagon-like peptide 1 and exendin-4 convert pancreatic AR42J cells into glucagon- and insulin-producing cells. Diabetes. 1999;48(12):2358–66.PubMedCrossRefGoogle Scholar
  54. 54.
    Shimizu S, Hosooka T, Matsuda T, Asahara SI, Koyanagi-Kimura M, Kanno A, et al. DPP4 inhibitor vildagliptin preserves beta cell mass through amelioration of ER stress in C/EBPB transgenic mice. J Mol Endocrinol. 2012;49(2):125–35.Google Scholar
  55. 55.
    Shimoda M, Kanda Y, Hamamoto S, Tawaramoto K, Hashiramoto M, Matsuki M, et al. The human glucagon-like peptide-1 analogue liraglutide preserves pancreatic beta cells via regulation of cell kinetics and suppression of oxidative and endoplasmic reticulum stress in a mouse model of diabetes. Diabetologia. 2011;54(5):1098–108.Google Scholar
  56. 56.
    Lamont B, Andrikopoulos S. Is there preclinical evidence that incretin-based therapies alter pancreatic morphology? J Endocrinol. 2014;221(1):T43–61.Google Scholar
  57. 57.
    Butler PC, Elashoff M, Elashoff R, Gale EA. A critical analysis of the clinical use of incretin-based therapies: are the GLP-1 therapies safe? Diabetes Care. 2013;36(7):2118–25.PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Denker PS, Dimarco PE. Exenatide (exendin-4)-induced pancreatitis: a case report. Diabetes Care. 2006;29(2):471.PubMedCrossRefGoogle Scholar
  59. 59.
    Solanki NS, Barreto SG, Saccone GT. Acute pancreatitis due to diabetes: the role of hyperglycaemia and insulin resistance. Pancreatology. 2012;12(3):234–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Cui Y, Andersen DK. Diabetes and pancreatic cancer. Endocr Relat Cancer. 2012;19(5):F9–26.PubMedCrossRefGoogle Scholar
  61. 61.
    Tatarkiewicz K, Belanger P, Gu G, Parkes D, Roy D. No evidence of drug-induced pancreatitis in rats treated with exenatide for 13 weeks. Diabetes Obes Metab. 2013;15(5):417–26.PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Tatarkiewicz K, Smith PA, Sablan EJ, Polizzi CJ, Aumann DE, Villescaz C, et al. Exenatide does not evoke pancreatitis and attenuates chemically induced pancreatitis in normal and diabetic rodents. Am J Physiol. 2010;299(6):E1076–86.Google Scholar
  63. 63.
    Koehler JA, Baggio LL, Lamont BJ, Ali S, Drucker DJ. Glucagon-like peptide-1 receptor activation modulates pancreatitis-associated gene expression but does not modify the susceptibility to experimental pancreatitis in mice. Diabetes. 2009;58(9):2148–61.PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Koehler JA, Drucker DJ. Activation of glucagon-like peptide-1 receptor signaling does not modify the growth or apoptosis of human pancreatic cancer cells. Diabetes. 2006;55(5):1369–79.PubMedCrossRefGoogle Scholar
  65. 65.
    Matveyenko AV, Dry S, Cox HI, Moshtaghian A, Gurlo T, Galasso R, et al. Beneficial endocrine but adverse exocrine effects of sitagliptin in the human islet amyloid polypeptide transgenic rat model of type 2 diabetes: interactions with metformin. Diabetes. 2009;58(7):1604–15.PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Rouse R, Xu L, Stewart S, Zhang J. High fat diet and GLP-1 drugs induce pancreatic injury in mice. Toxicol Appl Pharmacol. 2014;276(2):104–14.PubMedCrossRefGoogle Scholar
  67. 67.
    Waser B, Blank A, Karamitopoulou E, Perren A, Reubi JC. Glucagon-like-peptide-1 receptor expression in normal and diseased human thyroid and pancreas. Mod Pathol. 2014. doi:10.1038/modpathol.2014.113.
  68. 68.
    European Medicines Agency. Assessment report for GLP-1 based therapies. http://www.ema.europa.eu/docs/en_GB/document_library/Report/2013/08/WC500147026.pdf.
  69. 69.
    Steinberg W, Devries JH, Wadden TA, Bjorn Jensen C, Bo Svendsen C, Rosenstock J. Longitudinal monitoring of lipase and amylase in adults with type 2 diabetes and obesity: evidence from a two phase 3 randomized clinical trials with the once-daily GLP-1 analog liraglutide. Gastroenterology. 2012;142(5, Suppl 1):S850–1.Google Scholar
  70. 70.
    Steinberg WM, Nauck MA, Zinman B, Daniels GH, Bergenstal RM, Mann JF, et al. LEADER 3-lipase and amylase activity in subjects with type 2 diabetes: baseline data from over 9000 subjects in the LEADER Trial. Pancreas. 2014;43(8):1223–31.Google Scholar
  71. 71.
    Elashoff M, Matveyenko AV, Gier B, Elashoff R, Butler PC. Pancreatitis, pancreatic, and thyroid cancer with glucagon-like peptide-1-based therapies. Gastroenterology. 2011;141(1):150–6.PubMedCrossRefGoogle Scholar
  72. 72.
    Drucker DJ, Sherman SI, Bergenstal RM, Buse JB. The safety of incretin-based therapies–review of the scientific evidence. J Clin Endocrinol Metab. 2011;96(7):2027–31.PubMedCrossRefGoogle Scholar
  73. 73.
    Dore DD, Seeger JD, Arnold Chan K. Use of a claims-based active drug safety surveillance system to assess the risk of acute pancreatitis with exenatide or sitagliptin compared to metformin or glyburide. Curr Med Res Opin. 2009;25(4):1019–27.PubMedCrossRefGoogle Scholar
  74. 74.
    Dore DD, Bloomgren GL, Wenten M, Hoffman C, Clifford CR, Quinn SG, et al. A cohort study of acute pancreatitis in relation to exenatide use. Diabetes Obes Metab. 2011;13(6):559–66.PubMedCrossRefGoogle Scholar
  75. 75.
    Monami M, Dicembrini I, Nardini C, Fiordelli I, Mannucci E. Glucagon-like peptide-1 receptor agonists and pancreatitis: a meta-analysis of randomized clinical trials. Diabetes Res Clin Pract. 2014;103(2):269–75.PubMedCrossRefGoogle Scholar
  76. 76.
    Monami M, Dicembrini I, Mannucci E. Dipeptidyl peptidase-4 inhibitors and pancreatitis risk: a meta-analysis of randomized clinical trials. Diabetes Obes Metab. 2014;16(1):48–56.PubMedCrossRefGoogle Scholar
  77. 77.
    Raz I, Bhatt DL, Hirshberg B, Mosenzon O, Scirica BM, Umez-Eronini A, et al. Incidence of pancreatitis and pancreatic cancer in a randomized controlled multicenter trial (SAVOR-TIMI 53) of the dipeptidyl peptidase-4 inhibitor saxagliptin. Diabetes Care. 2014;37(9):2435–41.PubMedCrossRefGoogle Scholar
  78. 78.
    Meier JJ, Nauck MA. Risk of pancreatitis in patients treated with incretin-based therapies. Diabetologia. 2014;57(7):1320–4.PubMedCrossRefGoogle Scholar
  79. 79.
    LeRoux CW, Lau D, Astrup A, Fujioka K, Greenway F, Halpern A, et al. Safety and tolerability of liraglutide 3.0 mg in overweight and obese adults: the SCALE Obesity and Prediabetes randomised trial. EASD meeting 2014, ePoster No 903. 2014.Google Scholar
  80. 80.
    Butler AE, Galasso R, Matveyenko A, Rizza RA, Dry S, Butler PC. Pancreatic duct replication is increased with obesity and type 2 diabetes in humans. Diabetologia. 2010;53(1):21–6.PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Butler PC, Dry S, Elashoff R. GLP-1-based therapy for diabetes: what you do not know can hurt you. Diabetes Care. 2010;33(2):453–5.PubMedCentralPubMedCrossRefGoogle Scholar
  82. 82.
    Butler AE, Campbell-Thompson M, Gurlo T, Dawson DW, Atkinson M, Butler PC. Marked expansion of exocrine and endocrine pancreas with incretin therapy in humans with increased exocrine pancreas dysplasia and the potential for glucagon-producing neuroendocrine tumors. Diabetes. 2013;62(7):2595–604.PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Cohen D. Has pancreatic damage from glucagon suppressing diabetes drugs been underplayed? BMJ. 2013;346:f3680.PubMedCrossRefGoogle Scholar
  84. 84.
    Bonner-Weir S, In’t Veld PA, Weir Gc. Reanalysis of study of pancreatic effects of incretin therapy: methodological deficiencies. Diabetes Obes Metab. 2014;16(7):661–6.PubMedCrossRefGoogle Scholar
  85. 85.
    Egan AG, Blind E, Dunder K, de Graeff PA, Hummer BT, Bourcier T, et al. Pancreatic safety of incretin-based drugs–FDA and EMA assessment. N Engl J Med. 2014;370(9):794–7.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Martin Haluzík
    • 1
  • Miloš Mráz
    • 1
  • Štěpán Svačina
    • 1
  1. 1.3rd Dept. of Medicine, 1st Faculty of Medicine and General University HospitalCharles UniversityPrague 2Czech Republic

Personalised recommendations