Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst. 1959;22(4):719–48.
PubMed
CAS
Google Scholar
Almenoff JS, Pattishall EN, Gibbs TG, DuMouchel W, Evans SJ, Yuen N. Novel statistical tools for monitoring the safety of marketed drugs. Clin Pharmacol Ther. 2007;82(2):157–66.
PubMed
Article
CAS
Google Scholar
DuMouchel W, Pregibon D. Empirical Bayes screening for multi-item associations. In: Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining. San Francisco: ACM; 2001. p. 67–76.
Dumouchel W. Bayesian data mining in large frequency tables, with an application to the FDA spontaneous reporting system. Am Stat. 1999;53(3):177–90.
Google Scholar
Norén GN, Hopstadius J, Bate A. Shrinkage observed-to-expected ratios for robust and transparent large-scale pattern discovery. Stat Methods Med Res 2013;22(1):57–69.
PubMed
Article
Google Scholar
Hauben M, Madigan D, Gerrits CM, Walsh L, Van Puijenbroek EP. The role of data mining in pharmacovigilance. Expert Opin Drug Saf. 2005;4(5):929–48.
PubMed
Article
CAS
Google Scholar
Hauben M, Reich L. Safety related drug-labelling changes: findings from two data mining algorithms. Drug Saf. 2004;27(10):735–44.
PubMed
Article
Google Scholar
Szarfman A, Machado SG, O’Neill RT. Use of screening algorithms and computer systems to efficiently signal higher-than-expected combinations of drugs and events in the US FDA’s spontaneous reports database. Drug Saf. 2002;25(6):381–92.
PubMed
Article
CAS
Google Scholar
Zorych I, Madigan D, Ryan P, Bate A. Disproportionality methods for pharmacovigilance in longitudinal observational databases. Stat Methods Med Res. 2013;22(1):39–56.
Google Scholar
Evans SJ, Waller PC, Davis S. Use of proportional reporting ratios (PRRs) for signal generation from spontaneous adverse drug reaction reports. Pharmacoepidemiol Drug Saf. 2001;10(6):483–6.
PubMed
Article
CAS
Google Scholar
Bate A, Lindquist M, Edwards IR, Olsson S, Orre R, Lansner A, et al. A Bayesian neural network method for adverse drug reaction signal generation. Eur J Clin Pharmacol. 1998;54(4):315–21.
PubMed
Article
CAS
Google Scholar
Ryan PB, Schuemie M. Evaluating performance of risk identification methods through a large-scale simulation of observational data. Drug Saf. 2013 (in this supplement issue). doi:10.1007/s40264-013-0110-2.
Overhage JM, Ryan PB, Schuemie MJ, Stang PE. Desideratum for evidence based epidemiology. Drug Saf. 2013 (in this supplement issue). doi:10.1007/s40264-013-0102-2.
Hartzema AG, Reich CG, Ryan PB, Stang PE, Madigan D, Welebob E, et al. Managing data quality for a drug safety surveillance system. Drug Saf. 2013 (in this supplement issue). doi:10.1007/s40264-013-0098-7.
Cantor SB, Kattan MW. Determining the area under the ROC curve for a binary diagnostic test. Med Decis Making. 2000;20(4):468–70.
PubMed
Article
CAS
Google Scholar
Fram DM, Almenoff JS, DuMouchel W. Empirical Bayesian data mining for discovering patterns in post-marketing drug safety. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington, DC: ACM; 2003. p. 359–68.
Almenoff JS, DuMouchel W, Kindman LA, Yang X, Fram D. Disproportionality analysis using empirical Bayes data mining: a tool for the evaluation of drug interactions in the post-marketing setting. Pharmacoepidemiol Drug Saf. 2003;12(6):517–21.
PubMed
Article
Google Scholar
DuMouchel W, Smith ET, Beasley R, Nelson H, Yang X, Fram D, et al. Association of asthma therapy and Churg-Strauss syndrome: an analysis of postmarketing surveillance data. Clin Ther. 2004;26(7):1092–104.
PubMed
Article
Google Scholar
Almenoff JS, LaCroix KK, Yuen NA, Fram D, DuMouchel W. Comparative performance of two quantitative safety signalling methods: implications for use in a pharmacovigilance department. Drug Saf. 2006;29(10):875–87.
PubMed
Article
CAS
Google Scholar
Solomon R, Dumouchel W. Contrast media and nephropathy: findings from systematic analysis and Food and Drug Administration reports of adverse effects. Invest Radiol. 2006;41(8):651–60.
PubMed
Article
Google Scholar
DuMouchel W, Fram D, Yang X, Mahmoud RA, Grogg AL, Engelhart L, et al. Antipsychotics, glycemic disorders, and life-threatening diabetic events: a Bayesian data-mining analysis of the FDA adverse event reporting system (1968-2004). Ann Clin Psychiatry. 2008;20(1):21–31.
PubMed
Article
Google Scholar
Harpaz R, DuMouchel W, LePendu P, Bauer-Mehren A, Ryan P, Shah NH. Performance of pharmacovigilance signal-detection algorithms for the FDA adverse event reporting system. Clin Pharmacol Ther. 2013;93(6):539–46.
Google Scholar
Schuemie MJ, Coloma PM, Straatman H, et al. Using electronic healthcare records for drug safety signal detection; a comparative evaluation of statistical methods. Med Care. 2012;50(10):890–7.
PubMed
Article
Google Scholar