Skip to main content
Log in

Stopping Disease-Modifying Treatments in Multiple Sclerosis: A Systematic Review and Meta-Analysis of Real-World Studies

  • Systematic Review
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Background

The question of whether multiple sclerosis requires life-long disease-modifying treatments (DMTs) remains unanswered. Some studies suggest that older patients with stable disease may safely discontinue their DMTs, yet comprehensive evidence-based data are scarce and real-world studies have provided mixed results.

Objective

The aim of this study was to assess the rate of disease reactivation and associated risk factors after discontinuation of DMTs in patients with multiple sclerosis.

Methods

We searched scientific databases (PubMed/MEDLINE, Scopus and Google Scholar) to identify real-world studies published until 31 July, 2023 that reported the number of patients who experienced relapses and/or disability accrual (outcomes of interest) following a therapy discontinuation longer than 12 months. Magnetic resonance activity and treatment re-start after DMT discontinuation were also considered as additional outcomes. We excluded studies where therapy discontinuation was explicitly related to an unintended or planned pregnancy or preceded a treatment switch. We ran random-effects meta-analyses, subgroup analyses and meta-regression models to provide pooled estimates of post-discontinuation relapse and disability events, and to identify their potential moderators (predictors).

Results

After an independent screening, 22 articles met the eligibility criteria, yielding a pooled sample size of 2942 patients followed for 1–7 years after discontinuation (11,689 patient-years). The pooled rates for relapse and disability events were 6.7 and 5.8 per 100 patient-years, respectively. However, available data did not allow us to disentangle isolated disability accrual from relapse-associated worsening. Studies including older patients (β = −0.65, p = 0.006), patients with a longer exposure to DMTs (β = −2.22, p = 0.001) and patients with a longer period of disease stability (β = −2.74, p = 0.002) showed a lower risk of relapse events. According to meta-regression equations, the risk of relapse events after DMT discontinuation became negligible (arbitrarily set at < 1% per year) at approximately 60 years of age, and after either 10 years of DMT exposure, or 8 years of disease stability. Additional analyses showed pooled rates for magnetic resonance imaging activity and re-start events of 16.7 and 17.5 per 100 patient-years, respectively.

Conclusions

Based on our quantitative synthesis of real-world data, in the absence of definitive answers from clinical trials, DMT discontinuation appears feasible with a high degree of certainty in selected patients. While our findings are robust regarding relapse events, future efforts are warranted to determine if DMT discontinuation is associated with isolated disability accrual.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Thompson AJ, Baranzini SE, Geurts J, et al. Multiple sclerosis. Lancet. 2018;391:1622–36. https://doi.org/10.1016/S0140-6736(18)30481-1.

    Article  PubMed  Google Scholar 

  2. Strijbis EMM, Kerbrat A, Corboy JR. Discontinuation of disease-modifying therapy in multiple sclerosis: should we stay or should we go? JAMA Neurol. 2021;78:787. https://doi.org/10.1001/jamaneurol.2021.0764.

    Article  PubMed  Google Scholar 

  3. Prosperini L, Lucchini M, Ruggieri S, et al. Shift of multiple sclerosis onset towards older age. J Neurol Neurosurg Psychiatry. 2022. https://doi.org/10.1136/jnnp-2022-329049.

    Article  PubMed  Google Scholar 

  4. Michelis D, Brunetti N, Solaro C, et al. Aging with multiple sclerosis: clinical characterization of an elderly population, a cross-sectional study. Mult Scler Relat Disord. 2023;69: 104464. https://doi.org/10.1016/j.msard.2022.104464.

    Article  PubMed  Google Scholar 

  5. Jakimovski D, Eckert SP, Zivadinov R, Weinstock-Guttman B. Considering patient age when treating multiple sclerosis across the adult lifespan. Expert Rev Neurother. 2021;21:353–64. https://doi.org/10.1080/14737175.2021.1886082.

    Article  CAS  PubMed  Google Scholar 

  6. Weideman AM, Tapia-Maltos MA, Johnson K, et al. Meta-analysis of the age-dependent efficacy of multiple sclerosis treatments. Front Neurol. 2017;8:577. https://doi.org/10.3389/fneur.2017.00577.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Grebenciucova E, Berger JR. Immunosenescence: the role of aging in the predisposition to neuro-infectious complications arising from the treatment of multiple sclerosis. Curr Neurol Neurosci Rep. 2017;17:61. https://doi.org/10.1007/s11910-017-0771-9.

    Article  PubMed  Google Scholar 

  8. Prosperini L, Haggiag S, Tortorella C, et al. Age-related adverse events of disease-modifying treatments for multiple sclerosis: a meta-regression. Mult Scler. 2021;27:1391–402. https://doi.org/10.1177/1352458520964778.

    Article  CAS  PubMed  Google Scholar 

  9. Jakimovski D, Vaughn CB, Eckert S, et al. Long-term drug treatment in multiple sclerosis: safety success and concerns. Expert Opin Drug Saf. 2020;19:1121–42. https://doi.org/10.1080/14740338.2020.1805430.

    Article  CAS  PubMed  Google Scholar 

  10. Devonshire V, Lapierre Y, Macdonell R, et al. The Global Adherence Project (GAP): a multicenter observational study on adherence to disease-modifying therapies in patients with relapsing-remitting multiple sclerosis. Eur J Neurol. 2011;18:69–77. https://doi.org/10.1111/j.1468-1331.2010.03110.x.

    Article  CAS  PubMed  Google Scholar 

  11. Hartung H-P, Meuth SG, Miller DM, Comi G. Stopping disease-modifying therapy in relapsing and progressive multiple sclerosis. Curr Opin Neurol. 2021;34:598–603. https://doi.org/10.1097/WCO.0000000000000960.

    Article  PubMed  Google Scholar 

  12. Prosperini L, Kinkel RP, Miravalle AA, et al. Post-natalizumab disease reactivation in multiple sclerosis: systematic review and meta-analysis. Ther Adv Neurol Disord. 2019;12:1756286419837809. https://doi.org/10.1177/1756286419837809.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:71. https://doi.org/10.1136/bmj.n71.

    Article  Google Scholar 

  14. O’Sullivan D, Wilk S, Michalowski W, Farion K. Using PICO to align medical evidence with MDs decision making models. Stud Health Technol Inform. 2013;192:1057.

    PubMed  Google Scholar 

  15. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25:603–5. https://doi.org/10.1007/s10654-010-9491-z.

    Article  PubMed  Google Scholar 

  16. Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. A basic introduction to fixed-effect and random-effects models for meta-analysis. Res Synth Methods. 2010;1:97–111. https://doi.org/10.1002/jrsm.12.

    Article  PubMed  Google Scholar 

  17. Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1539–58. https://doi.org/10.1002/sim.1186.

    Article  PubMed  Google Scholar 

  18. Berkovich R. Clinical and MRI outcomes after stopping or switching disease-modifying therapy in stable MS patients: a case series report. Mult Scler Relat Disord. 2017;17:123–7. https://doi.org/10.1016/j.msard.2017.07.007.

    Article  PubMed  Google Scholar 

  19. Birnbaum G. Stopping disease-modifying therapy in nonrelapsing multiple sclerosis. Int J MS Care. 2017;19:11–4. https://doi.org/10.7224/1537-2073.2015-032.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bonenfant J, Bajeux E, Deburghgraeve V, et al. Can we stop immunomodulatory treatments in secondary progressive multiple sclerosis? Eur J Neurol. 2017;24:237–44. https://doi.org/10.1111/ene.13181.

    Article  CAS  PubMed  Google Scholar 

  21. Bsteh G, Hegen H, Riedl K, et al. Quantifying the risk of disease reactivation after interferon and glatiramer acetate discontinuation in multiple sclerosis: the VIAADISC score. Eur J Neurol. 2021;28:1609–16. https://doi.org/10.1111/ene.14705.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chappuis M, Rousseau C, Bajeux E, et al. Discontinuation of second- versus first-line disease-modifying treatment in middle-aged patients with multiple sclerosis. J Neurol. 2023;270:413–22. https://doi.org/10.1007/s00415-022-11341-2.

    Article  CAS  PubMed  Google Scholar 

  23. Coerver EME, Bourass A, Wessels MHJ, et al. Discontinuation of first-line disease-modifying therapy in relapse onset multiple sclerosis. Mult Scler Relat Disord. 2023;74: 104706. https://doi.org/10.1016/j.msard.2023.104706.

    Article  CAS  PubMed  Google Scholar 

  24. Olival GS, Cavenaghi VB, Serafim V, et al. Medication withdrawal may be an option for a select group of patients in relapsing-remitting multiple sclerosis. Arq Neuropsiquiatr. 2013;71:516–20. https://doi.org/10.1590/0004-282X20130081.

    Article  PubMed  Google Scholar 

  25. Fagius J, Feresiadou A, Larsson E-M, Burman J. Discontinuation of disease modifying treatments in middle aged multiple sclerosis patients: first line drugs vs natalizumab. Mult Scler Relat Disord. 2017;12:82–7. https://doi.org/10.1016/j.msard.2017.01.009.

    Article  PubMed  Google Scholar 

  26. Hua LH, Fan TH, Conway D, et al. Discontinuation of disease-modifying therapy in patients with multiple sclerosis over age 60. Mult Scler. 2019;25:699–708. https://doi.org/10.1177/1352458518765656.

    Article  Google Scholar 

  27. Jakimovski D, Kavak KS, Vaughn CB, et al. Discontinuation of disease modifying therapies is associated with disability progression regardless of prior stable disease and age. Mult Scler Relat Disord. 2022;57: 103406. https://doi.org/10.1016/j.msard.2021.103406.

    Article  CAS  PubMed  Google Scholar 

  28. Kaminsky A-L, Omorou AY, Soudant M, et al. Discontinuation of disease-modifying treatments for multiple sclerosis in patients aged over 50 with disease inactivity. J Neurol. 2020;267:3518–27. https://doi.org/10.1007/s00415-020-10029-9.

    Article  PubMed  Google Scholar 

  29. Kister I, Spelman T, Alroughani R, et al. Discontinuing disease-modifying therapy in MS after a prolonged relapse-free period: a propensity score-matched study. J Neurol Neurosurg Psychiatry. 2016;87:1133–7. https://doi.org/10.1136/jnnp-2016-313760.

    Article  PubMed  Google Scholar 

  30. Landi D, Signori A, Cellerino M, et al. What happens after fingolimod discontinuation? A multicentre real-life experience. J Neurol. 2022;269:796–804. https://doi.org/10.1007/s00415-021-10658-8.

    Article  CAS  PubMed  Google Scholar 

  31. Lus G, Signoriello E, Maniscalco GT, et al. Treatment withdrawal in relapsing−remitting multiple sclerosis: a retrospective cohort study. Eur J Neurol. 2016;23:489–93. https://doi.org/10.1111/ene.12790.

    Article  CAS  PubMed  Google Scholar 

  32. McFaul D, Hakopian NN, Smith JB, et al. Defining benign/burnt-out MS and discontinuing disease-modifying therapies. Neurol Neuroimmunol Neuroinflammation. 2021;8: e960. https://doi.org/10.1212/NXI.0000000000000960.

    Article  Google Scholar 

  33. Monschein T, Salhofer-Polanyi S, Altmann P, et al. Should I stop or should I go on? Disease modifying therapy after the first clinical episode of multiple sclerosis. J Neurol. 2021;268:1247–53. https://doi.org/10.1007/s00415-020-10074-4.

    Article  PubMed  Google Scholar 

  34. Pasca M, Forci B, Mariottini A, et al. Sustained disease remission after discontinuation of disease modifying treatments in relapsing-remitting multiple sclerosis. Mult Scler Relat Disord. 2021;47: 102591. https://doi.org/10.1016/j.msard.2020.102591.

    Article  CAS  PubMed  Google Scholar 

  35. Salavisa M, Serrazina F, Ladeira AF, Correia AS. Discontinuation of disease-modifying therapy in MS patients over 60 years old and its impact on relapse rate and disease progression. Clin Neurol Neurosurg. 2023;225: 107612. https://doi.org/10.1016/j.clineuro.2023.107612.

    Article  PubMed  Google Scholar 

  36. Siger M, Durko A, Nicpan A, et al. Discontinuation of interferon beta therapy in multiple sclerosis patients with high pre-treatment disease activity leads to prompt return to previous disease activity. J Neurol Sci. 2011;303:50–2. https://doi.org/10.1016/j.jns.2011.01.016.

    Article  PubMed  Google Scholar 

  37. Wu X, Dastidar P, Kuusisto H, et al. Increased disability and MRI lesions after discontinuation of IFN-beta-1a in secondary progressive MS. Acta Neurol Scand. 2005;112:242–7. https://doi.org/10.1111/j.1600-0404.2005.00477.x.

    Article  CAS  PubMed  Google Scholar 

  38. Yano H, Gonzalez C, Healy BC, et al. Discontinuation of disease-modifying therapy for patients with relapsing-remitting multiple sclerosis: effect on clinical and MRI outcomes. Mult Scler Relat Disord. 2019;35:119–27. https://doi.org/10.1016/j.msard.2019.07.021.

    Article  PubMed  Google Scholar 

  39. Zanga G, Portinari C, Barber J, et al. Disease activity after discontinuation of disease-modifying therapies in patients with multiple sclerosis in Argentina: data from the nationwide registry RelevarEM. Neurol Res. 2023;45:112–7. https://doi.org/10.1080/01616412.2022.2124792.

    Article  PubMed  Google Scholar 

  40. Metelli S, Chaimani A. Challenges in meta-analyses with observational studies. Evid Based Ment Health. 2020;23:83–7. https://doi.org/10.1136/ebmental-2019-300129.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Portaccio E, Bellinvia A, Fonderico M, et al. Progression is independent of relapse activity in early multiple sclerosis: a real-life cohort study. Brain. 2022;145:2796–805. https://doi.org/10.1093/brain/awac111.

    Article  Google Scholar 

  42. Lublin FD, Häring DA, Ganjgahi H, et al. How patients with multiple sclerosis acquire disability. Brain. 2022;145:3147–61. https://doi.org/10.1093/brain/awac016.

    Article  Google Scholar 

  43. Alping P, Frisell T, Novakova L, et al. Rituximab versus fingolimod after natalizumab in multiple sclerosis patients. Ann Neurol. 2016;79:950–8. https://doi.org/10.1002/ana.24651.

    Article  CAS  PubMed  Google Scholar 

  44. Hersh CM, Harris H, Conway D, Hua LH. Effect of switching from natalizumab to moderate- vs high-efficacy DMT in clinical practice. Neurol Clin Pract. 2020;10:e53-65. https://doi.org/10.1212/CPJ.0000000000000809.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Mancinelli CR, Scarpazza C, Cordioli C, et al. Switching to ocrelizumab in RRMS patients at risk of PML previously treated with extended interval dosing of natalizumab. Mult Scler. 2021;27:790–4. https://doi.org/10.1177/1352458520946017.

    Article  CAS  PubMed  Google Scholar 

  46. van Lierop Z, Toorop AA, Coerver E, et al. Ocrelizumab after natalizumab in JC-virus positive relapsing remitting multiple sclerosis patients. Mult Scler J Exp Transl Clin. 2021;7:20552173211013830. https://doi.org/10.1177/20552173211013831.

    Article  Google Scholar 

  47. Zanghì A, Gallo A, Avolio C, et al. Exit strategies in natalizumab-treated RRMS at high risk of progressive multifocal leukoencephalopathy: a multicentre comparison study. Neurotherapeutics. 2021;18:1166–74. https://doi.org/10.1007/s13311-021-01037-2.

  48. Smoot K, Marginean H, Gervasi-Follmar T, et al. Evaluating the efficacy and safety of transitioning patients with multiple sclerosis from natalizumab to ocrelizumab (OCTAVE). Mult Scler. 2023;29:956–66. https://doi.org/10.1177/13524585231175284.

    Article  CAS  PubMed  Google Scholar 

  49. Corboy JR, Fox RJ, Kister I, et al. Risk of new disease activity in patients with multiple sclerosis who continue or discontinue disease-modifying therapies (DISCOMS): a multicentre, randomised, single-blind, phase 4, non-inferiority trial. Lancet Neurol. 2023;22:568–77. https://doi.org/10.1016/S1474-4422(23)00154-0.

    Article  PubMed  Google Scholar 

  50. Prosperini L, Ruggieri S, Haggiag S, et al. Prognostic accuracy of NEDA-3 in long-term outcomes of multiple sclerosis. Neurol Neuroimmunol Neuroinflamm. 2021;8: e1059. https://doi.org/10.1212/NXI.0000000000001059.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Thompson SG, Higgins JPT. How should meta-regression analyses be undertaken and interpreted? Stat Med. 2002;21:1559–73. https://doi.org/10.1002/sim.1187.

    Article  PubMed  Google Scholar 

  52. Sedgwick P. The ecological fallacy. BMJ. 2011. https://doi.org/10.1136/bmj.d4670.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Dejan Jamowski, Prof. Giacomo Lus, Dr. Manuel Salavisa and Dr. Elisabetta Signoriello for data sharing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Prosperini.

Ethics declarations

Funding

No sources of funding were used to conduct this study or prepare this article.

Conflicts of Interest

Luca Prosperini, Shalom Haggiag, Serena Ruggieri, Carla Tortorella and Claudio Gasperini have no conflicts of interest that are directly relevant to the content of this article. Financial disclosure (outside this work): Luca Prosperini: consulting fees and/or speaker honoraria from Biogen, Celgene, Genzyme, Merck-Serono, Novartis and Teva; travel grants from Biogen, Genzyme, Novartis and Teva and research grants from the Italian MS Society (Associazione Italiana Sclerosi Multipla) and Genzyme. Carla Tortorella: honoraria for speaking and travel grants from Biogen, Sanofi-Aventis, Merck Serono, Bayer-Schering, Teva, Genzyme, Almirall and Novartis. Shalom Haggiag: travel funding and/or speaker honoraria from Biogen, Roche, Genzyme, Novartis, CSL Behring. Serena Ruggieri: personal fees and non-financial support from Biogen, Genzyme, Merck-Serono, Novartis, and Teva. Claudio Gasperini: fees as invited speaker or travel expenses for attending meeting from Biogen, Merck-Serono, Teva, Sanofi, Novartis, Genzyme.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Availability of Data and Material

The data that support the findings of this study are available in the supplementary information.

Code Availability

Not applicable.

Authors’ Contributions

Conception and design of the study, drafting a significant portion of the manuscript/figures: LP, SH, SR. Acquisition and analysis of data, revision of manuscript content: LP, SR, CT. Supervision and drafting the final version of the manuscript: LP, CT, CG. All authors read and approved the final version of the manuscript.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 18 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prosperini, L., Haggiag, S., Ruggieri, S. et al. Stopping Disease-Modifying Treatments in Multiple Sclerosis: A Systematic Review and Meta-Analysis of Real-World Studies. CNS Drugs 37, 915–927 (2023). https://doi.org/10.1007/s40263-023-01038-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-023-01038-z

Navigation