Skip to main content

Management of Sleep Disturbances Associated with Smith-Magenis Syndrome


Smith-Magenis syndrome is a genetic disorder caused by a microdeletion involving the retinoic acid-induced 1 (RAI1) gene that maps on the short arm of chromosome 17p11.2 or a pathogenic mutation of RAI1. Smith-Magenis syndrome affects patients through numerous congenital anomalies, intellectual disabilities, behavioral challenges, and sleep disturbances. The sleep abnormalities associated with Smith-Magenis syndrome can include frequent nocturnal arousals, early morning awakenings, and sleep attacks during the day. The sleep problems associated with Smith-Magenis syndrome are attributed to haploinsufficiency of the RAI1 gene. One consequence of reduced function of RAI1, and characteristic of Smith-Magenis syndrome, is an inversion of melatonin secretion resulting in a diurnal rather than nocturnal pattern. Treatment of sleep problems in people with Smith-Magenis syndrome generally involves a combination of sleep hygiene techniques, supplemental melatonin, and/or other medications, such as melatonin receptor agonists, β1-adrenergic antagonists, and stimulant medications, to improve sleep outcomes. Improvement in sleep has been shown to improve behavioral outcomes, which in turn improves the quality of life for both patients and their caregivers.

This is a preview of subscription content, access via your institution.


  1. 1.

    Edelman EA, Girirajan S, Finucane B, et al. Gender, genotype, and phenotype differences in Smith-Magenis syndrome: a meta-analysis of 105 cases. Clin Genet. 2007;71(6):540–50.

    CAS  PubMed  Google Scholar 

  2. 2.

    Girirajan S, Vlangos CN, Szomju BB, et al. Genotype–phenotype correlation in Smith-Magenis syndrome: evidence that multiple genes in 17p11.2 contribute to the clinical spectrum. Genet Med. 2006;8(7):417–27.

    CAS  PubMed  Google Scholar 

  3. 3.

    Miller DT, Adam MP, Aradhya S, et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet. 2010;86(5):749–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Smith AC, Magenis RE, Elsea SH. Overview of Smith-Magenis syndrome. J Assoc Genet Technol. 2005;31:163–7.

    PubMed  Google Scholar 

  5. 5.

    Smith AC, Boyd KE, Brennan C, et al. Smith-Magenis syndrome. Seattle: GeneReviews; 2001.

    Google Scholar 

  6. 6.

    Elsea SH, Williams SR. Smith-Magenis syndrome: haploinsufficiency of RAI1 results in altered gene regulation in neurological and metabolic pathways. Expert Rev Mol Med. 2011;13:e14.

    PubMed  Google Scholar 

  7. 7.

    Laje G, Morse R, Richter W, et al. Autism spectrum features in Smith-Magenis syndrome. Am J Med Genet C Semin Med Genet. 2010;154C:456–62.

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Trickett J, Heald M, Oliver C, et al. A cross-syndrome cohort comparison of sleep disturbance in children with Smith-Magenis syndrome, Angelman syndrome, autism spectrum disorder and tuberous sclerosis complex. J Neurodev Disord. 2018;10(1):9.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Shayota BJ, Elsea SH. Behavioral and sleep disturbance in Smith-Magenis syndrome. Curr Opin Psychiatry. 2019;32(2):73–8.

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Potocki L, Glaze D, Tan DX, et al. Circadian rhythm abnormalities of melatonin in Smith-Magenis syndrome. J Med Genet. 2000;37(6):428–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    De Leersnyder H. Inverted rhythm of melatonin secretion in Smith-Magenis syndrome: from symptoms to treatment. Trends Endocrinol Metab. 2006;17(7):291–8.

    PubMed  Google Scholar 

  12. 12.

    De Leersnyder H, De Blois MC, Vekemans M, et al. β1-Adrenergic antagonists improve sleep and behavioural disturbances in a circadian disorder, Smith-Magenis syndrome. J Med Genet. 2001;38:586–90.

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Connor V, Zhao S, Angus R. Non-invasive ventilation for sleep-disordered breathing in Smith-Magenis syndrome. BMJ Case Rep. 2016;bcr2016215621.

  14. 14.

    Greenberg F, Lewis RA, Potocki L, et al. Multidisciplinary clinical study of Smith-Magenis syndrome (deletion 17p11.2). Am J Med Genet. 1996;62:247–54.

    CAS  PubMed  Google Scholar 

  15. 15.

    Gropman AL, Duncan WC, Smith ACM. Neurologic and developmental features of the Smith-Magenis syndrome (del 17p11.2). Pediatr Neurol. 2006;34:337–50.

    PubMed  Google Scholar 

  16. 16.

    Tricket J, Oliver C, Heald M, et al. Sleep in children with Smith-Magenis syndrome: a case–control actigraphy study. Sleep. 2020;43(4):zsz260.

    Google Scholar 

  17. 17.

    De Leersnyder H, de Blois M-C, Claustrat B, et al. Inversion of the circadian rhythm of melatonin in the Smith-Magenis syndrome. J Pediatr. 2001;139:111–6.

    PubMed  Google Scholar 

  18. 18.

    Duncan WC, Gropman A, Morse RS, et al. Good babies sleeping poorly; insufficient sleep in infants with Smith-Magenis syndrome. Am J Hum Genet. 2003;73:A896.

    Google Scholar 

  19. 19.

    Smith AM, Morse RS, Introne W, et al. Twenty-four-hour motor activity and body temperature patterns suggest altered central circadian timekeeping in Smith-Magenis syndrome, a neurodevelopmental disorder. Am J Med Genet A. 2019;179(2):224–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Gropman AL, Elsea S, Duncan WC Jr, et al. New developments in Smith-Magenis syndrome (del 17p11.2). Curr Opin Neurol. 2007;20:125–34.

    CAS  PubMed  Google Scholar 

  21. 21.

    Smith-Magenis Syndrome Foundation UK. 2019. Accessed 31 Jul 2019.

  22. 22.

    Williams SR, Zies D, Mullegama SV, et al. Smith-Magenis syndrome results in disruption of CLOCK gene transcription and reveals an integral role for RAI1 in the maintenance of circadian rhythmicity. Am J Hum Genet. 2010;90(6):941–9.

    Google Scholar 

  23. 23.

    Mullegama SV, Alaimo JT, Fountain MD, et al. RAI1 overexpression promotes altered circadian gene expression and dyssomnia in Potocki-Lupski syndrome. J Pediatr Genet. 2017;6(3):155–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Gillette MU, Tischkau SA. Suprachiasmatic nucleus: the brain’s circadian clock. Recent Prog Horm Res. 1999;54:58–9.

    Google Scholar 

  25. 25.

    Hardeland R. Chronobiology of melatonin beyond the feedback to the suprachiasmatic nucleus-consequences of melatonin dysfunction. Int J Mol Sci. 2013;14(3):5817–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Boone PM, Reiter RJ, Glaze DG, et al. Abnormal circadian rhythm of melatonin in Smith-Magenis syndrome patients with RAI1 point mutations. Am J Med Genet A. 2011;155A(8):2024–7.

    PubMed  Google Scholar 

  27. 27.

    Poisson A, Nicolas A, Bousquet I, et al. Smith-Magenis syndrome: molecular basis of a genetic-driven melatonin circadian secretion disorder. Int J Mol Sci. 2019;20:3533.

    CAS  PubMed Central  Google Scholar 

  28. 28.

    Barboni ST, Bueno C, Nagy BV, Maia PL, Vidal KS, Alves RC, et al. Melanopsin system dysfunction in Smith-Magenis syndrome patients. Investig Ophthalmol Vis Sci. 2018;59(1):362–9.

    CAS  Google Scholar 

  29. 29.

    Chen L, Mullegama SV, Alaimo JT, et al. Smith-Magenis syndrome and its circadian influence on development, behavior, and obesity: own experience. Dev Period Med. 2015;19(2):149–56.

    PubMed  Google Scholar 

  30. 30.

    PRISMS. Parents and researchers interested in Smith-Magenis syndrome. 2019. Accessed 31 Jul 2019.

  31. 31.

    Dubocovich ML. Melatonin receptors: role of sleep and circadian rhythm on regulation. Sleep Med. 2007;8(Suppl. 3):34–42.

    PubMed  Google Scholar 

  32. 32.

    Costello RB, Lentino CV, Boyd CC, et al. The effectiveness of melatonin for promoting healthy sleep: a rapid evidence assessment of the literature. Nutr J. 2014;7(13):106.

    Google Scholar 

  33. 33.

    Spruyt K, Braam W, Smits M, et al. Sleep complaints and the 24-h melatonin level in individuals with Smith-Magenis syndrome: assessment for effective intervention. CNS Neurosci Ther. 2016;22(11):928–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Andersen LP, Gögenur I, Rosenberg J, et al. The safety of melatonin in humans. Clin Drug Investig. 2016;36(3):169–75.

    CAS  PubMed  Google Scholar 

  35. 35.

    Kennaway D. Potential safety issues in the use of the hormone melatonin in paediatrics. J Paediatr Child Health. 2015;51(6):584–9.

    PubMed  Google Scholar 

  36. 36.

    Erland LA, Saxena PK. Melatonin natural health products and supplements: presence of serotonin and significant variability of melatonin content. J Clin Sleep Med. 2017;13(2):275–81.

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Hardeland R. Melatonin in aging and disease: multiple consequences of reduced secretion, options and limits of treatment. Aging Dis. 2012;3:194–225.

    PubMed  Google Scholar 

  38. 38.

    Gringras P, Nir T, Breddy J, et al. Efficacy and safety of pediatric prolonged-release melatonin for insomnia in children with autism spectrum disorder. J Am Acad Child Adolesc Psychiatry. 2017;56(11):948–57.

    PubMed  Google Scholar 

  39. 39.

    McGechan A, Wellington K. Ramelteon. CNS Drugs. 2005;19:1057–65.

    CAS  PubMed  Google Scholar 

  40. 40.

    Neubauer DN. A review of ramelteon in the treatment of sleep disorders. Neuropsychiatr Dis Treat. 2008;4(1):69–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Baek WS, Elsea SH. Smith-Magenis syndrome treated with ramelteon and amphetamine–dextroamphetamine: case report and review of the literature. J Genet Disord Genet Resp. 2016;5:4.

    Google Scholar 

  42. 42.

    Lavendan C, Forsberg M, Gentile AJ. Tasimelteon: a selective and unique receptor binding profile. Neuropharmacology. 2015;91:142–7.

    Google Scholar 

  43. 43.

    Hetlioz® [package insert]. Washington, DC: Vanda Pharmaceuticals, Inc.; 2014.

  44. 44.

    Hull JT, Polymeropoulos H, Xiao C, et al. Tasimelteon improves sleep quality and behavior in individuals with Smith-Magenis syndrome (SMS) in an open-label study. Sleep. 2019;42:A255.

    Google Scholar 

  45. 45.

    Salva MA, Vanier B, Laredo J, et al. Major depressive disorder, sleep EEG and agomelatine: an open-label study. Int J Neuropsychopharmacol. 2007;10:691–6.

    Google Scholar 

  46. 46.

    Sansone R, Sansone L. Agomelatine; a novel antidepressant. Innov Clin Neurosci. 2011;8(11):10–4.

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    Stoschitzky K, Sakotnik A, Lercher P, et al. Influence of beta-blockers on melatonin release. Eur J Clin Pharmacol. 1999;55:111–5.

    CAS  PubMed  Google Scholar 

  48. 48.

    De Leersnyder H, Bresson JL, de Blois M, et al. β1-Adrenergic antagonists and melatonin reset the clock and restore sleep in a circadian disorder, Smith-Magenis syndrome. J Med Genet. 2003;40:74–8.

    PubMed  PubMed Central  Google Scholar 

  49. 49.

    Carpizo R, Martinez A, Mediavilla D, et al. Smith-Magenis syndrome: a case report of improved sleep after treatment with β1-adrenergic antagonists and melatonin. J Peds. 2006;149(3):409–11.

    Google Scholar 

  50. 50.

    Banerjee D, Vitiello MV, Grunstein RR, et al. Pharmacotherapy for excessive daytime sleepiness. Sleep Med Rev. 2004;8(5):339–54.

    PubMed  Google Scholar 

  51. 51.

    Laje G, Bernert R, Morse R, et al. Pharmacological treatment of disruptive behavior in Smith-Magenis syndrome. Am J Med Genet C Semin Med Genet. 2010;154C(4):463–8.

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    Morin CM, Koetter U, Bastien C, et al. Valerian-hops combination and diphenhydramine for treating insomnia: a randomized placebo-controlled clinical trial. Sleep. 2005;28(11):1465–71.

    PubMed  Google Scholar 

  53. 53.

    Glass JR, Sproule BA, Herrmann N, et al. Effects of 2-week treatment with temazepam and diphenhydramine in elderly insomniacs: a randomized, placebo-controlled trial. J Clin Psychopharmacol. 2008;28(2):182–8.

    CAS  PubMed  Google Scholar 

  54. 54.

    Katayose Y, Aritake S, Kitamura S, et al. Carryover effect on next-day sleepiness and psychomotor performance of nighttime administered antihistaminic drugs: a randomized controlled trial. Hum Psychopharmacol. 2012;27(4):428–36.

    CAS  PubMed  Google Scholar 

  55. 55.

    Jamadarkhana S, Gopal S. Clonidine in adults as a sedative agent in the intensive care unit. J Anaesthesiol Clin Pharmacol. 2010;26(4):439–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Prince JB, Wilens TE, Biederman J, et al. Clonidine for sleep disturbances associated with attention-deficit hyperactivity disorder: a systematic chart review of 62 cases. J Am Acad Child Adolesc Psychiatry. 1996;35(5):599–605.

    CAS  PubMed  Google Scholar 

  57. 57.

    Jaffer KY, Chang T, Vanle B, et al. Trazodone for insomnia: a systematic review. Innov Clin Neurosci. 2017;14(7–8):24–34.

    PubMed  PubMed Central  Google Scholar 

  58. 58.

    Wichniak A, Wierzbicka A, Sobanska A, et al. The effectiveness of treatment with trazodone in patients with primary insomnia without and with prior history of hypnotics use. Pol Merkur Lekarski. 2007;23(133):41–6.

    PubMed  Google Scholar 

  59. 59.

    Gugger J, Cassagnol M. Low-dose quetiapine is not a benign sedative hypnotic agent. Am J Addict. 2008;17:454–5.

    PubMed  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Kevin A. Kaplan.

Ethics declarations


No funding sources were used for the preparation of this article.

Conflict of interest

Sarah H. Elsea receives research funding from the Smith-Magenis Syndrome Research Foundation, PRISMS, Inc., Fondation Jerome Lejeune, Rhythm Therapeutics, and Vanda Pharmaceuticals. Kevin A. Kaplan and Lorraine Potocki have no conflicts of interest that are directly relevant to the content of this article.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kaplan, K.A., Elsea, S.H. & Potocki, L. Management of Sleep Disturbances Associated with Smith-Magenis Syndrome. CNS Drugs 34, 723–730 (2020).

Download citation