Recent Advances in the Treatment of Huntington’s Disease: Targeting DNA and RNA

Abstract

Huntington’s disease is a dominantly inherited neurodegenerative disease caused by an unstable expanded trinucleotide repeat at the short end of the fourth chromosome. Central nervous system pathology begins in the striatum, eventually affecting the entire brain and occurs consequent to multiple intracellular derangements. The proximate cause is a mutant protein with an elongated polyglutamine tract. Pharmacological approaches targeting multiple domains of intracellular functions have universally been disappointing. However, recent developments in gene therapy, including antisense oligonucleotides, small interfering RNAs, and gene editing are bringing new hope to the Huntington’s community. This review discusses the promises and challenges of these new potential treatments.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. 1.

    Rawlins MD, Wexler NS, Wexler AR, Tabrizi SJ, Douglas I, Evans SJ, et al. The prevalence of Huntington’s disease. Neuroepidemiology. 2016;46(2):144–53.

    PubMed  Google Scholar 

  2. 2.

    Paulsen JS, Miller AC, Hayes T, Shaw E. Cognitive and behavioral changes in Huntington disease before diagnosis. Handb Clin Neurol. 2017;144:69–91.

    PubMed  Google Scholar 

  3. 3.

    McColgan P, Tabrizi SJ. Huntington’s disease: a clinical review. Eur J Neurol. 2018;25(1):24–34.

    CAS  PubMed  Google Scholar 

  4. 4.

    Cronin T, Rosser A, Massey T. Clinical presentation and features of juvenile-onset Huntington’s disease: a systematic review. J Huntingtons Dis. 2019;8(2):171–9.

    PubMed  Google Scholar 

  5. 5.

    Landles C, Bates GP. Huntingtin and the molecular pathogenesis of Huntington’s disease. Fourth in molecular medicine review series. EMBO Rep. 2004;5(10):958–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Wexler NS, Lorimer J, Porter J, Gomez F, Moskowitz C, Shackell E, et al. Venezuelan kindreds reveal that genetic and environmental factors modulate Huntington’s disease age of onset. Proc Natl Acad Sci USA. 2004;101(10):3498–503.

    CAS  PubMed  Google Scholar 

  7. 7.

    Cattaneo E, Zuccato C, Tartari M. Normal huntingtin function: an alternative approach to Huntington’s disease. Nat Rev Neurosci. 2005;6(12):919–30.

    CAS  PubMed  Google Scholar 

  8. 8.

    Caron NS, Dorsey ER, Hayden MR. Therapeutic approaches to Huntington disease: from the bench to the clinic. Nat Rev Drug Discov. 2018;17(10):729–50.

    CAS  PubMed  Google Scholar 

  9. 9.

    Ross CA, Tabrizi SJ. Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol. 2011;10(1):83–98.

    CAS  PubMed  Google Scholar 

  10. 10.

    Lakra P, Aditi K, Agrawal N. Peripheral expression of mutant huntingtin is a critical determinant of weight loss and metabolic disturbances in Huntington’s disease. Sci Rep. 2019;9(1):10127.

    PubMed  PubMed Central  Google Scholar 

  11. 11.

    Travessa AM, Rodrigues FB, Mestre TA, Ferreira JJ. Fifteen years of clinical trials in Huntington’s disease: a very low clinical drug development success rate. J Huntingtons Dis. 2017;6(2):157–63.

    CAS  PubMed  Google Scholar 

  12. 12.

    Lee JM, Ramos EM, Lee JH, Gillis T, Mysore JS, Hayden MR, et al. CAG repeat expansion in Huntington disease determines age at onset in a fully dominant fashion. Neurology. 2012;78(10):690–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Buren C, Wang L, Smith-Dijak A, Raymond LA. Region-specific pro-survival signaling and global neuronal protection by wild-type Huntingtin. J Huntingtons Dis. 2014;3(4):365–76.

    CAS  PubMed  Google Scholar 

  14. 14.

    Leavitt BR, Guttman JA, Hodgson JG, Kimel GH, Singaraja R, Vogl AW, et al. Wild-type huntingtin reduces the cellular toxicity of mutant huntingtin in vivo. Am J Hum Genet. 2001;68(2):313–24.

    CAS  PubMed  Google Scholar 

  15. 15.

    Reilly CE. Wild-type huntingtin up-regulates BDNF transcription in Huntington’s disease. J Neurol. 2001;248(10):920–2.

    CAS  PubMed  Google Scholar 

  16. 16.

    Reiner A, Dragatsis I, Zeitlin S, Goldowitz D. Wild-type huntingtin plays a role in brain development and neuronal survival. Mol Neurobiol. 2003;28(3):259–76.

    CAS  PubMed  Google Scholar 

  17. 17.

    Rigamonti D, Bauer JH, De-Fraja C, Conti L, Sipione S, Sciorati C, et al. Wild-type huntingtin protects from apoptosis upstream of caspase-3. J Neurosci. 2000;20(10):3705–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Strehlow AN, Li JZ, Myers RM. Wild-type huntingtin participates in protein trafficking between the Golgi and the extracellular space. Hum Mol Genet. 2007;16(4):391–409.

    CAS  PubMed  Google Scholar 

  19. 19.

    Boudreau RL, McBride JL, Martins I, Shen S, Xing Y, Carter BJ, et al. Nonallele-specific silencing of mutant and wild-type huntingtin demonstrates therapeutic efficacy in Huntington’s disease mice. Mol Ther. 2009;17(6):1053–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Grondin R, Kaytor MD, Ai Y, Nelson PT, Thakker DR, Heisel J, et al. Six-month partial suppression of Huntingtin is well tolerated in the adult rhesus striatum. Brain. 2012;135(Pt 4):1197–209.

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    McBride JL, Pitzer MR, Boudreau RL, Dufour B, Hobbs T, Ojeda SR, et al. Preclinical safety of RNAi-mediated HTT suppression in the rhesus macaque as a potential therapy for Huntington’s disease. Mol Ther. 2011;19(12):2152–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Stiles DK, Zhang Z, Ge P, Nelson B, Grondin R, Ai Y, et al. Widespread suppression of huntingtin with convection-enhanced delivery of siRNA. Exp Neurol. 2012;233(1):463–71.

    CAS  PubMed  Google Scholar 

  23. 23.

    Wild EJ, Boggio R, Langbehn D, Robertson N, Haider S, Miller JR, et al. Quantification of mutant huntingtin protein in cerebrospinal fluid from Huntington’s disease patients. J Clin Invest. 2015;125(5):1979–86.

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Ostergaard ME, Southwell AL, Kordasiewicz H, Watt AT, Skotte NH, Doty CN, et al. Rational design of antisense oligonucleotides targeting single nucleotide polymorphisms for potent and allele selective suppression of mutant Huntingtin in the CNS. Nucleic Acids Res. 2013;41(21):9634–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Carroll JB, Warby SC, Southwell AL, Doty CN, Greenlee S, Skotte N, et al. Potent and selective antisense oligonucleotides targeting single-nucleotide polymorphisms in the Huntington disease gene/allele-specific silencing of mutant huntingtin. Mol Ther. 2011;19(12):2178–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Lombardi MS, Jaspers L, Spronkmans C, Gellera C, Taroni F, Di Maria E, et al. A majority of Huntington’s disease patients may be treatable by individualized allele-specific RNA interference. Exp Neurol. 2009;217(2):312–9.

    CAS  PubMed  Google Scholar 

  27. 27.

    Pfister EL, Kennington L, Straubhaar J, Wagh S, Liu W, DiFiglia M, et al. Five siRNAs targeting three SNPs may provide therapy for three-quarters of Huntington’s disease patients. Curr Biol. 2009;19(9):774–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Kay C, Collins JA, Caron NS, Agostinho LA, Findlay-Black H, Casal L, et al. A comprehensive haplotype targeting strategy for allele-specific HTT suppression in Huntington disease. Am J Hum Genet. 2019;105(6):1112–25.

    CAS  PubMed  Google Scholar 

  29. 29.

    Dufour BD, Smith CA, Clark RL, Walker TR, McBride JL. Intrajugular vein delivery of AAV9-RNAi prevents neuropathological changes and weight loss in Huntington’s disease mice. Mol Ther. 2014;22(4):797–810.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Harper SQ, Staber PD, He X, Eliason SL, Martins IH, Mao Q, et al. RNA interference improves motor and neuropathological abnormalities in a Huntington’s disease mouse model. Proc Natl Acad Sci USA. 2005;102(16):5820–5.

    CAS  PubMed  Google Scholar 

  31. 31.

    Keeler AM, Sapp E, Chase K, Sottosanti E, Danielson E, Pfister E, et al. Cellular analysis of silencing the Huntington’s disease gene using AAV9 mediated delivery of artificial micro RNA into the striatum of Q140/Q140 mice. J Huntingtons Dis. 2016;5(3):239–48.

    CAS  PubMed  Google Scholar 

  32. 32.

    Kordasiewicz HB, Stanek LM, Wancewicz EV, Mazur C, McAlonis MM, Pytel KA, et al. Sustained therapeutic reversal of Huntington’s disease by transient repression of huntingtin synthesis. Neuron. 2012;74(6):1031–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Pfister EL, DiNardo N, Mondo E, Borel F, Conroy F, Fraser C, et al. Artificial miRNAs reduce human mutant Huntingtin throughout the striatum in a transgenic sheep model of Huntington’s disease. Hum Gene Ther. 2018;29(6):663–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Rue L, Banez-Coronel M, Creus-Muncunill J, Giralt A, Alcala-Vida R, Mentxaka G, et al. Targeting CAG repeat RNAs reduces Huntington’s disease phenotype independently of huntingtin levels. J Clin Invest. 2016;126(11):4319–30.

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Stanek LM, Sardi SP, Mastis B, Richards AR, Treleaven CM, Taksir T, et al. Silencing mutant huntingtin by adeno-associated virus-mediated RNA interference ameliorates disease manifestations in the YAC128 mouse model of Huntington’s disease. Hum Gene Ther. 2014;25(5):461–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Zamecnik PC, Stephenson ML. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci USA. 1978;75(1):280–4.

    CAS  PubMed  Google Scholar 

  37. 37.

    Rossor AM, Reilly MM, Sleigh JN. Antisense oligonucleotides and other genetic therapies made simple. Pract Neurol. 2018;18(2):126–31.

    PubMed  Google Scholar 

  38. 38.

    Rinaldi C, Wood MJA. Antisense oligonucleotides: the next frontier for treatment of neurological disorders. Nat Rev Neurol. 2018;14(1):9–21.

    CAS  PubMed  Google Scholar 

  39. 39.

    Wild EJ, Tabrizi SJ. Therapies targeting DNA and RNA in Huntington’s disease. Lancet Neurol. 2017;16(10):837–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Geary RS, Norris D, Yu R, Bennett CF. Pharmacokinetics, biodistribution and cell uptake of antisense oligonucleotides. Adv Drug Deliv Rev. 2015;29(87):46–51.

    Google Scholar 

  41. 41.

    Randeree L, Eslick GD. Eteplirsen for paediatric patients with Duchenne muscular dystrophy: a pooled-analysis. J Clin Neurosci. 2018;49:1–6.

    CAS  PubMed  Google Scholar 

  42. 42.

    Goyal N, Narayanaswami P. Making sense of antisense oligonucleotides: a narrative review. Muscle Nerve. 2018;57(3):356–70.

    CAS  PubMed  Google Scholar 

  43. 43.

    Tabrizi SJ, Leavitt BR, Landwehrmeyer GB, Wild EJ, Saft C, Barker RA, et al. Targeting Huntingtin expression in patients with Huntington’s disease. N Engl J Med. 2019;380(24):2307–16.

    CAS  PubMed  Google Scholar 

  44. 44.

    Rodrigues FB, Wild EJ. Huntington’s disease clinical trials corner: February 2018. J Huntingtons Dis. 2018;7(1):89–98.

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Wang SY, Chen W, Xu W, Li JQ, Hou XH, Ou YN, et al. Neurofilament light chain in cerebrospinal fluid and blood as a biomarker for neurodegenerative diseases: a systematic review and meta-analysis. J Alzheimers Dis. 2019;72(4):1353–61.

    PubMed  Google Scholar 

  46. 46.

    Datson NA, Gonzalez-Barriga A, Kourkouta E, Weij R, van de Giessen J, Mulders S, et al. The expanded CAG repeat in the huntingtin gene as target for therapeutic RNA modulation throughout the HD mouse brain. PLoS One. 2017;12(2):e0171127.

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    Hammond SM, Hazell G, Shabanpoor F, Saleh AF, Bowerman M, Sleigh JN, et al. Systemic peptide-mediated oligonucleotide therapy improves long-term survival in spinal muscular atrophy. Proc Natl Acad Sci USA. 2016;113(39):10962–7.

    CAS  PubMed  Google Scholar 

  48. 48.

    Aguiar S, van der Gaag B, Cortese FAB. RNAi mechanisms in Huntington’s disease therapy: siRNA versus shRNA. Transl Neurodegener. 2017;6:30.

    PubMed  PubMed Central  Google Scholar 

  49. 49.

    Dana H, Chalbatani GM, Mahmoodzadeh H, Karimloo R, Rezaiean O, Moradzadeh A, et al. Molecular mechanisms and biological functions of siRNA. Int J Biomed Sci. 2017;13(2):48–57.

    PubMed  PubMed Central  Google Scholar 

  50. 50.

    Rodriguez-Lebron E, Denovan-Wright EM, Nash K, Lewin AS, Mandel RJ. Intrastriatal rAAV-mediated delivery of anti-huntingtin shRNAs induces partial reversal of disease progression in R6/1 Huntington’s disease transgenic mice. Mol Ther. 2005;12(4):618–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Boudreau RL, Martins I, Davidson BL. Artificial microRNAs as siRNA shuttles: improved safety as compared to shRNAs in vitro and in vivo. Mol Ther. 2009;17(1):169–75.

    CAS  PubMed  Google Scholar 

  52. 52.

    Miniarikova J, Zanella I, Huseinovic A, van der Zon T, Hanemaaijer E, Martier R, et al. Design, characterization, and lead selection of therapeutic miRNAs targeting Huntingtin for development of gene therapy for Huntington’s disease. Mol Ther Nucleic Acids. 2016;22(5):e297.

    Google Scholar 

  53. 53.

    Drouet V, Perrin V, Hassig R, Dufour N, Auregan G, Alves S, et al. Sustained effects of nonallele-specific Huntingtin silencing. Ann Neurol. 2009;65(3):276–85.

    CAS  PubMed  Google Scholar 

  54. 54.

    Franich NR, Fitzsimons HL, Fong DM, Klugmann M, During MJ, Young D. AAV vector-mediated RNAi of mutant huntingtin expression is neuroprotective in a novel genetic rat model of Huntington’s disease. Mol Ther. 2008;16(5):947–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Huang BJ, Yin H, Huang YF, Xu JF, Xiong P, Feng W, et al. Gene therapy using adenoviral vector encoding 4-1BBIg gene significantly prolonged murine cardiac allograft survival. Transpl Immunol. 2006;16(2):88–94.

    CAS  PubMed  Google Scholar 

  56. 56.

    Machida Y, Okada T, Kurosawa M, Oyama F, Ozawa K, Nukina N. rAAV-mediated shRNA ameliorated neuropathology in Huntington disease model mouse. Biochem Biophys Res Commun. 2006;343(1):190–7.

    CAS  PubMed  Google Scholar 

  57. 57.

    Alterman JF, Godinho B, Hassler MR, Ferguson CM, Echeverria D, Sapp E, et al. A divalent siRNA chemical scaffold for potent and sustained modulation of gene expression throughout the central nervous system. Nat Biotechnol. 2019;37(8):884–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Chaudhary RK, Patel KA, Patel MK, Joshi RH, Roy I. Inhibition of aggregation of mutant Huntingtin by nucleic acid aptamers in vitro and in a yeast model of Huntington’s disease. Mol Ther. 2015;23(12):1912–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Shin JW, Kim KH, Chao MJ, Atwal RS, Gillis T, MacDonald ME, et al. Permanent inactivation of Huntington’s disease mutation by personalized allele-specific CRISPR/Cas9. Hum Mol Genet. 2016;25(20):4566–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Skogen M, Roth J, Yerkes S, Parekh-Olmedo H, Kmiec E. Short G-rich oligonucleotides as a potential therapeutic for Huntington’s disease. BMC Neurosci. 2006;2(7):65.

    Google Scholar 

  61. 61.

    Khan E, Biswas S, Mishra SK, Mishra R, Samanta S, Mishra A, et al. Rationally designed small molecules targeting toxic CAG repeat RNA that causes Huntington’s disease (HD) and spinocerebellar ataxia (SCAs). Biochimie. 2019;163:21–32.

    CAS  PubMed  Google Scholar 

  62. 62.

    Khan E, Tawani A, Mishra SK, Verma AK, Upadhyay A, Kumar M, et al. Myricetin reduces toxic level of CAG repeats RNA in Huntington’s disease (HD) and spino cerebellar ataxia (SCAs). ACS Chem Biol. 2018;13(1):180–8.

    CAS  PubMed  Google Scholar 

  63. 63.

    Agustin-Pavon C, Mielcarek M, Garriga-Canut M, Isalan M. Deimmunization for gene therapy: host matching of synthetic zinc finger constructs enables long-term mutant Huntingtin repression in mice. Mol Neurodegener. 2016;11(1):64.

    PubMed  PubMed Central  Google Scholar 

  64. 64.

    Garriga-Canut M, Agustin-Pavon C, Herrmann F, Sanchez A, Dierssen M, Fillat C, et al. Synthetic zinc finger repressors reduce mutant huntingtin expression in the brain of R6/2 mice. Proc Natl Acad Sci USA. 2012;109(45):E3136–45.

    CAS  PubMed  Google Scholar 

  65. 65.

    Zeitler B, Froelich S, Marlen K, Shivak DA, Yu Q, Li D, et al. Allele-selective transcriptional repression of mutant HTT for the treatment of Huntington’s disease. Nat Med. 2019;25(7):1131–42.

    CAS  PubMed  Google Scholar 

  66. 66.

    Lino CA, Harper JC, Carney JP, Timlin JA. Delivering CRISPR: a review of the challenges and approaches. Drug Deliv. 2018;25(1):1234–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Fink KD, Deng P, Gutierrez J, Anderson JS, Torrest A, Komarla A, et al. Allele-specific reduction of the mutant Huntingtin allele using transcription activator-like effectors in human Huntington’s disease fibroblasts. Cell Transplant. 2016;25(4):677–86.

    PubMed  PubMed Central  Google Scholar 

  68. 68.

    Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Richardson CD, Ray GJ, Bray NL, Corn JE. Non-homologous DNA increases gene disruption efficiency by altering DNA repair outcomes. Nat Commun. 2016;17(7):12463.

    Google Scholar 

  70. 70.

    Savic N, Schwank G. Advances in therapeutic CRISPR/Cas9 genome editing. Transl Res. 2016;168:15–21.

    CAS  PubMed  Google Scholar 

  71. 71.

    Yang S, Chang R, Yang H, Zhao T, Hong Y, Kong HE, et al. CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in mouse model of Huntington’s disease. J Clin Invest. 2017;127(7):2719–24.

    PubMed  PubMed Central  Google Scholar 

  72. 72.

    Merienne N, Vachey G, de Longprez L, Meunier C, Zimmer V, Perriard G, et al. The self-inactivating KamiCas9 system for the editing of CNS disease genes. Cell Rep. 2017;20(12):2980–91.

    CAS  PubMed  Google Scholar 

  73. 73.

    Kosicki M, Tomberg K, Bradley A. Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol. 2018;36(8):765–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Ross CA, Aylward EH, Wild EJ, Langbehn DR, Long JD, Warner JH, et al. Huntington disease: natural history, biomarkers and prospects for therapeutics. Nat Rev Neurol. 2014;10(4):204–16.

    CAS  PubMed  Google Scholar 

  75. 75.

    Bonelli RM, Hodl AK, Hofmann P, Kapfhammer HP. Neuroprotection in Huntington’s disease: a 2-year study on minocycline. Int Clin Psychopharmacol. 2004;19(6):337–42.

    PubMed  Google Scholar 

  76. 76.

    Ferreira JJ, Rosser A, Craufurd D, Squitieri F, Mallard N, Landwehrmeyer B. Ethyl-eicosapentaenoic acid treatment in Huntington’s disease: a placebo-controlled clinical trial. Mov Disord. 2015;30(10):1426–9.

    CAS  PubMed  Google Scholar 

  77. 77.

    Huntington Study G. A randomized, placebo-controlled trial of coenzyme Q10 and remacemide in Huntington’s disease. Neurology. 2001;57(3):397–404.

    Google Scholar 

  78. 78.

    Huntington Study Group DI. A futility study of minocycline in Huntington’s disease. Mov Disord. 2010;25(13):2219–24.

    Google Scholar 

  79. 79.

    Rosas HD, Doros G, Gevorkian S, Malarick K, Reuter M, Coutu JP, et al. PRECREST: a phase II prevention and biomarker trial of creatine in at-risk Huntington disease. Neurology. 2014;82(10):850–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Shoulson I, Odoroff C, Oakes D, Behr J, Goldblatt D, Caine E, et al. A controlled clinical trial of baclofen as protective therapy in early Huntington’s disease. Ann Neurol. 1989;25(3):252–9.

    CAS  PubMed  Google Scholar 

  81. 81.

    Sussmuth SD, Haider S, Landwehrmeyer GB, Farmer R, Frost C, Tripepi G, et al. An exploratory double-blind, randomized clinical trial with selisistat, a SirT1 inhibitor, in patients with Huntington’s disease. Br J Clin Pharmacol. 2015;79(3):465–76.

    PubMed  PubMed Central  Google Scholar 

  82. 82.

    Thomas M, Ashizawa T, Jankovic J. Minocycline in Huntington’s disease: a pilot study. Mov Disord. 2004;19(6):692–5.

    PubMed  Google Scholar 

  83. 83.

    Stout JC, Queller S, Baker KN, Cowlishaw S, Sampaio C, Fitzer-Attas C, et al. HD-CAB: a cognitive assessment battery for clinical trials in Huntington’s disease 1,2,3. Mov Disord. 2014;29(10):1281–8.

    PubMed  Google Scholar 

  84. 84.

    Paulsen JS, Lourens S, Kieburtz K, Zhang Y. Sample enrichment for clinical trials to show delay of onset in huntington disease. Mov Disord. 2019;34(2):274–80.

    CAS  PubMed  Google Scholar 

  85. 85.

    Aylward EH, Nopoulos PC, Ross CA, Langbehn DR, Pierson RK, Mills JA, et al. Longitudinal change in regional brain volumes in prodromal Huntington disease. J Neurol Neurosurg Psychiatry. 2011;82(4):405–10.

    PubMed  Google Scholar 

  86. 86.

    Feigin A, Ghilardi MF, Huang C, Ma Y, Carbon M, Guttman M, et al. Preclinical Huntington’s disease: compensatory brain responses during learning. Ann Neurol. 2006;59(1):53–9.

    PubMed  PubMed Central  Google Scholar 

  87. 87.

    Feigin A, Tang C, Ma Y, Mattis P, Zgaljardic D, Guttman M, et al. Thalamic metabolism and symptom onset in preclinical Huntington’s disease. Brain. 2007;130(Pt 11):2858–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Tang CC, Feigin A, Ma Y, Habeck C, Paulsen JS, Leenders KL, et al. Metabolic network as a progression biomarker of premanifest Huntington’s disease. J Clin Invest. 2013;123(9):4076–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Cotter K, Siskind CE, Sha SJ, Hanson-Kahn AK. Positive attitudes and therapeutic misconception around hypothetical clinical trial participation in the Huntington’s disease community. J Huntingtons Dis. 2019;8(4):421–30.

    PubMed  PubMed Central  Google Scholar 

  90. 90.

    Osmand AP, Bichell TJ, Bowman AB, Bates GP. Embryonic mutant Huntingtin agregate formation in mouse models of Huntington’s disease. J Huntingtons Dis. 2016;5(4):343–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Nopoulos PC, Aylward EH, Ross CA, Mills JA, Langbehn DR, Johnson HJ, et al. Smaller intracranial volume in prodromal Huntington’s disease: evidence for abnormal neurodevelopment. Brain. 2011;134(Pt 1):137–42.

    PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kathleen M. Shannon.

Ethics declarations

Funding

No funding was received for the preparation of this article.

Conflict of interest

Kathleen M. Shannon has no conflicts that are directly relevant to the content of this article.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shannon, K.M. Recent Advances in the Treatment of Huntington’s Disease: Targeting DNA and RNA. CNS Drugs 34, 219–228 (2020). https://doi.org/10.1007/s40263-019-00695-3

Download citation