Skip to main content
Log in

Recent Advances in the Drug Treatment of Dravet Syndrome

  • Review Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Dravet syndrome is a rare but severe epilepsy syndrome that begins in the first year of life with recurrent seizures triggered by fever that are typically prolonged and hemiclonic. The epilepsy is highly drug resistant. Although development is normal at onset, over time, most patients develop moderate-to-severe intellectual disability, behavior disorders, and a characteristic crouch gait. There is a significant mortality, predominantly owing to sudden unexpected death in epilepsy. Complete seizure control is rarely attainable. Initial therapy includes valproic acid and clobazam, but response is typically inadequate. The results of new drugs for Dravet syndrome, including stiripentol, cannabidiol, and fenfluramine, are very promising. Stiripentol was associated with a greater than 50% reduction in convulsive seizure frequency in 71% of cases, when added to valproic acid and clobazam, and also markedly reduced status epilepticus. Pharmaceutical-grade cannabidiol resulted in a median change in monthly motor seizures from baseline of − 36.5%. Fenfluramine was associated with a greater than 50% reduction in seizures of 70%, with one quarter of cases achieving near seizure freedom over the duration of the trial. These agents are generally well tolerated, with few patients discontinuing for adverse effects. There is limited evidence to date regarding improvement in cognition with these newer agents; however, a meaningful change is challenging to assess over short trial periods and requires longer follow-up studies. While current treatments focus predominantly on seizure control, newer therapies including genetic treatments and antisense oligonucleotides can target the SCN1A channelopathy, and thus, may also significantly impact the important co-morbidities associated with this syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dravet C, Bureau M, Oguni H, et al. Dravet syndrome (severe myoclonic epilepsy in infancy). In: Bureau M, Genton P, Dravet C, editors. Epileptic syndromes in infancy, childhood and adolescence. Paris: John Libbey Eurotext; 2012. p. 125–56.

    Google Scholar 

  2. De Liso P, Chemaly N, Laschet J, et al. Patients with Dravet syndrome in the era of stiripentol: a French cohort cross-sectional study. Epilepsy Res. 2016;125:42–6.

    PubMed  Google Scholar 

  3. Losito E, Kuchenbuch M, Chemaly N, et al. Age-related “sleep/nocturnal” tonic and tonic clonic seizure clusters are underdiagnosed in patients with Dravet syndrome. Epilepsy Behav. 2017;74:33–40.

    PubMed  Google Scholar 

  4. Ragona F. Cognitive development in children with Dravet syndrome. Epilepsia. 2011;52(Suppl. 2):39–43.

    PubMed  Google Scholar 

  5. Nabbout R, Chemaly N, Chipaux M, et al. Encephalopathy in children with Dravet syndrome is not a pure consequence of epilepsy. Orphanet J Rare Dis. 2013;8:176.

    PubMed  PubMed Central  Google Scholar 

  6. Li BM, Liu XR, Yi YH, et al. Autism in Dravet syndrome: prevalence, features, and relationship to the clinical characteristics of epilepsy and mental retardation. Epilepsy Behav. 2011;21:291–5.

    PubMed  Google Scholar 

  7. Ouss L, Leunen D, Laschet J, et al. Autism spectrum disorder and cognitive profile in children with Dravet syndrome: delineation of a specific phenotype. Epilepsia Open. 2019;4:40–53.

    PubMed  Google Scholar 

  8. Skluzacek JV, Watts KP, Parsy O, Wical B, Camfield P. Dravet syndrome and parent associations: the IDEA League experience with comorbid conditions, mortality, management, adaptation, and grief. Epilepsia. 2011;52(Suppl. 2):95–101.

    PubMed  Google Scholar 

  9. Villas N, Meskis MA, Goodliffe S. Dravet syndrome: characteristics, comorbidities, and caregiver concerns. Epilepsy Behav. 2017;74:81–6.

    PubMed  Google Scholar 

  10. Nabbout R, Auvin S, Chiron C, et al. Development and content validation of a preliminary core set of patient- and caregiver-relevant outcomes for inclusion in a potential composite endpoint for Dravet Syndrome. Epilepsy Behav. 2018;78:232–42.

    PubMed  Google Scholar 

  11. Nabbout R, Auvin S, Chiron C, et al. Perception of impact of Dravet syndrome on children and caregivers in multiple countries: looking beyond seizures. Dev Med Child Neurol. 2019;61:1229–36.

    PubMed  Google Scholar 

  12. Lagae L, Brambilla I, Mingorance A, Gibson E, Battersby A. Quality of life and comorbidities associated with Dravet syndrome severity: a multinational cohort survey. Dev Med Child Neurol. 2018;60:63–72.

    PubMed  Google Scholar 

  13. Rodda JM, Scheffer IE, McMahon JM, Berkovic SF, Graham HK. Progressive gait deterioration in adolescents with Dravet syndrome. Arch Neurol. 2012;69:873–8.

    PubMed  Google Scholar 

  14. Genton P, Velizarova R, Dravet C. Dravet syndrome: the long-term outcome. Epilepsia. 2011;52(Suppl. 2):44–9.

    PubMed  Google Scholar 

  15. Jensen MP, Brunklaus A, Dorris L, et al. The humanistic and economic burden of Dravet syndrome on caregivers and families: implications for future research. Epilepsy Behav. 2017;70:104–9.

    PubMed  Google Scholar 

  16. Cooper MS, McIntosh A, Crompton DE, et al. Mortality in Dravet syndrome. Epilepsy Res. 2016;128:43–7.

    PubMed  Google Scholar 

  17. Wirrell EC, Laux L, Donner E, et al. Optimizing the diagnosis and management of Dravet syndrome: recommendations from a North American Consensus Panel. Pediatr Neurol. 2017;68(18–34):e13.

    Google Scholar 

  18. Claes L, Del-Favero J, Ceulemans B, Lagae L, Van Broeckhoven C, De Jonghe P. De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy. Am J Hum Genet. 2001;68:1327–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. de Lange IM, Koudijs MJ, van’t Slot R, et al. Mosaicism of de novo pathogenic SCN1A variants in epilepsy is a frequent phenomenon that correlates with variable phenotypes. Epilepsia. 2018;59:690–703.

    PubMed  Google Scholar 

  20. Ceulemans B. Overall management of patients with Dravet syndrome. Dev Med Child Neurol. 2011;53(Suppl. 2):19–23.

    PubMed  Google Scholar 

  21. Wilmshurst JM, Gaillard WD, Vinayan KP, et al. Summary of recommendations for the management of infantile seizures: task Force Report for the ILAE Commission of Pediatrics. Epilepsia. 2015;56:1185–97.

    PubMed  Google Scholar 

  22. Thanh TN, Chiron C, Dellatolas G, et al. Long-term efficacy and tolerance of stiripentaol in severe myoclonic epilepsy of infancy (Dravet’s syndrome). Arch Pediatr. 2002;9:1120–7.

    PubMed  Google Scholar 

  23. Saito Y, Oguni H, Awaya Y, Hayashi K, Osawa M. Phenytoin-induced choreoathetosis in patients with severe myoclonic epilepsy in infancy. Neuropediatrics. 2001;32:231–5.

    CAS  PubMed  Google Scholar 

  24. de Lange IM, Gunning B, Sonsma ACM, et al. Influence of contraindicated medication use on cognitive outcome in Dravet syndrome and age at first afebrile seizure as a clinical predictor in SCN1A-related seizure phenotypes. Epilepsia. 2018;59:1154–65.

    PubMed  Google Scholar 

  25. Snoeijen-Schouwenaars FM, Veendrick MJ, van Mierlo P, et al. Carbamazepine and oxcarbazepine in adult patients with Dravet syndrome: friend or foe? Seizure. 2015;29:114–8.

    CAS  PubMed  Google Scholar 

  26. Guerrini R, Dravet C, Genton P, Belmonte A, Kaminska A, Dulac O. Lamotrigine and seizure aggravation in severe myoclonic epilepsy. Epilepsia. 1998;39:508–12.

    CAS  PubMed  Google Scholar 

  27. Dalic L, Mullen SA, Roulet Perez E, Scheffer I. Lamotrigine can be beneficial in patients with Dravet syndrome. Dev Med Child Neurol. 2015;57:200–2.

    PubMed  Google Scholar 

  28. Mueller A, Boor R, Coppola G, et al. Low long-term efficacy and tolerability of add-on rufinamide in patients with Dravet syndrome. Epilepsy Behav. 2011;21:282–4.

    CAS  PubMed  Google Scholar 

  29. Chipaux M, Villeneuve N, Sabouraud P, et al. Unusual consequences of status epilepticus in Dravet syndrome. Seizure. 2010;19:190–4.

    CAS  PubMed  Google Scholar 

  30. Dressler A, Trimmel-Schwahofer P, Reithofer E, et al. Efficacy and tolerability of the ketogenic diet in Dravet syndrome: comparison with various standard antiepileptic drug regimen. Epilepsy Res. 2015;109:81–9.

    PubMed  Google Scholar 

  31. Inoue Y, Ohtsuka Y, Oguni H, et al. Stiripentol open study in Japanese patients with Dravet syndrome. Epilepsia. 2009;50:2362–8.

    CAS  PubMed  Google Scholar 

  32. Redondo P, Vicente J, Espana A, Subira ML, De Felipe I, Quintanilla E. Photo-induced toxic epidermal necrolysis caused by clobazam. Br J Dermatol. 1996;135:999–1002.

    CAS  PubMed  Google Scholar 

  33. Yapici AK, Fidanci MK, Kilic S, et al. Stevens-Johnson syndrome triggered by a combination of clobazam, lamotrigine and valproic acid in a 7-year-old child. Ann Burns Fire Disasters. 2014;27:121–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Tanabe T, Awaya Y, Matsuishi T, et al. Management of and prophylaxis against status epilepticus in children with severe myoclonic epilepsy in infancy (SMEI; Dravet syndrome): a nationwide questionnaire survey in Japan. Brain Dev. 2008;30:629–35.

    PubMed  Google Scholar 

  35. Friedlander WJ. The rise and fall of bromide therapy in epilepsy. Arch Neurol. 2000;57:1782–5.

    CAS  PubMed  Google Scholar 

  36. Lotte J, Haberlandt E, Neubauer B, Staudt M, Kluger GJ. Bromide in patients with SCN1A-mutations manifesting as Dravet syndrome. Neuropediatrics. 2012;43:17–21.

    CAS  PubMed  Google Scholar 

  37. Oguni H, Hayashi K, Oguni M, et al. Treatment of severe myoclonic epilepsy in infants with bromide and its borderline variant. Epilepsia. 1994;35:1140–5.

    CAS  PubMed  Google Scholar 

  38. Dibue-Adjei M, Fischer I, Steiger HJ, Kamp MA. Efficacy of adjunctive vagus nerve stimulation in patients with Dravet syndrome: a meta-analysis of 68 patients. Seizure. 2017;50:147–52.

    PubMed  Google Scholar 

  39. Fulton SP, Van Poppel K, McGregor AL, Mudigoudar B, Wheless JW. Vagus nerve stimulation in intractable epilepsy associated with SCN1A gene abnormalities. J Child Neurol. 2017;32:494–8.

    PubMed  Google Scholar 

  40. Dlouhy BJ, Miller B, Jeong A, Bertrand ME, Limbrick DD Jr, Smyth MD. Palliative epilepsy surgery in Dravet syndrome: case series and review of the literature. Childs Nerv Syst. 2016;32:1703–8.

    PubMed  Google Scholar 

  41. Poisson M, Huguet F, Savattier A, Bakri-Logeais F, Narcisse G. A new type of anticonvulsant, stiripentol: pharmacological profile and neurochemical study. Arzneimittelforschung. 1984;34:199–204.

    CAS  PubMed  Google Scholar 

  42. Quilichini PP, Chiron C, Ben-Ari Y, Gozlan H. Stiripentol, a putative antiepileptic drug, enhances the duration of opening of GABA-A receptor channels. Epilepsia. 2006;47:704–16.

    CAS  PubMed  Google Scholar 

  43. Fisher JL. The effects of stiripentol on GABA(A) receptors. Epilepsia. 2011;52(Suppl. 2):76–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Grosenbaugh DK, Mott DD. Stiripentol in refractory status epilepticus. Epilepsia. 2013;54(Suppl. 6):103–5.

    CAS  PubMed  Google Scholar 

  45. Tran A, Rey E, Pons G, et al. Influence of stiripentol on cytochrome P450-mediated metabolic pathways in humans: in vitro and in vivo comparison and calculation of in vivo inhibition constants. Clin Pharmacol Ther. 1997;62:490–504.

    CAS  PubMed  Google Scholar 

  46. Giraud C, Treluyer JM, Rey E, et al. In vitro and in vivo inhibitory effect of stiripentol on clobazam metabolism. Drug Metab Dispos. 2006;34:608–11.

    CAS  PubMed  Google Scholar 

  47. Peigne S, Rey E, Le Guern ME, et al. Reassessment of stiripentol pharmacokinetics in healthy adult volunteers. Epilepsy Res. 2014;108:909–16.

    CAS  PubMed  Google Scholar 

  48. Levy RH, Loiseau P, Guyot M, Blehaut HM, Tor J, Moreland TA. Stiripentol kinetics in epilepsy: nonlinearity and interactions. Clin Pharmacol Ther. 1984;36:661–9.

    CAS  PubMed  Google Scholar 

  49. Yamamoto Y, Takahashi Y, Ikeda H, Imai K, Kagawa Y, Inoue Y. Impact of CYP2C19 phenotypes on clinical efficacy of stiripentol in Japanese patients with Dravet syndrome. Ther Drug Monit. 2019;15:8. https://doi.org/10.1097/ftd.0000000000000676 (Epub ahead of print).

    Article  Google Scholar 

  50. Perez J, Chiron C, Musial C, et al. Stiripentol: efficacy and tolerability in children with epilepsy. Epilepsia. 1999;40:1618–26.

    CAS  PubMed  Google Scholar 

  51. Chiron C, Marchand MC, Tran A, et al. Stiripentol in severe myoclonic epilepsy in infancy: a randomised placebo-controlled syndrome-dedicated trial. STICLO study group. Lancet. 2000;356:1638–42.

    CAS  PubMed  Google Scholar 

  52. Inoue Y, Ohtsuka Y, Group STPS. Effectiveness of add-on stiripentol to clobazam and valproate in Japanese patients with Dravet syndrome: additional supportive evidence. Epilepsy Res. 2014;108:725–31.

    Google Scholar 

  53. Wirrell EC, Laux L, Franz DN, et al. Stiripentol in Dravet syndrome: results of a retrospective U.S. study. Epilepsia. 2013;54:1595–604.

    CAS  PubMed  Google Scholar 

  54. Balestrini S, Sisodiya SM. Audit of use of stiripentol in adults with Dravet syndrome. Acta Neurol Scand. 2017;135:73–9.

    CAS  PubMed  Google Scholar 

  55. Inoue Y, Ohtsuka Y, Group STPS. Long-term safety and efficacy of stiripentol for the treatment of Dravet syndrome: a multicenter, open-label study in Japan. Epilepsy Res. 2015;113:90–7.

    Google Scholar 

  56. Myers KA, Lightfoot P, Patil SG, Cross JH, Scheffer IE. Stiripentol efficacy and safety in Dravet syndrome: a 12-year observational study. Dev Med Child Neurol. 2018;60:574–8.

    PubMed  Google Scholar 

  57. Chiron C, Helias M, Kaminska A, et al. Do children with Dravet syndrome continue to benefit from stiripentol for long through adulthood? Epilepsia. 2018;59:1705–17.

    CAS  PubMed  Google Scholar 

  58. Centers for Disease Control and Prevention. Cardiac valvulopathy associated with exposure to fenfluramine or dexfenfluramine: us Department of Health and Human Services interim public health recommendations, November 1997. JAMA. 1997;278:1729–31.

    Google Scholar 

  59. Zhang Y, Kecskes A, Copmans D, et al. Pharmacological characterization of an antisense knockdown zebrafish model of Dravet syndrome: inhibition of epileptic seizures by the serotonin agonist fenfluramine. PLoS One. 2015;10:e0125898.

    PubMed  PubMed Central  Google Scholar 

  60. Sourbron J, Smolders I, de Witte P, Lagae L. Pharmacological analysis of the anti-epileptic mechanisms of fenfluramine in scn1a mutant zebrafish. Front Pharmacol. 2017;8:191.

    PubMed  PubMed Central  Google Scholar 

  61. Gastaut H. Efficacy of fenfluramine for the treatment of compulsive behavior disorders in psychotic children. Press Med. 1984;13:2024–5.

    CAS  Google Scholar 

  62. Aicardi J, Gastaut H. Treatment of self-induced photosensitive epilepsy with fenfluramine. N Engl J Med. 1985;313:1419.

    CAS  PubMed  Google Scholar 

  63. Boel M, Casaer P. Add-on therapy of fenfluramine in intractable self-induced epilepsy. Neuropediatrics. 1996;27:171–3.

    CAS  PubMed  Google Scholar 

  64. Casaer P, Boel M. Fenfluramine as a potential antiepileptic drug. Epilepsia. 2002;43:205–6.

    PubMed  Google Scholar 

  65. Ceulemans B, Boel M, Leyssens K, et al. Successful use of fenfluramine as an add-on treatment for Dravet syndrome. Epilepsia. 2012;53:1131–9.

    CAS  PubMed  Google Scholar 

  66. Schoonjans A, Paelinck BP, Marchau F, et al. Low-dose fenfluramine significantly reduces seizure frequency in Dravet syndrome: a prospective study of a new cohort of patients. Eur J Neurol. 2017;24:309–14.

    CAS  PubMed  Google Scholar 

  67. Schoonjans AS, Marchau F, Paelinck BP, et al. Cardiovascular safety of low-dose fenfluramine in Dravet syndrome: a review of its benefit-risk profile in a new patient population. Curr Med Res Opin. 2017;33:1773–81.

    CAS  PubMed  Google Scholar 

  68. Lagae L, Sullivan J, Cross JH, et al. ZX008 (fenfluramine) in Dravet syndrome: results of a phase 3, randomized, double-blind, placebo-controlled trial. Washington, DC: American Epilepsy Society; 2017.

    Google Scholar 

  69. Nabbout R, Auvin S, Zuberi SM, Villeneuve N, Sanchez-Carpintero R, Stephani U, et al. Fenfluramine (Fintepla®) reduces convulsive seizure frequency in Dravet syndrome patients receiving an antiepileptic drug treatment regimen containing stiripentol: a phase 3, randomized, placebo-controlled clinical trial. New Orleans: American Epilepsy Society; 2018.

    Google Scholar 

  70. Rubino C, Boyd B, Zhang L, Ismail M, Trang M, Farfel G. ZX008 (fenfluramine oral solution) as adjunctive therapy for Dravet syndrome seizures: a pharmacometric approach to quantify potential drug-drug interactions to support phase 3 dose selection. Washington, DC: American Epilepsy Society; 2017.

    Google Scholar 

  71. Lai WM, Pringsheim M, Farfel G, Galer B, Morrison G, Gammaitoni A, et al. Long-term cardiovascular safety of fenfluramine HCl (Fintepla®) in the treatment of Dravet syndrome: interim analysis of an open-label safety extension study. New Orleans: American Epilepsy Society; 2018.

    Google Scholar 

  72. Lagae L, Sullivan J, Nabbout R, Pringsheim M, Farfel G, Galer B, et al. Fenfluramine HCl (Fintepla®) provides long-term clinically meaningful reduction in seizure frequency: results of an open-label extension study. New Orleans: American Epilepsy Society; 2018.

    Google Scholar 

  73. Friedman D, Devinsky O. Cannabinoids in the treatment of eilepsy. N Engl J Med. 2015;373:1048–58.

    CAS  PubMed  Google Scholar 

  74. Devinsky O, Marsh E, Friedman D, et al. Cannabidiol in patients with treatment-resistant epilepsy: an open-label interventional trial. Lancet Neurol. 2016;15:270–8.

    CAS  PubMed  Google Scholar 

  75. Devinsky O, Cross JH, Laux L, et al. Trial of cannabidiol for drug-resistant seizures in the Dravet syndrome. N Engl J Med. 2017;376:2011–20.

    CAS  PubMed  Google Scholar 

  76. Devinsky O, Nabbout R, Miller I, et al. Long-term cannabidiol treatment in patients with Dravet syndrome: an open-label extension trial. Epilepsia. 2019;60:294–302.

    CAS  PubMed  Google Scholar 

  77. Wolff M, Casse-Perrot C, Dravet C. Severe myoclonic epilepsy of infants (Dravet syndrome): natural history and neuropsychological findings. Epilepsia. 2006;47(Suppl. 2):45–8.

    PubMed  Google Scholar 

  78. Coppola G, Capovilla G, Montagnini A, et al. Topiramate as add-on drug in severe myoclonic epilepsy in infancy: an Italian multicenter open trial. Epilepsy Res. 2002;49:45–8.

    CAS  PubMed  Google Scholar 

  79. Nieto-Barrera M, Candau R, Nieto-Jimenez M, Correa A, del Portal LR. Topiramate in the treatment of severe myoclonic epilepsy in infancy. Seizure. 2000;9:590–4.

    CAS  PubMed  Google Scholar 

  80. Kroll-Seger J, Portilla P, Dulac O, Chiron C. Topiramate in the treatment of highly refractory patients with Dravet syndrome. Neuropediatrics. 2006;37:325–9.

    CAS  PubMed  Google Scholar 

  81. Takahashi H, Takahashi Y, Mine J, et al. Effectiveness of topiramate in eleven patients with Dravet syndrome. No To Hattatsu. 2010;42:273–6.

    PubMed  Google Scholar 

  82. Striano P, Coppola A, Pezzella M, et al. An open-label trial of levetiracetam in severe myoclonic epilepsy of infancy. Neurology. 2007;69:250–4.

    CAS  PubMed  Google Scholar 

  83. Liu F, Peng J, Zhu C, et al. Efficacy of the ketogenic diet in Chinese children with Dravet syndrome: a focus on neuropsychological development. Epilepsy Behav. 2019;92:98–102.

    PubMed  Google Scholar 

  84. Caraballo RH. Nonpharmacologic treatments of Dravet syndrome: focus on the ketogenic diet. Epilepsia. 2011;52(Suppl. 2):79–82.

    PubMed  Google Scholar 

  85. Yan N, Xin-Hua W, Lin-Mei Z, et al. Prospective study of the efficacy of a ketogenic diet in 20 patients with Dravet syndrome. Seizure. 2018;60:144–8.

    PubMed  Google Scholar 

  86. Laux L, Blackford R. The ketogenic diet in Dravet syndrome. J Child Neurol. 2013;28:1041–4.

    PubMed  Google Scholar 

  87. Nabbout R, Copioli C, Chipaux M, et al. Ketogenic diet also benefits Dravet syndrome patients receiving stiripentol: a prospective pilot study. Epilepsia. 2011;52:e54–7.

    PubMed  Google Scholar 

  88. Kang HC, Kim YJ, Kim DW, Kim HD. Efficacy and safety of the ketogenic diet for intractable childhood epilepsy: korean multicentric experience. Epilepsia. 2005;46:272–9.

    CAS  PubMed  Google Scholar 

  89. Kim JM. Ketogenic diet: old treatment, new beginning. Clin Neurophysiol Pract. 2017;2:161–2.

    PubMed  PubMed Central  Google Scholar 

  90. Ali R, Elsayed M, Kaur M, et al. Use of social media to assess the effectiveness of vagal nerve stimulation in Dravet syndrome: a caregiver’s perspective. J Neurol Sci. 2017;375:146–9.

    PubMed  Google Scholar 

  91. Orosz I, McCormick D, Zamponi N, et al. Vagus nerve stimulation for drug-resistant epilepsy: a European long-term study up to 24 months in 347 children. Epilepsia. 2014;55:1576–84.

    PubMed  Google Scholar 

  92. Bremer A, Lossius MI, Nakken KO. Dravet syndrome; considerable delay in making the diagnosis. Acta Neurol Scand. 2012;125:359–62.

    CAS  PubMed  Google Scholar 

  93. Zamponi N, Passamonti C, Cappanera S, Petrelli C. Clinical course of young patients with Dravet syndrome after vagal nerve stimulation. Eur J Paediatr Neurol. 2011;15:8–14.

    PubMed  Google Scholar 

  94. Griffin A, Hamling KR, Knupp K, Hong S, Lee LP, Baraban SC. Clemizole and modulators of serotonin signalling suppress seizures in Dravet syndrome. Brain. 2017;140:669–83.

    PubMed  PubMed Central  Google Scholar 

  95. Baraban SC, Dinday MT, Hortopan GA. Drug screening in Scn1a zebrafish mutant identifies clemizole as a potential Dravet syndrome treatment. Nat Commun. 2013;4:2410.

    PubMed  Google Scholar 

  96. Wong JC, Dutton SB, Collins SD, Schachter S, Escayg A. Huperzine A provides robust and sustained protection against induced seizures in Scn1a mutant mice. Front Pharmacol. 2016;7:357.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Dinday MT, Baraban SC. Large-scale phenotype-based antiepileptic drug screening in a zebrafish model of Dravet syndrome. eNeuro. 2015. https://doi.org/10.1523/eneuro.0068-15.2015.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elaine C. Wirrell.

Ethics declarations

Funding

No funding was received for the preparation of this article.

Conflict of interest

Elaine C. Wirrell has received consulting fees from Biocodex. Rima Nabbout has received consulting fees from Biocodex, Zogenix, GW Pharma, Nutricia, Novartis, Stoke, Takeda, Biogene, UCB, Eisai, and Advicenne.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wirrell, E.C., Nabbout, R. Recent Advances in the Drug Treatment of Dravet Syndrome. CNS Drugs 33, 867–881 (2019). https://doi.org/10.1007/s40263-019-00666-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-019-00666-8

Navigation