Tizzano EF, Zafeiriou D. Prenatal aspects in spinal muscular atrophy: from early detection to early presymptomatic intervention. Eur J Paediatr Neurol 2018;22(6):944–50.
Article
Google Scholar
Govoni A, et al. Time is motor neuron: therapeutic window and its correlation with pathogenetic mechanisms in spinal muscular atrophy. Mol Neurobiol. 2018;55(8):6307–18.
CAS
Article
Google Scholar
Verhaart IEC, et al. Prevalence, incidence and carrier frequency of 5q-linked spinal muscular atrophy—a literature review. Orphanet J Rare Dis. 2017;12(1):124.
Article
Google Scholar
Mostacciuolo ML, et al. Epidemiology of spinal muscular atrophies in a sample of the Italian population. Neuroepidemiology. 1992;11(1):34–8.
CAS
Article
Google Scholar
Wirth B. An update of the mutation spectrum of the survival motor neuron gene (SMN1) in autosomal recessive spinal muscular atrophy (SMA). Hum Mutat. 2000;15(3):228–37.
CAS
Article
Google Scholar
Howell MD, Singh NN, Singh RN. Advances in therapeutic development for spinal muscular atrophy. Future Med Chem. 2014;6(9):1081–99.
CAS
Article
Google Scholar
Russman BS. Spinal muscular atrophy: clinical classification and disease heterogeneity. J Child Neurol. 2007;22(8):946–51.
Article
Google Scholar
Arnold WD, Burghes AHM. Spinal muscular atrophy: development and implementation of potential treatments. Ann Neurol. 2013;74(3):348–62.
CAS
Article
Google Scholar
Lefebvre S, et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell. 1995;80(1):155–65.
CAS
Article
Google Scholar
Melki J, et al. Prenatal prediction of Werdnig-Hoffmann disease using linked polymorphic DNA probes. J Med Genet. 1992;29(3):171–4.
CAS
Article
Google Scholar
Brzustowicz L, et al. Genetic mapping of chronic childhood-onset spinal muscular atrophy to chromosome 5q1 1.2–13.3. Nature. 1990;344(6266):540.
CAS
Article
Google Scholar
Hahnen E, et al. Molecular analysis of candidate genes on chromosome 5q13 in autosomal recessive spinal muscular atrophy: evidence of homozygous deletions of the SMN gene in unaffected individuals. Hum Mol Genet. 1995;4(10):1927–33.
CAS
Article
Google Scholar
Finkel RS, et al. Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. Lancet. 2016;388(10063):3017–26.
CAS
Article
Google Scholar
Corey DR. Nusinersen, an antisense oligonucleotide drug for spinal muscular atrophy. Nat Neurosci. 2017;20(4):497.
CAS
Article
Google Scholar
Kernochan LE, et al. The role of histone acetylation in SMN gene expression. Hum Mol Genet. 2005;14(9):1171–82.
CAS
Article
Google Scholar
Perucca E. Pharmacological and therapeutic properties of valproate: a summary after 35 years of clinical experience. CNS Drugs. 2002;16(10):695–714.
CAS
Article
Google Scholar
Balfour JA, Bryson HM. Valproic acid. CNS Drugs. 1994;2(2):144–73.
Article
Google Scholar
Löscher W. Basic pharmacology of valproate. CNS Drugs. 2002;16(10):669–94.
Article
Google Scholar
Sumner CJ, et al. Valproic acid increases SMN levels in spinal muscular atrophy patient cells. Ann Neurol Off J Am Neurol Assoc Child Neurol Soc. 2003;54(5):647–54.
CAS
Google Scholar
Brichta L, et al. Valproic acid increases the SMN2 protein level: a well-known drug as a potential therapy for spinal muscular atrophy. Hum Mol Genet. 2003;12(19):2481–9.
CAS
Article
Google Scholar
Tsai L-K, et al. Establishing a standardized therapeutic testing protocol for spinal muscular atrophy. Neurobiol Dis. 2006;24(2):286–95.
CAS
Article
Google Scholar
Weihl CC, Connolly AM, Pestronk A. Valproate may improve strength and function in patients with type III/IV spinal muscle atrophy. Neurology. 2006;67(3):500–1.
CAS
Article
Google Scholar
Tsai LK, et al. Valproic acid treatment in six patients with spinal muscular atrophy. Eur J Neurol. 2007;14(12):e8–9.
Article
Google Scholar
Liberati A, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009;21(339):b2700.
Article
Google Scholar
Fleiss JL, Levin B, Paik MC. Statistical methods for rates and proportions, 3rd edn. Hoboken: John Wiley & Sons; 2013.
Google Scholar
Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics 1977;33(1):159–74.
CAS
Article
Google Scholar
Higgins JPT, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928.
Article
Google Scholar
Sterne JAC, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016;355:i4919.
Article
Google Scholar
Higgins JP, Green S. Cochrane handbook for systematic reviews of interventions, vol. 4. New York: Wiley; 2011.
Google Scholar
Wan X, et al. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014;14(1):135.
Article
Google Scholar
Balk EM, et al. AHRQ methods for effective health care. In: Empirical assessment of within-arm correlation imputation in trials of continuous outcomes. Rockville (MD): Agency for Healthcare Research and Quality (US); 2012.
Google Scholar
Brichta L, et al. In vivo activation of SMN in spinal muscular atrophy carriers and patients treated with valproate. Ann Neurol. 2006;59(6):970–5.
CAS
Article
Google Scholar
Darbar IA, et al. Evaluation of muscle strength and motor abilities in children with type II and III spinal muscle atrophy treated with valproic acid. BMC Neurol. 2011;11(1):36.
CAS
Article
Google Scholar
Kissel JT, et al. SMA valiant trial: a prospective, double-blind, placebo-controlled trial of valproic acid in ambulatory adults with spinal muscular atrophy. Muscle Nerve. 2014;49(2):187–92.
CAS
Article
Google Scholar
Kissel JT, et al. SMA carni-VAL trial part II: a prospective, single-armed trial of l-carnitine and valproic acid in ambulatory children with spinal muscular atrophy. PLoS One. 2011;6(7):e21296.
CAS
Article
Google Scholar
Piepers S, et al. Quantification of SMN protein in leucocytes from spinal muscular atrophy patients: effects of treatment with valproic acid. J Neurol Neurosurg Psychiatry. 2011;82(8):850–2.
Article
Google Scholar
Renusch SR, et al. Spinal Muscular Atrophy biomarker measurements from blood samples in a clinical trial of valproic acid in ambulatory adults. J Neuromuscul Dis. 2015;2(2):119–30.
Article
Google Scholar
Saito T, et al. A Study of valproic acid for patients with spinal muscular atrophy. Neurol Clin Neurosci. 2015;3(2):49–57.
CAS
Article
Google Scholar
Swoboda KJ, et al. SMA CARNI-VAL trial part I: double-blind, randomized, placebo-controlled trial of L-carnitine and valproic acid in spinal muscular atrophy. PLoS One. 2010;5(8):e12140.
Article
Google Scholar
Swoboda KJ, et al. Phase II open label study of valproic acid in spinal muscular atrophy. PLoS One. 2009;4(5):e5268.
Article
Google Scholar
Krosschell KJ, et al. Clinical trial of l-carnitine and valproic acid in spinal muscular atrophy type I. Muscle Nerve. 2018;57(2):193–9.
CAS
Article
Google Scholar
Krosschell KJ, et al. Reliability of the Modified Hammersmith Functional Motor Scale in young children with spinal muscular atrophy. Muscle Nerve. 2011;44(2):246–51.
Article
Google Scholar
Sumner CJ, et al. Valproic acid increases SMN levels in spinal muscular atrophy patient cells. Ann Neurol. 2003;54(5):647–54.
CAS
Article
Google Scholar
Sugai F, et al. Benefit of valproic acid in suppressing disease progression of ALS model mice. Eur J Neurosci. 2004;20(11):3179–83.
Article
Google Scholar
Bezkorovainy A. Carnosine, carnitine, and Vladimir Gulevich. J Chem Educ. 1974;51:652–4.
CAS
Article
Google Scholar
Winter BK, Fiskum G, Gallo LL. Effects of l-carnitine on serum triglyceride and cytokine levels in rat models of cachexia and septic shock. Br J Cancer. 1995;72:1173–9.
CAS
Article
Google Scholar
Lheureux PE, Hantson P. Carnitine in the treatment of valproic acid-induced toxicity. Clin Toxicol (Phila). 2009;47:101–11.
CAS
Article
Google Scholar
Silva MF, Aires CC, Luis PB. Valproic acid metabolism and its effects on mitochondrial fatty acid oxidation. A review. J Inherit Metabol Dis. 2008;31:205–16.
CAS
Article
Google Scholar
Kang S-W, Bach JR. Maximum insufflation capacity: vital capacity and cough flows in neuromuscular disease. Am J Phys Med Rehabil. 2000;79(3):222–7.
CAS
Article
Google Scholar
Crawford TO, et al. Abnormal fatty acid metabolism in childhood spinal muscular atrophy. Ann Neurol. 1999;45(3):337–43.
CAS
Article
Google Scholar
Tein I, et al. Fatty acid oxidation abnormalities in childhood-onset spinal muscular atrophy: primary or secondary defect(s)? Pediatr Neurol. 1995;12(1):21–30.
CAS
Article
Google Scholar
Coulter D. Carnitine deficiency: a possible mechanism for valproate hepatotoxicity. Lancet. 1984;323(8378):689.
Article
Google Scholar
Garbes L, et al. VPA response in SMA is suppressed by the fatty acid translocase CD36. Hum Mol Genet. 2013;22(2):398–407.
CAS
Article
Google Scholar