Hardy J, Bogdanovic N, Winblad B, Portelius E, Andreasen N, Cedazo-Minguez A, et al. Pathways to Alzheimer’s disease. J Intern Med. 2014;275(3):296–303.
Article
PubMed
CAS
Google Scholar
Bloom GS. Amyloid-beta and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol. 2014;71(4):505–8.
Article
PubMed
Google Scholar
Finch CE, Morgan TE. Systemic inflammation, infection, ApoE alleles, and Alzheimer disease: a position paper. Curr Alzheimer Res. 2007;4(2):185–9.
Article
PubMed
CAS
Google Scholar
Pohanka M. Alzheimer’s disease and oxidative stress: a review. Curr Med Chem. 2014;21(3):356–64.
Article
PubMed
CAS
Google Scholar
Copani A, Uberti D, Sortino MA, Bruno V, Nicoletti F, Memo M. Activation of cell-cycle-associated proteins in neuronal death: a mandatory or dispensable path? Trends Neurosci. 2001;24(1):25–31.
Article
PubMed
CAS
Google Scholar
Herrup K, Neve R, Ackerman SL, Copani A. Divide and die: cell cycle events as triggers of nerve cell death. J Neurosci. 2004;24(42):9232–9.
Article
PubMed
CAS
PubMed Central
Google Scholar
Husseman JW, Nochlin D, Vincent I. Mitotic activation: a convergent mechanism for a cohort of neurodegenerative diseases. Neurobiol Aging. 2000;21(6):815–28.
Article
PubMed
CAS
Google Scholar
Howard R, McShane R, Lindesay J, Ritchie C, Baldwin A, Barber R, et al. Donepezil and memantine for moderate-to-severe Alzheimer’s disease. N Engl J Med. 2012;366(10):893–903.
Article
PubMed
CAS
Google Scholar
Hyde C, Peters J, Bond M, Rogers G, Hoyle M, Anderson R, et al. Evolution of the evidence on the effectiveness and cost-effectiveness of acetylcholinesterase inhibitors and memantine for Alzheimer’s disease: systematic review and economic model. Age Ageing. 2013;42(1):14–20.
Article
PubMed
Google Scholar
Bolognesi ML, Rosini M, Andrisano V, Bartolini M, Minarini A, Tumiatti V, et al. MTDL design strategy in the context of Alzheimer’s disease: from lipocrine to memoquin and beyond. Curr Pharm Des. 2009;15(6):601–13.
Article
PubMed
CAS
Google Scholar
Gonzalez-Naranjo P, Perez-Macias N, Campillo NE, Perez C, Aran VJ, Giron R, et al. Cannabinoid agonists showing BuChE inhibition as potential therapeutic agents for Alzheimer’s disease. Eur J Med Chem. 2014;12(73):56–72.
Article
CAS
Google Scholar
Campillo NE, Paez JA. Cannabinoid system in neurodegeneration: new perspectives in Alzheimer’s disease. Mini Rev Med Chem. 2009;9(5):539–59.
Article
PubMed
CAS
Google Scholar
Galiegue S, Mary S, Marchand J, Dussossoy D, Carriere D, Carayon P, et al. Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. Eur J Biochem. 1995;232(1):54–61.
Article
PubMed
CAS
Google Scholar
den Boon FS, Chameau P, Schaafsma-Zhao Q, van Aken W, Bari M, Oddi S, et al. Excitability of prefrontal cortical pyramidal neurons is modulated by activation of intracellular type-2 cannabinoid receptors. Proc Natl Acad Sci USA. 2012;109(9):3534–9.
Article
Google Scholar
Duff G, Argaw A, Cecyre B, Cherif H, Tea N, Zabouri N, et al. Cannabinoid receptor CB2 modulates axon guidance. PLoS One. 2013;8(8):e70849.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li Y, Kim J. Neuronal expression of CB2 cannabinoid receptor mRNAs in the mouse hippocampus. Neuroscience. 2015;17(311):253–67.
Article
CAS
Google Scholar
Zhang HY, Gao M, Liu QR, Bi GH, Li X, Yang HJ, et al. Cannabinoid CB2 receptors modulate midbrain dopamine neuronal activity and dopamine-related behavior in mice. Proc Natl Acad Sci USA. 2014;111(46):E5007–15.
Article
PubMed
CAS
PubMed Central
Google Scholar
Li Y, Kim J. CB2 cannabinoid receptor knockout in mice impairs contextual long-term memory and enhances spatial working memory. Neural Plast. 2016;2016:9817089.
PubMed
Google Scholar
Aso E, Ferrer I. CB2 cannabinoid receptor as potential target against Alzheimer’s disease. Front Neurosci. 2016;10:243.
Article
PubMed
PubMed Central
Google Scholar
Perry EK, Perry RH, Blessed G, Tomlinson BE. Changes in brain cholinesterases in senile dementia of Alzheimer type. Neuropathol Appl Neurobiol. 1978;4(4):273–7.
Article
PubMed
CAS
Google Scholar
Davies P, Maloney AJ. Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet. 1976;2(8000):1403.
Article
PubMed
CAS
Google Scholar
Lane RM, Potkin SG, Enz A. Targeting acetylcholinesterase and butyrylcholinesterase in dementia. Int J Neuropsychopharmacol. 2006;9(1):101–24.
Article
PubMed
CAS
Google Scholar
Lane RM, He Y. Emerging hypotheses regarding the influences of butyrylcholinesterase-K variant, APOE epsilon 4, and hyperhomocysteinemia in neurodegenerative dementias. Med Hypotheses. 2009;73(2):230–50.
Article
PubMed
CAS
Google Scholar
Nordberg A, Ballard C, Bullock R, Darreh-Shori T, Somogyi M. A review of butyrylcholinesterase as a therapeutic target in the treatment of Alzheimer’s disease. Prim Care Companion CNS Disord. 2013;15(2). https://doi.org/10.4088/pcc.12r01412.
Munoz U, de Las Cuevas N, Bartolome F, Hermida OG, Bermejo F, Martin-Requero A. The cyclopentenone 15-deoxy-delta(12,14)-prostaglandin J2 inhibits G1/S transition and retinoblastoma protein phosphorylation in immortalized lymphocytes from Alzheimer’s disease patients. Exp Neurol. 2005;195(2):508–17.
Article
PubMed
CAS
Google Scholar
de las Cuevas N, Urcelay E, Hermida OG, Saiz-Diaz RA, Bermejo F, Ayuso MS, et al. Ca2+/calmodulin-dependent modulation of cell cycle elements pRb and p27kip1 involved in the enhanced proliferation of lymphoblasts from patients with Alzheimer dementia. Neurobiol Dis. 2003;13(3):254–63.
Article
PubMed
CAS
Google Scholar
Munoz U, Bartolome F, Bermejo F, Martin-Requero A. Enhanced proteasome-dependent degradation of the CDK inhibitor p27(kip1) in immortalized lymphocytes from Alzheimer’s dementia patients. Neurobiol Aging. 2008;29(10):1474–84.
Article
PubMed
CAS
Google Scholar
Hoglinger GU, Breunig JJ, Depboylu C, Rouaux C, Michel PP, Alvarez-Fischer D, et al. The pRb/E2F cell-cycle pathway mediates cell death in Parkinson’s disease. Proc Natl Acad Sci USA. 2007;104(9):3585–90.
Article
PubMed
CAS
PubMed Central
Google Scholar
Mosch B, Morawski M, Mittag A, Lenz D, Tarnok A, Arendt T. Aneuploidy and DNA replication in the normal human brain and Alzheimer’s disease. J Neurosci. 2007;27(26):6859–67.
Article
PubMed
CAS
PubMed Central
Google Scholar
Yang Y, Geldmacher DS, Herrup K. DNA replication precedes neuronal cell death in Alzheimer’s disease. J Neurosci. 2001;21(8):2661–8.
Article
PubMed
CAS
PubMed Central
Google Scholar
Zhu X, Raina AK, Perry G, Smith MA. Alzheimer’s disease: the two-hit hypothesis. Lancet Neurol. 2004;3(4):219–26.
Article
PubMed
CAS
Google Scholar
Munoz U, Bartolome F, Esteras N, Bermejo-Pareja F, Martin-Requero A. On the mechanism of inhibition of p27 degradation by 15-deoxy-Delta 12,14-prostaglandin J2 in lymphoblasts of Alzheimer’s disease patients. Cell Mol Life Sci. 2008;65(21):3507–19.
Article
PubMed
CAS
Google Scholar
Sala SG, Munoz U, Bartolome F, Bermejo F, Martin-Requero A. HMG-CoA reductase inhibitor simvastatin inhibits cell cycle progression at the G1/S checkpoint in immortalized lymphocytes from Alzheimer’s disease patients independently of cholesterol-lowering effects. J Pharmacol Exp Ther. 2008;324(1):352–9.
Article
PubMed
CAS
Google Scholar
Bartolome F, Munoz U, Esteras N, Alquezar C, Collado A, Bermejo-Pareja F, et al. Simvastatin overcomes the resistance to serum withdrawal-induced apoptosis of lymphocytes from Alzheimer’s disease patients. Cell Mol Life Sci. 2010;67(24):4257–68.
Article
PubMed
CAS
Google Scholar
Guerra APJ, Campillo NE. Artificial neural networks in ADME modeling: prediction of blood-brain barrier permeation. QSAR Comb Sci. 2008;27:586–94.
Article
CAS
Google Scholar
Ibarreta D, Parrilla R, Ayuso MS. Altered Ca2+ homeostasis in lymphoblasts from patients with late-onset Alzheimer disease. Alzheimer Dis Assoc Disord. 1997;11(4):220–7.
PubMed
CAS
Google Scholar
Pruszak J, Just L, Isacson O, Nikkhah G. Isolation and culture of ventral mesencephalic precursor cells and dopaminergic neurons from rodent brains. Curr Protoc Stem Cell Biology. 2009;Chapter 2:Unit 2D.5.
Google Scholar
Yin LH, Shen H, Diaz-Ruiz O, Backman CM, Bae E, Yu SJ, et al. Early post-treatment with 9-cis retinoic acid reduces neurodegeneration of dopaminergic neurons in a rat model of Parkinson’s disease. BMC Neurosci. 2012;06(13):120.
Article
CAS
Google Scholar
Denizot F, Lang R. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods. 1986;89(2):271–7.
Article
PubMed
CAS
Google Scholar
Alquezar C, Esteras N, de la Encarnacion A, Alzualde A, Moreno F, Lopez de Munain A, et al. PGRN haploinsufficiency increased Wnt5a signaling in peripheral cells from frontotemporal lobar degeneration-progranulin mutation carriers. Neurobiol Aging. 2014;35(4):886–98.
Article
PubMed
CAS
Google Scholar
Bolos M, Spuch C, Ordonez-Gutierrez L, Wandosell F, Ferrer I, Carro E. Neurogenic effects of beta-amyloid in the choroid plexus epithelial cells in Alzheimer’s disease. Cell Mol Life Sci. 2013;70(15):2787–97.
Article
PubMed
CAS
Google Scholar
Qian YH, Xiao Q, Xu J. The protective effects of tanshinone IIA on beta-amyloid protein (1-42)-induced cytotoxicity via activation of the Bcl-xL pathway in neuron. Brain Res Bull. 2012;88(4):354–8.
Article
PubMed
CAS
Google Scholar
Krishan A. Rapid flow cytofluorometric analysis of mammalian cell cycle by propidium iodide staining. J Cell Biol. 1975;66(1):188–93.
Article
PubMed
CAS
Google Scholar
Copani A, Condorelli F, Caruso A, Vancheri C, Sala A, Giuffrida Stella AM, et al. Mitotic signaling by beta-amyloid causes neuronal death. FASEB J. 1999;13(15):2225–34.
Article
PubMed
CAS
Google Scholar
Benito C, Nunez E, Tolon RM, Carrier EJ, Rabano A, Hillard CJ, et al. Cannabinoid CB2 receptors and fatty acid amide hydrolase are selectively overexpressed in neuritic plaque-associated glia in Alzheimer’s disease brains. J Neurosci. 2003;23(35):11136–41.
Article
PubMed
CAS
PubMed Central
Google Scholar
Docagne F, Mestre L, Loria F, Hernangomez M, Correa F, Guaza C. Therapeutic potential of CB2 targeting in multiple sclerosis. Expert Opin Ther Targets. 2008;12(2):185–95.
Article
PubMed
CAS
Google Scholar
Palazuelos J, Aguado T, Pazos MR, Julien B, Carrasco C, Resel E, et al. Microglial CB2 cannabinoid receptors are neuroprotective in Huntington’s disease excitotoxicity. Brain. 2009;132(Pt 11):3152–64.
Article
PubMed
Google Scholar
Wu J, Bie B, Yang H, Xu JJ, Brown DL, Naguib M. Suppression of central chemokine fractalkine receptor signaling alleviates amyloid-induced memory deficiency. Neurobiol Aging. 2013;34(12):2843–52.
Article
PubMed
CAS
Google Scholar
Aso E, Sanchez-Pla A, Vegas-Lozano E, Maldonado R, Ferrer I. Cannabis-based medicine reduces multiple pathological processes in AbetaPP/PS1 mice. J Alzheimers Dis. 2015;43(3):977–91.
Article
PubMed
CAS
Google Scholar
Kofalvi A, Lemos C, Martin-Moreno AM, Pinheiro BS, Garcia-Garcia L, Pozo MA, et al. Stimulation of brain glucose uptake by cannabinoid CB2 receptors and its therapeutic potential in Alzheimer’s disease. Neuropharmacology. 2016;110(1):519–29.
Article
PubMed
CAS
Google Scholar
Mackie K. Cannabinoid receptors as therapeutic targets. Annu Rev Pharmacol Toxicol. 2006;46:101–22.
Article
PubMed
CAS
Google Scholar
Morris JK, Honea RA, Vidoni ED, Swerdlow RH, Burns JM. Is Alzheimer’s disease a systemic disease? Biochim Biophys Acta. 2014;1842(9):1340–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Leuner K, Schulz K, Schutt T, Pantel J, Prvulovic D, Rhein V, et al. Peripheral mitochondrial dysfunction in Alzheimer’s disease: focus on lymphocytes. Mol Neurobiol. 2012;46(1):194–204.
Article
PubMed
CAS
Google Scholar
Wojsiat J, Prandelli C, Laskowska-Kaszub K, Martin-Requero A, Wojda U. Oxidative stress and aberrant cell cycle in Alzheimer’s disease lymphocytes: diagnostic prospects. J Alzheimers Dis. 2015;46(2):329–50.
Article
PubMed
Google Scholar
Nagy Z. The dysregulation of the cell cycle and the diagnosis of Alzheimer’s disease. Biochim Biophys Acta. 2007;1772(4):402–8.
Article
PubMed
CAS
Google Scholar
Bartolome F, de Las Cuevas N, Munoz U, Bermejo F, Martin-Requero A. Impaired apoptosis in lymphoblasts from Alzheimer’s disease patients: cross-talk of Ca2+/calmodulin and ERK1/2 signaling pathways. Cell Mol Life Sci. 2007;64(11):1437–48.
Article
PubMed
CAS
Google Scholar
Malfitano AM, Matarese G, Bifulco M. From cannabis to endocannabinoids in multiple sclerosis: a paradigm of central nervous system autoimmune diseases. Curr Drug Targets CNS Neurol Disord. 2005;4(6):667–75.
Article
PubMed
CAS
Google Scholar
Preet A, Qamri Z, Nasser MW, Prasad A, Shilo K, Zou X, et al. Cannabinoid receptors, CB1 and CB2, as novel targets for inhibition of non-small cell lung cancer growth and metastasis. Cancer Prev Res (Phila). 2011;4(1):65–75.
Article
CAS
Google Scholar
Borner C, Smida M, Hollt V, Schraven B, Kraus J. Cannabinoid receptor type 1- and 2-mediated increase in cyclic AMP inhibits T cell receptor-triggered signaling. J Biol Chem. 2009;284(51):35450–60.
Article
PubMed
PubMed Central
CAS
Google Scholar
Perez-Gomez E, Andradas C, Blasco-Benito S, Caffarel MM, Garcia-Taboada E, Villa-Morales M, et al. Role of cannabinoid receptor CB2 in HER2 pro-oncogenic signaling in breast cancer. J Natl Cancer Inst. 2015;107(6):jdv077.
Article
CAS
Google Scholar
Chaudhuri P, Rosenbaum MA, Sinharoy P, Damron DS, Birnbaumer L, Graham LM. Membrane translocation of TRPC6 channels and endothelial migration are regulated by calmodulin and PI3 kinase activation. Proc Natl Acad Sci USA. 2016;113(8):2110–5.
Article
PubMed
CAS
PubMed Central
Google Scholar
Yang Y, Varvel NH, Lamb BT, Herrup K. Ectopic cell cycle events link human Alzheimer’s disease and amyloid precursor protein transgenic mouse models. J Neurosci. 2006;26(3):775–84.
Article
PubMed
CAS
PubMed Central
Google Scholar
Kamal MA, Qu X, Yu QS, Tweedie D, Holloway HW, Li Y, et al. Tetrahydrofurobenzofuran cymserine, a potent butyrylcholinesterase inhibitor and experimental Alzheimer drug candidate, enzyme kinetic analysis. J Neural Transm (Vienna). 2008;115(6):889–98.
Article
CAS
Google Scholar
Greig NH, Utsuki T, Ingram DK, Wang Y, Pepeu G, Scali C, et al. Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer beta-amyloid peptide in rodent. Proc Natl Acad Sci USA. 2005;102(47):17213–8.
Article
PubMed
CAS
PubMed Central
Google Scholar
Rickle A, Bogdanovic N, Volkman I, Winblad B, Ravid R, Cowburn RF. Akt activity in Alzheimer’s disease and other neurodegenerative disorders. Neuroreport. 2004;15(6):955–9.
Article
PubMed
CAS
Google Scholar
Griffin RJ, Moloney A, Kelliher M, Johnston JA, Ravid R, Dockery P, et al. Activation of Akt/PKB, increased phosphorylation of Akt substrates and loss and altered distribution of Akt and PTEN are features of Alzheimer’s disease pathology. J Neurochem. 2005;93(1):105–17.
Article
PubMed
CAS
Google Scholar
McKee AC, Kosik KS, Kennedy MB, Kowall NW. Hippocampal neurons predisposed to neurofibrillary tangle formation are enriched in type II calcium/calmodulin-dependent protein kinase. J Neuropathol Exp Neurol. 1990;49(1):49–63.
Article
PubMed
CAS
Google Scholar
Klegeris A, Bissonnette CJ, McGeer PL. Reduction of human monocytic cell neurotoxicity and cytokine secretion by ligands of the cannabinoid-type CB2 receptor. Br J Pharmacol. 2003;139(4):775–86.
Article
PubMed
PubMed Central
CAS
Google Scholar
Velez-Pardo C, Del Rio MJ. Avoidance of Abeta[(25-35)]/(H(2)O(2))-induced apoptosis in lymphocytes by the cannabinoid agonists CP55,940 and JWH-015 via receptor-independent and PI3K-dependent mechanisms: role of NF-kappaB and p53. Med Chem. 2006;2(5):471–9.
Article
PubMed
CAS
Google Scholar