Rebec GV, Pierce RC. A vitamin as neuromodulator—ascorbate release into the extracellular fluid of the brain regulates dopaminergic and glutamatergic transmission. Prog Neurobiol. 1994;43(6):537–65.
CAS
PubMed
Article
Google Scholar
Abdel-Wahab BA, Salama RH. Venlafaxine protects against stress-induced oxidative DNA damage in hippocampus during antidepressant testing in mice. Pharmacol Biochem Behav. 2011;100(1):59–65.
CAS
PubMed
Article
Google Scholar
Rice ME. Ascorbate regulation and its neuroprotective role in the brain. Trends Neurosci. 2000;23(5):209–16.
CAS
PubMed
Article
Google Scholar
Harrison FE, May JM. Vitamin C function in the brain: vital role of the ascorbate transporter SVCT2. Free Radic Biol Med. 2009;46(6):719–30.
CAS
PubMed
PubMed Central
Article
Google Scholar
Taylor C, Fricker AD, Devi LA, Gomes I. Mechanisms of action of antidepressants: from neurotransmitter systems to signaling pathways. Cell Signal. 2005;17(5):549–57.
CAS
PubMed
PubMed Central
Article
Google Scholar
Naidu KA. Vitamin C in human health and disease is still a mystery? An overview. Nutr J. 2003;2:7.
PubMed
PubMed Central
Article
Google Scholar
Schreiber M, Trojan S. Ascorbic acid in the brain. Physiol Res. 1991;40(4):413–8.
CAS
PubMed
Google Scholar
Padayatty SJ, Katz A, Wang Y, Eck P, Kwon O, Lee JH, et al. Vitamin C as an antioxidant: evaluation of its role in disease prevention. J Am Coll Nutr. 2003;22(1):18–35.
CAS
PubMed
Article
Google Scholar
Sies H. Strategies of antioxidant defense. Eur J Biochem. 1993;215(2):213–9.
CAS
PubMed
Article
Google Scholar
Coyle JT, Puttfarcken P. Oxidative stress, glutamate, and neurodegenerative disorders. Science. 1993;262(5134):689–95.
CAS
PubMed
Article
Google Scholar
Aguiar CC, Almeida AB, Araujo PV, de Abreu RN, Chaves EM, do Vale OC, et al. Oxidative stress and epilepsy: literature review. Oxid Med Cell Longev. 2012;2012:795259.
PubMed
PubMed Central
Article
CAS
Google Scholar
Gandhi S, Abramov AY. Mechanism of oxidative stress in neurodegeneration. Oxid Med Cell Longev. 2012;2012:428010.
PubMed
PubMed Central
Article
CAS
Google Scholar
Maes M, Galecki P, Chang YS, Berk M. A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35(3):676–92.
CAS
PubMed
Article
Google Scholar
Sorolla MA, Rodriguez-Colman MJ, Vall-llaura N, Tamarit J, Ros J, Cabiscol E. Protein oxidation in Huntington disease. Biofactors. 2012;38(3):173–85.
CAS
PubMed
Article
Google Scholar
Yao JK, Keshavan MS. Antioxidants, redox signaling, and pathophysiology in schizophrenia: an integrative view. Antioxid Redox Signal. 2011;15(7):2011–35.
CAS
PubMed
PubMed Central
Article
Google Scholar
Carey DJ, Todd MS. Schwann cell myelination in a chemically defined medium: demonstration of a requirement for additives that promote Schwann cell extracellular matrix formation. Brain Res. 1987;429(1):95–102.
CAS
PubMed
Article
Google Scholar
Eldridge CF, Bunge MB, Bunge RP, Wood PM. Differentiation of axon-related Schwann cells in vitro. I. Ascorbic acid regulates basal lamina assembly and myelin formation. J Cell Biol. 1987;105(2):1023–34.
CAS
PubMed
Article
Google Scholar
Goto K, Tanaka R. Ascorbic acid inhibition of Na, K-adenosine triphosphatase of rat forebrain without peroxidation of membrane lipids. Brain Res. 1981;207(1):239–44.
CAS
PubMed
Article
Google Scholar
Ng YC, Akera T, Han CS, Braselton WE, Kennedy RH, Temma K, et al. Ascorbic acid: an endogenous inhibitor of isolated Na+, K+-ATPase. Biochem Pharmacol. 1985;34(14):2525–30.
CAS
PubMed
Article
Google Scholar
Kuo CH, Yoshida H. Ascorbic acid, an endogenous factor required for acetylcholine release from the synaptic vesicles. Jpn J Pharmacol. 1980;30(4):481–92.
CAS
PubMed
Article
Google Scholar
Levine M, Asher A, Pollard H, Zinder O. Ascorbic acid and catecholamine secretion from cultured chromaffin cells. J Biol Chem. 1983;258(21):13111–5.
CAS
PubMed
Google Scholar
Grunewald RA. Ascorbic acid in the brain. Brain Res Brain Res Rev. 1993;18(1):123–33.
CAS
PubMed
Article
Google Scholar
Majewska MD, Bell JA, London ED. Regulation of the NMDA receptor by redox phenomena: inhibitory role of ascorbate. Brain Res. 1990;537(1–2):328–32.
CAS
PubMed
Article
Google Scholar
Wambebe C, Sokomba E. Some behavioural and EEG effects of ascorbic acid in rats. Psychopharmacology. 1986;89(2):167–70.
CAS
PubMed
Article
Google Scholar
Dai F, Yang JY, Gu PF, Hou Y, Wu CF. Effect of drug-induced ascorbic acid release in the striatum and the nucleus accumbens in hippocampus-lesioned rats. Brain Res. 2006;1125(1):163–70.
CAS
PubMed
Article
Google Scholar
Gu PF, Wu CF, Yang JY, Shang Y, Hou Y, Bi XL, et al. Differential effects of drug-induced ascorbic acid release in the striatum and nucleus accumbens of freely moving rats. Neurosci Lett. 2006;399(1–2):79–84.
CAS
PubMed
Article
Google Scholar
Laruelle M. Schizophrenia: from dopaminergic to glutamatergic interventions. Curr Opin Pharmacol. 2014;14:97–102.
CAS
PubMed
Article
Google Scholar
Lau CI, Wang HC, Hsu JL, Liu ME. Does the dopamine hypothesis explain schizophrenia? Rev Neurosci. 2013;24(4):389–400.
CAS
PubMed
Article
Google Scholar
Javitt DC. Glutamate and schizophrenia: phencyclidine, N-methyl-d-aspartate receptors, and dopamine-glutamate interactions. Int Rev Neurobiol. 2007;78:69–108.
CAS
PubMed
Article
Google Scholar
Zink M, Correll CU. Glutamatergic agents for schizophrenia: current evidence and perspectives. Expert Rev Clin Pharmacol. 2015;8(3):335–52.
CAS
PubMed
Article
Google Scholar
Moghaddam B, Javitt D. From revolution to evolution: the glutamate hypothesis of schizophrenia and its implication for treatment. Neuropsychopharmacology. 2012;37(1):4–15.
CAS
PubMed
Article
Google Scholar
Peleg-Raibstein D, Yee BK, Feldon J, Hauser J. The amphetamine sensitization model of schizophrenia: relevance beyond psychotic symptoms? Psychopharmacology. 2009;206(4):603–21.
CAS
PubMed
Article
Google Scholar
Powell SB, Geyer MA, Preece MA, Pitcher LK, Reynolds GP, Swerdlow NR. Dopamine depletion of the nucleus accumbens reverses isolation-induced deficits in prepulse inhibition in rats. Neuroscience. 2003;119(1):233–40.
CAS
PubMed
Article
Google Scholar
White LK, Maurer M, Kraft ME, Oh C, Rebec GV. Intrastriatal infusions of ascorbate antagonize the behavioral response to amphetamine. Pharmacol Biochem Behav. 1990;36(3):485–9.
CAS
PubMed
Article
Google Scholar
Giannini AJ, Loiselle RH, DiMarzio LR, Giannini MC. Augmentation of haloperidol by ascorbic acid in phencyclidine intoxication. Am J Psychiatry. 1987;144(9):1207–9.
CAS
PubMed
Article
Google Scholar
Tolbert LC, Thomas TN, Middaugh LD, Zemp JW. Effect of ascorbic acid on neurochemical, behavioral, and physiological systems mediated by catecholamines. Life Sci. 1979;25(26):2189–95.
CAS
PubMed
Article
Google Scholar
Heikkila RE, Cabbat FS, Manzino L. Differential inhibitory effects of ascorbic acid on the binding of dopamine agonists and antagonists to neostriatal membrane preparations: correlations with behavioral effects. Res Commun Chem Pathol Pharmacol. 1981;34(3):409–21.
CAS
PubMed
Google Scholar
Tolbert LC, Thomas TN, Middaugh LD, Zemp JW. Ascorbate blocks amphetamine-induced turning behavior in rats with unilateral nigro-striatal lesions. Brain Res Bull. 1979;4(1):43–8.
CAS
PubMed
Article
Google Scholar
Dorris RL. Ascorbic acid reduces accumulation of [3H]spiperone in mouse striatum in vivo. Proc Soc Exp Biol Med. 1987;186(1):13–6.
CAS
PubMed
Article
Google Scholar
Hadjiconstantinou M, Neff NH. Ascorbic acid could be hazardous to your experiments: a commentary on dopamine receptor binding studies with speculation on a role for ascorbic acid in neuronal function. Neuropharmacology. 1983;22(8):939–43.
CAS
PubMed
Article
Google Scholar
Basse-Tomusk A, Rebec GV. Corticostriatal and thalamic regulation of amphetamine-induced ascorbate release in the neostriatum. Pharmacol Biochem Behav. 1990;35(1):55–60.
CAS
PubMed
Article
Google Scholar
Gardiner TW, Armstrong-James M, Caan AW, Wightman RM, Rebec GV. Modulation of neostriatal activity by iontophoresis of ascorbic acid. Brain Res. 1985;344(1):181–5.
CAS
PubMed
Article
Google Scholar
Grunewald RA, O’Neill RD, Fillenz M, Albery WJ. The origin of circadian and amphetamine-induced changes in the extracellular concentration of brain ascorbate. Neurochem Int. 1983;5(6):773–8.
CAS
PubMed
Article
Google Scholar
O’Neill RD, Grunewald RA, Fillenz M, Albery WJ. The effect of unilateral cortical lesions on the circadian changes in rat striatal ascorbate and homovanillic acid levels measured in vivo using voltammetry. Neurosci Lett. 1983;42(1):105–10.
PubMed
Article
Google Scholar
Wagner GC, Carelli RM, Jarvis MF. Ascorbic acid reduces the dopamine depletion induced by methamphetamine and the 1-methyl-4-phenyl pyridinium ion. Neuropharmacology. 1986;25(5):559–61.
CAS
PubMed
Article
Google Scholar
Wagner GC, Carelli RM, Jarvis MF. Pretreatment with ascorbic acid attenuates the neurotoxic effects of methamphetamine in rats. Res Commun Chem Pathol Pharmacol. 1985;47(2):221–8.
CAS
PubMed
Google Scholar
Desole MS, Miele M, Enrico P, Fresu L, Esposito G, De Natale G, et al. The effects of cortical ablation on d-amphetamine-induced changes in striatal dopamine turnover and ascorbic acid catabolism in the rat. Neurosci Lett. 1992;139(1):29–33.
CAS
PubMed
Article
Google Scholar
Koga M, Serritella AV, Sawa A, Sedlak TW. Implications for reactive oxygen species in schizophrenia pathogenesis. Schizophr Res. 2016;176(1):52–71.
PubMed
Article
Google Scholar
Cabungcal JH, Preissmann D, Delseth C, Cuenod M, Do KQ, Schenk F. Transitory glutathione deficit during brain development induces cognitive impairment in juvenile and adult rats: relevance to schizophrenia. Neurobiol Dis. 2007;26(3):634–45.
CAS
PubMed
Article
Google Scholar
Dadheech G, Mishra S, Gautam S, Sharma P. Oxidative stress, alpha-tocopherol, ascorbic acid and reduced glutathione status in schizophrenics. Indian J Clin Biochem. 2006;21(2):34–8.
CAS
PubMed
PubMed Central
Article
Google Scholar
Suboticanec K, Folnegovic-Smalc V, Turcin R, Mestrovic B, Buzina R. Plasma levels and urinary vitamin C excretion in schizophrenic patients. Hum Nutr Clin Nutr. 1986;40(6):421–8.
CAS
PubMed
Google Scholar
D’Souza B, D’Souza V. Oxidative injury and antioxidant vitamins E and C in schizophrenia. Indian J Clin Biochem. 2003;18(1):87–90.
PubMed
PubMed Central
Article
Google Scholar
Dakhale GN, Khanzode SD, Khanzode SS, Saoji A. Supplementation of vitamin C with atypical antipsychotics reduces oxidative stress and improves the outcome of schizophrenia. Psychopharmacology. 2005;182(4):494–8.
CAS
PubMed
Article
Google Scholar
Heiser P, Sommer O, Schmidt AJ, Clement HW, Hoinkes A, Hopt UT, et al. Effects of antipsychotics and vitamin C on the formation of reactive oxygen species. J Psychopharmacol. 2010;24(10):1499–504.
CAS
PubMed
Article
Google Scholar
Sandyk R, Kanofsky JD. Vitamin C in the treatment of schizophrenia. Int J Neurosci. 1993;68(1–2):67–71.
CAS
PubMed
Article
Google Scholar
Beauclair L, Vinogradov S, Riney SJ, Csernansky JG, Hollister LE. An adjunctive role for ascorbic acid in the treatment of schizophrenia? J Clin Psychopharmacol. 1987;7(4):282–3.
CAS
PubMed
Article
Google Scholar
Bentsen H, Osnes K, Refsum H, Solberg DK, Bohmer T. A randomized placebo-controlled trial of an omega-3 fatty acid and vitamins E + C in schizophrenia. Transl Psychiatry. 2013;3:e335.
CAS
PubMed
PubMed Central
Article
Google Scholar
Berton O, Nestler EJ. New approaches to antidepressant drug discovery: beyond monoamines. Nat Rev Neurosci. 2006;7(2):137–51.
CAS
PubMed
Article
Google Scholar
Binfare RW, Rosa AO, Lobato KR, Santos AR, Rodrigues AL. Ascorbic acid administration produces an antidepressant-like effect: evidence for the involvement of monoaminergic neurotransmission. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33(3):530–40.
CAS
PubMed
Article
Google Scholar
Moretti M, Budni J, Freitas AE, Neis VB, Ribeiro CM, de Oliveira Balen G, et al. TNF-alpha-induced depressive-like phenotype and p38(MAPK) activation are abolished by ascorbic acid treatment. Eur Neuropsychopharmacol. 2015;25(6):902–12.
CAS
PubMed
Article
Google Scholar
Moretti M, Budni J, Ribeiro CM, Rodrigues AL. Involvement of different types of potassium channels in the antidepressant-like effect of ascorbic acid in the mouse tail suspension test. Eur J Pharmacol. 2012;687(1–3):21–7.
CAS
PubMed
Article
Google Scholar
Moretti M, Freitas AE, Budni J, Fernandes SC, Balen Gde O, Rodrigues AL. Involvement of nitric oxide-cGMP pathway in the antidepressant-like effect of ascorbic acid in the tail suspension test. Behav Brain Res. 2011;225(1):328–33.
CAS
PubMed
Article
Google Scholar
Moretti M, Budni J, Dos Santos DB, Antunes A, Daufenbach JF, Manosso LM, et al. Protective effects of ascorbic acid on behavior and oxidative status of restraint-stressed mice. J Mol Neurosci. 2013;49(1):68–79.
CAS
PubMed
Article
Google Scholar
Moretti M, Colla A, de Oliveira Balen G, dos Santos DB, Budni J, de Freitas AE, et al. Ascorbic acid treatment, similarly to fluoxetine, reverses depressive-like behavior and brain oxidative damage induced by chronic unpredictable stress. J Psychiatr Res. 2012;46(3):331–40.
PubMed
Article
Google Scholar
Meredith ME, May JM. Regulation of embryonic neurotransmitter and tyrosine hydroxylase protein levels by ascorbic acid. Brain Res. 2013;1539:7–14.
CAS
PubMed
Article
Google Scholar
Duman RS, Li N, Liu RJ, Duric V, Aghajanian G. Signaling pathways underlying the rapid antidepressant actions of ketamine. Neuropharmacology. 2012;62(1):35–41.
CAS
PubMed
Article
Google Scholar
Moretti M, Budni J, Freitas AE, Rosa PB, Rodrigues AL. Antidepressant-like effect of ascorbic acid is associated with the modulation of mammalian target of rapamycin pathway. J Psychiatr Res. 2014;48(1):16–24.
PubMed
Article
Google Scholar
Rosa PB, Neis VB, Ribeiro CM, Moretti M, Rodrigues AL. Antidepressant-like effects of ascorbic acid and ketamine involve modulation of GABAA and GABAB receptors. Pharmacol Rep. 2016;68(5):996–1001.
CAS
PubMed
Article
Google Scholar
Gariballa S. Poor vitamin C status is associated with increased depression symptoms following acute illness in older people. Int J Vit Nutr Res. 2014;84(1–2):12–7.
Article
CAS
Google Scholar
DeSantis J. Scurvy and psychiatric symptoms. Perspect Psychiatr Care. 1993;29(1):18–22.
CAS
PubMed
Article
Google Scholar
Chang CW, Chen MJ, Wang TE, Chang WH, Lin CC, Liu CY. Scurvy in a patient with depression. Dig Dis Sci. 2007;52(5):1259–61.
PubMed
Article
Google Scholar
Khanzode SD, Dakhale GN, Khanzode SS, Saoji A, Palasodkar R. Oxidative damage and major depression: the potential antioxidant action of selective serotonin re-uptake inhibitors. Redox Rep. 2003;8(6):365–70.
CAS
PubMed
Article
Google Scholar
Brody S. High-dose ascorbic acid increases intercourse frequency and improves mood: a randomized controlled clinical trial. Biol Psychiatry. 2002;52(4):371–4.
CAS
PubMed
Article
Google Scholar
Oishi J, Doi H, Kawakami N. Nutrition and depressive symptoms in community-dwelling elderly persons in Japan. Acta Medica Okayama. 2009;63(1):9–17.
CAS
PubMed
Google Scholar
Payne ME, Steck SE, George RR, Steffens DC. Fruit, vegetable, and antioxidant intakes are lower in older adults with depression. J Acad Nutr Diet. 2012;112(12):2022–7.
CAS
PubMed
PubMed Central
Article
Google Scholar
Prohan M, Amani R, Nematpour S, Jomehzadeh N, Haghighizadeh MH. Total antioxidant capacity of diet and serum, dietary antioxidant vitamins intake, and serum hs-CRP levels in relation to depression scales in university male students. Redox Rep. 2014;19(3):133–9.
CAS
PubMed
Article
Google Scholar
Cocchi P, Silenzi M, Calabri G, Salvi G. Antidepressant effect of vitamin C. Pediatrics. 1980;65(4):862–3.
CAS
PubMed
Google Scholar
Amr M, El-Mogy A, Shams T, Vieira K, Lakhan SE. Efficacy of vitamin C as an adjunct to fluoxetine therapy in pediatric major depressive disorder: a randomized, double-blind, placebo-controlled pilot study. Nutr J. 2013;12:31.
CAS
PubMed
PubMed Central
Article
Google Scholar
Aburawi SM, Ghambirlou FA, Attumi AA, Altubuly RA, Kara AA. Effect of ascorbic acid on mental depression drug therapy: clinical study. J Psychol Psychother. 2014;4:1000131.
Article
Google Scholar
Mazloom Z, Ekramzadeh M, Hejazi N. Efficacy of supplementary vitamins C and E on anxiety, depression and stress in type 2 diabetic patients: a randomized, single-blind, placebo-controlled trial. Pak J Biol Sci. 2013;16(22):1597–600.
CAS
PubMed
Article
Google Scholar
Sahraian A, Ghanizadeh A, Kazemeini F. Vitamin C as an adjuvant for treating major depressive disorder and suicidal behavior, a randomized placebo-controlled clinical trial. Trials. 2015;16:94.
PubMed
PubMed Central
Article
CAS
Google Scholar
Muneer A. Staging models in bipolar disorder: a systematic review of the literature. Clin Psychopharmacol Neurosci. 2016;14(2):117–30.
PubMed
PubMed Central
Article
Google Scholar
Peng L, Li B, Verkhratsky A. Targeting astrocytes in bipolar disorder. Expert Rev Neurother. 2016;16(6):649–57.
CAS
PubMed
Article
Google Scholar
Rakofsky JJ, Dunlop BW. Review of nutritional supplements for the treatment of bipolar depression. Depress Anxiety. 2014;31(5):379–90.
CAS
PubMed
Article
Google Scholar
El-Mallakh RS, El-Masri MA, Huff MO, Li XP, Decker S, Levy RS. Intracerebroventricular administration of ouabain as a model of mania in rats. Bipolar Disord. 2003;5(5):362–5.
CAS
PubMed
Article
Google Scholar
Sani G, Napoletano F, Forte AM, Kotzalidis GD, Panaccione I, Porfiri GM, et al. The wnt pathway in mood disorders. Curr Neuropharmacol. 2012;10(3):239–53.
CAS
PubMed
PubMed Central
Article
Google Scholar
Gould TD, Dow ER, O’Donnell KC, Chen G, Manji HK. Targeting signal transduction pathways in the treatment of mood disorders: recent insights into the relevance of the Wnt pathway. CNS Neurol Disord Drug Targets. 2007;6(3):193–204.
CAS
PubMed
Article
Google Scholar
Huang L, Wu S, Xing D. High fluence low-power laser irradiation induces apoptosis via inactivation of Akt/GSK3beta signaling pathway. J Cell Physiol. 2011;226(3):588–601.
CAS
PubMed
Article
Google Scholar
Milner G. Ascorbic acid in chronic psychiatric patients—a controlled trial. Br J Psychiatry. 1963;109:294–9.
Article
Google Scholar
Naylor GJ, Smith AH. Vanadium: a possible aetiological factor in manic depressive illness. Psychol Med. 1981;11(2):249–56.
CAS
PubMed
Article
Google Scholar
Kay DS, Naylor GJ, Smith AH, Greenwood C. The therapeutic effect of ascorbic acid and EDTA in manic-depressive psychosis: double-blind comparisons with standard treatments. Psychol Med. 1984;14(3):533–9.
CAS
PubMed
Article
Google Scholar
Dixit S, Bernardo A, Walker JM, Kennard JA, Kim GY, Kessler ES, et al. Vitamin C deficiency in the brain impairs cognition, increases amyloid accumulation and deposition, and oxidative stress in APP/PSEN1 and normally aging mice. ACS Chem Neurosci. 2015;6(4):570–81.
CAS
PubMed
PubMed Central
Article
Google Scholar
Murakami K, Murata N, Ozawa Y, Kinoshita N, Irie K, Shirasawa T, et al. Vitamin C restores behavioral deficits and amyloid-beta oligomerization without affecting plaque formation in a mouse model of Alzheimer’s disease. J Alzheimers Dis. 2011;26(1):7–18.
CAS
PubMed
Article
Google Scholar
Wang C, Liu L, Zhang L, Peng Y, Zhou F. Redox reactions of the alpha-synuclein-Cu(2+) complex and their effects on neuronal cell viability. Biochemistry. 2010;49(37):8134–42.
CAS
PubMed
PubMed Central
Article
Google Scholar
Acuna AI, Esparza M, Kramm C, Beltran FA, Parra AV, Cepeda C, et al. A failure in energy metabolism and antioxidant uptake precede symptoms of Huntington’s disease in mice. Nat Commun. 2013;4:2917.
PubMed
PubMed Central
Article
CAS
Google Scholar
Rebec GV, Conroy SK, Barton SJ. Hyperactive striatal neurons in symptomatic Huntington R6/2 mice: variations with behavioral state and repeated ascorbate treatment. Neuroscience. 2006;137(1):327–36.
CAS
PubMed
Article
Google Scholar
Olajide OJ, Yawson EO, Gbadamosi IT, Arogundade TT, Lambe E, Obasi K, et al. Ascorbic acid ameliorates behavioural deficits and neuropathological alterations in rat model of Alzheimer’s disease. Environ Toxicol Pharmacol. 2017;50:200–11.
CAS
PubMed
Article
Google Scholar
Levine M, Rumsey SC, Daruwala R, Park JB, Wang Y. Criteria and recommendations for vitamin C intake. JAMA. 1999;281(15):1415–23.
CAS
PubMed
Article
Google Scholar
Curhan GC, Willett WC, Rimm EB, Stampfer MJ. A prospective study of the intake of vitamins C and B6, and the risk of kidney stones in men. J Urol. 1996;155(6):1847–51.
CAS
PubMed
Article
Google Scholar
Cook JD, Watson SS, Simpson KM, Lipschitz DA, Skikne BS. The effect of high ascorbic acid supplementation on body iron stores. Blood. 1984;64(3):721–6.
CAS
PubMed
Google Scholar
Monsen ER. Dietary reference intakes for the antioxidant nutrients: vitamin C, vitamin E, selenium, and carotenoids. J Am Diet Assoc. 2000;100(6):637–40.
CAS
PubMed
Article
Google Scholar