CNS Drugs

, Volume 31, Issue 5, pp 389–403 | Cite as

Pharmacokinetic Variability of Drugs Used for Prophylactic Treatment of Migraine

  • Peer Tfelt-Hansen
  • Frederik Nybye Ågesen
  • Agniezka Pavbro
  • Jacob Tfelt-Hansen
Review Article

Abstract

In this review, we evaluate the variability in the pharmacokinetics of 11 drugs with established prophylactic effects in migraine to facilitate ‘personalized medicine’ with these drugs. PubMed was searched for ‘single-dose’ and ‘steady-state’ pharmacokinetic studies of these 11 drugs. The maximum plasma concentration was reported in 248 single-dose and 115 steady-state pharmacokinetic studies, and the area under the plasma concentration-time curve was reported in 299 single-dose studies and 112 steady-state pharmacokinetic studies. For each study, the coefficient of variation was calculated for maximum plasma concentration and area under the plasma concentration-time curve, and we divided the drug variability into two categories; high variability, coefficient of variation >40%, or low or moderate variability, coefficient of variation <40%. Based on the area under the plasma concentration-time curve in steady-state studies, the following drugs have high pharmacokinetic variability: propranolol in 92% (33/36), metoprolol in 85% (33/39), and amitriptyline in 60% (3/5) of studies. The following drugs have low or moderate variability: atenolol in 100% (2/2), valproate in 100% (15/15), topiramate in 88% (7/8), and naproxen and candesartan in 100% (2/2) of studies. For drugs with low or moderate pharmacokinetic variability, treatment can start without initial titration of doses, whereas titration is used to possibly enhance tolerability of topiramate and amitriptyline. The very high pharmacokinetic variability of metoprolol and propranolol can result in very high plasma concentrations in a small minority of patients, and those drugs should therefore be titrated up from a low initial dose, depending mainly on the occurrence of adverse events.

References

  1. 1.
    Becker RE. Remembering Sir William Osler 100 years after his death: what can we learn from his legacy? Lancet. 2014;384:2260–3.PubMedCrossRefGoogle Scholar
  2. 2.
    Dahlöf CG, Pascual J, Dodick DW, Dowson AJ. Efficacy, speed of action and tolerability of almotriptan in the acute treatment of migraine: pooled individual patient data from four randomized, double-blind, placebo-controlled clinical trials. Cephalalgia. 2006;26:400–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Tfelt-Hansen P, Olesen J. Taking the negative view of current migraine treatments: the unmet needs. CNS Drugs. 2012;26:375–82.PubMedCrossRefGoogle Scholar
  4. 4.
    Lipton RB, Bigal ME, Diamond M, et al. Migraine prevalence, disease burden, and the need for preventive therapy. Neurology. 2007;68:343–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Sackett DL, Rosenberg WMC, Gray JAM, et al. Evidence based medicine: what it is and what it isn’t. BMJ. 1996;312:71–2.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Voora D, Ginsburg GS. Clinical application of cardiovascular pharmacogenetics. J Am Coll Cardiol. 2012;60:9–20.PubMedCrossRefGoogle Scholar
  7. 7.
    Simmaco M, Borro M, Missori S, Martelletti P. Pharmacogenomics in migraine: catching biomarkers for a predictable disease control. Expert Rev Neurother. 2009;9:1267–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Blake CM, Kharasch ED, Schwab M, Nagele P. A meta-analysis of CYP2D6 metabolizer phenotype and metoprolol pharmacokinetics. Clin Pharmacol Ther. 2013;94:394–9.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Di Lorenzo C, Pierelli F, Coppola G, et al. Mitochondrial DNA haplogroups influence the therapeutic response to riboflavin in migraineurs. Neurology. 2009;72:1588–94.PubMedCrossRefGoogle Scholar
  10. 10.
    Tronvik E, Stovner LJ, Bovim G, et al. Angiotensin-converting enzyme gene insertion/deletion polymorphism in migraine patients. BMC Neurol. 2008;8:4.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Atasayar G, Eryilmaz IE, Karli N, et al. Association of MDR1, CYP2D6, and CYP2C19 gene polymorphisms with prophylactic migraine treatment response. J Neurol Sci. 2016;366:149–54.PubMedCrossRefGoogle Scholar
  12. 12.
    Christensen AF, Esserlind A-L, Werge T, et al. The influence of genetic constitution on migraine drug responses. Cephalalgia. 2016;36:624–39.PubMedCrossRefGoogle Scholar
  13. 13.
    Toda N, Tfelt-Hansen P. Calcium antagonists in migraine prophylaxis. In: Olesen J, Goadsby PJ, Ramadan NM, et al., editors. Headaches. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2006. p. 539–44.Google Scholar
  14. 14.
    Tfelt-Hansen P, Saxena P. Antiserotonin drugs in migraine prophylaxis. In: Olesen J, Goadsby PJ, Ramadan NM, et al., editors. Headaches. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2006. p. 529–37.Google Scholar
  15. 15.
    Tfelt-Hansen P, Rolan P. β-Adrenoceptor blocking drugs in migraine prophylaxis. In: Olesen J, Goadsby PJ, Ramadan NM, et al., editors. Headaches. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2006. p. 519–28.Google Scholar
  16. 16.
    Silberstein S, Tfelt-Hansen P. Antiepileptic drugs in migraine prophylaxis. In: Olesen J, Goadsby PJ, Ramadan NM, et al., editors. Headaches. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2006. p. 545–51.Google Scholar
  17. 17.
    Evers S, Mylecharane E. Nonsteroidal anti-inflammatory and miscellaneous drugs in migraine prophylaxis. In: Olesen J, Goadsby PJ, Ramadan NM, et al., editors. Headaches. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2006. p. 553–66.Google Scholar
  18. 18.
    Evers S, Afra J, Frese A, et al. EFNS guideline on the drug treatment of migraine: revised report of an EFNS task force. Eur J Neurol. 2009;16:968–81.PubMedCrossRefGoogle Scholar
  19. 19.
    Jackson JL, Cogbill E, Santana-Davila R, et al. A comparative effectiveness meta-analysis of drugs for the prophylaxis of migraine headache. PLoS One. 2015;10:e0130733.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Patrono C. Cardiovascular effects of nonsteroidal anti-inflammatory drugs. Curr Cardiol Rep. 2016;18:25.PubMedCrossRefGoogle Scholar
  21. 21.
    Bhala N, Emberson J, Merhi A, Coxib and Traditional NSAID Trialists’ (CNT) Collaboration, et al. Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: meta-analyses of individual participant data from randomised trials. Lancet. 2013;382:769–79.PubMedCrossRefGoogle Scholar
  22. 22.
    Rowland M, Tozer T. Clinical pharmacokinetics and pharmacodynamics. Philadelphia: Lippincott Williams & Wilkins; 2011.Google Scholar
  23. 23.
    Lalonde RL, Pieper JA, Straka RJ, et al. Propranolol pharmacokinetics and pharmacodynamics after single doses and at steady-state. Eur J Clin Pharmacol. 1987;33:315–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Perucca E, Grimaldi R, Gatti G, et al. Pharmacokinetic and pharmacodynamic studies with a new controlled-release formulation of propranolol in normal volunteers: a comparison with other commercially available formulations. Br J Clin Pharmacol. 1984;18:37–43.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Larsson M, Landahl S, Lundborg P, Regårdh CG. Pharmacokinetics of metoprolol in healthy, elderly, non-smoking individuals after a single dose and two weeks of treatment. Eur J Clin Pharmacol. 1984;27:217–22.PubMedCrossRefGoogle Scholar
  26. 26.
    Kendall MJ, Jack DB, Woods KL, et al. Comparison of the pharmacodynamic and pharmacokinetic profiles of single and multiple doses of a commercial slow-release metoprolol formulation with a new Oros delivery system. Br J Clin Pharmacol. 1982;13:393–8.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Quarterman CP, Kendall MJ, Jack DB. The effect of age on the pharmacokinetics of metoprolol and its metabolites. Br J Clin Pharmacol. 1981;11:287–94.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Srinivas NR, Barr WH, Shyu WC, et al. Bioequivalence of two tablet formulations of nadolol using single and multiple dose data: assessment using stereospecific and nonstereospecific assays. J Pharm Sci. 1996;85:299–303.PubMedCrossRefGoogle Scholar
  29. 29.
    Krukemyer JJ, Boudoulas H, Binkley PF, Lima JJ. Comparison of single-dose and steady-state nadolol plasma concentrations. Pharm Res. 1990;7:953–6.PubMedCrossRefGoogle Scholar
  30. 30.
    Sica D, Frishman WH, Manowitz N. Pharmacokinetics of propranolol after single and multiple dosing with sustained release propranolol or propranolol CR (innopran XL), a new chronotherapeutic formulation. Heart Dis. 2003;5:176–81.PubMedCrossRefGoogle Scholar
  31. 31.
    Mitsikostas DD, Rapoport AM. New players in the preventive treatment of migraine. BMC Med. 2015;13:279.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Shamliyan TA, Choi J-Y, Ramakrishnan R, et al. Preventive pharmacologic treatments for episodic migraine in adults. J Gen Intern Med. 2013;28:1225–37.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Rowland K, Yeo WW, Ellis SW, et al. Inhibition of CYP2D6 activity by treatment with propranolol and the role of 4-hydroxy propranolol. Br J Clin Pharmacol. 1994;38:9–14.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Inoue S, Shimizu M, Arita K, Akimoto K. The effect of AST-120 on the single-dose pharmacokinetics of metoprolol extended-release tablets in healthy subjects. Drug Metabol Drug Interact. 2014;29:115–21.PubMedCrossRefGoogle Scholar
  35. 35.
    Lundborg P, Abrahamsson B, Wieselgren I, Walter M. The pharmacokinetics and pharmacodynamics of metoprolol after conventional and controlled-release administration in combination with hydrochlorothiazide in healthy volunteers. Eur J Clin Pharmacol. 1993;45:161–3.PubMedCrossRefGoogle Scholar
  36. 36.
    Lalonde RL, Bottorff MB, Straka RJ, et al. Nonlinear accumulation of propranolol enantiomers. Br J Clin Pharmacol. 1988;26:100–2.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Melander A, Danielson K, Scherstén B, Wåhlin E. Enhancement of the bioavailability of propranolol and metoprolol by food. Clin Pharmacol Ther. 1977;22:108–12.PubMedCrossRefGoogle Scholar
  38. 38.
    Mehvar R, Gross ME, Kreamer RN. Pharmacokinetics of atenolol enantiomers in humans and rats. J Pharm Sci. 1990;79:881–5.PubMedCrossRefGoogle Scholar
  39. 39.
    Shand DG. Individualization of propranolol therapy. Med Clin North Am. 1974;58:1063–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Benfield P, Clissold SP, Brogden RN. Metoprolol. an updated review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy, in hypertension, ischaemic heart disease and related cardiovascular disorders. Drugs. 1986;31:376–429.PubMedCrossRefGoogle Scholar
  41. 41.
    Olesen J, Goadsby P. The migraines: introduction. In: Olesen J, Goadsby PJ, Ramadan NM, et al., editors. Headaches. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2006. p. 231–3.Google Scholar
  42. 42.
    Kangasniemi P, Andersen AR, Andersson PG, et al. Classic migraine: effective prophylaxis with metoprolol. Cephalalgia. 1987;7:231–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Mendenopoulos G, Manafi T, Logothetis I, Bostantjopoulou S. Flunarizine in the prevention of classical migraine: a placebo-controlled evaluation. Cephalalgia. 1985;5:31–7.PubMedCrossRefGoogle Scholar
  44. 44.
    Tfelt-Hansen P, Kanstrup IL, Christensen NJ, Winkler K. General and regional haemodynamic effects of intravenous ergotamine in man. Clin Sci. 1979;1983(65):599–604.Google Scholar
  45. 45.
    Sørensen PS, Hansen K, Olesen J. A placebo-controlled, double-blind, cross-over trial of flunarizine in common migraine. Cephalalgia. 1986;6:7–14.PubMedCrossRefGoogle Scholar
  46. 46.
    Jensen R, Brinck T, Olesen J. Sodium valproate has a prophylactic effect in migraine without aura: a triple-blind, placebo-controlled crossover study. Neurology. 1994;44:647–51.PubMedCrossRefGoogle Scholar
  47. 47.
    Goadsby PJ, Ferrari MD, Csanyi A, et al. Tonabersat TON-01-05 Study Group. Randomized, double-blind, placebo-controlled, proof-of-concept study of the cortical spreading depression inhibiting agent tonabersat in migraine prophylaxis. Cephalalgia. 2009;29:742–50.PubMedCrossRefGoogle Scholar
  48. 48.
    Hauge AW, Asghar MS, Schytz HW, et al. Effects of tonabersat on migraine with aura: a randomised, double-blind, placebo-controlled crossover study. Lancet Neurol. 2009;8:718–23.PubMedCrossRefGoogle Scholar
  49. 49.
    Humphrey PP, Feniuk W, Perren MJ. Anti-migraine drugs in development: advances in serotonin receptor pharmacology. Headache. 1990;30:12–6.PubMedCrossRefGoogle Scholar
  50. 50.
    Sicuteri F. Prophylactic and therapeutic properties of 1-methyl-lysergic acid butanolamide in migraine. Int Arch Allergy Appl Immunol. 1959;15:300–7.PubMedCrossRefGoogle Scholar
  51. 51.
    Koehler PJ, Tfelt-Hansen PC. History of methysergide in migraine. Cephalalgia. 2008;28:1126–35.PubMedCrossRefGoogle Scholar
  52. 52.
    Lance JW. 5-Hydroxytryptamine and its role in migraine. Eur Neurol. 1991;31:279–81.PubMedCrossRefGoogle Scholar
  53. 53.
    Skärby T, Tfelt-Hansen P, Gjerris F, et al. Characterization of 5-hydroxytryptamine receptors in human temporal arteries: comparison between migraine suffers and nonsufferers. Ann Neurol. 1982;12:272–7.PubMedCrossRefGoogle Scholar
  54. 54.
    Tfelt-Hansen P. Prophylactic pharmacotherapy of migraine: some practical guidelines. Neurol Clin. 1997;15:153–65.PubMedCrossRefGoogle Scholar
  55. 55.
    Tfelt-Hansen P, Edvinsson L. Pharmacokinetic and pharmacodynamic variability as possible causes for different drug responses in migraine: a comment. Cephalalgia. 2007;27:1091–3.PubMedCrossRefGoogle Scholar
  56. 56.
    Tfelt-Hansen PC, Hougaard A. Migraine: differential effects of placebos in migraine clinical trials. Nat Rev Neurol. 2014;10:10–1.PubMedCrossRefGoogle Scholar
  57. 57.
    Macedo A, Baños J-E, Farré M. Placebo response in the prophylaxis of migraine: a meta-analysis. Eur J Pain. 2008;12:68–75.PubMedCrossRefGoogle Scholar
  58. 58.
    Olesen J, Krabbe AA, Tfelt-Hansen P. Methodological aspects of prophylactic drug trials in migraine. Cephalalgia. 1981;1:127–41.PubMedCrossRefGoogle Scholar
  59. 59.
    Drummond P, Passchier J. Psychological mechanism of migraines. In: Olesen J, Goadsby PJ, Ramadan NM, et al., editors. Headaches. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2006. p. 385–92.Google Scholar
  60. 60.
    Massiou H, MacGregor EA. Evolution and treatment of migraine with oral contraceptives. Cephalalgia. 2000;20:170–4.PubMedCrossRefGoogle Scholar
  61. 61.
    Brandes JL, Saper JR, Diamond M, et al. Topiramate for migraine prevention: a randomized controlled trial. JAMA. 2004;291:965–73.PubMedCrossRefGoogle Scholar
  62. 62.
    Silberstein SD, Neto W, Schmitt J, Jacobs D, MIGR-001 Study Group. Topiramate in migraine prevention: results of a large controlled trial. Arch Neurol. 2004;61:490–5.PubMedCrossRefGoogle Scholar
  63. 63.
    Diener H-C, Tfelt-Hansen P, Dahlöf C, et al. Topiramate in migraine prophylaxis: results from a placebo-controlled trial with propranolol as an active control. J Neurol. 2004;251:943–50.PubMedCrossRefGoogle Scholar
  64. 64.
    Loder E, Burch R, Rizzoli P. The 2012 AHS/AAN guidelines for prevention of episodic migraine: a summary and comparison with other recent clinical practice guidelines. Headache. 2012;52:930–45.PubMedCrossRefGoogle Scholar
  65. 65.
    Silberstein SD, Holland S, Freitag F, et al. Evidence-based guideline update: pharmacologic treatment for episodic migraine prevention in adults: report of the Quality Standards Subcommittee of the American Academy of Neurology and the American Headache Society. Neurology. 2012;78:1337–45.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Bendtsen L, Birk S, Kasch H, et al. Reference programme: diagnosis and treatment of headache disorders and facial pain. Danish Headache Society, 2nd edition, 2012. Headache Pain. 2012;13(Suppl. 1):S1–29.CrossRefGoogle Scholar
  67. 67.
    Sarchielli P, Granella F, Prudenzano MP, et al. Italian guidelines for primary headaches: 2012 revised version. J Headache Pain. 2012;13(Suppl. 2):S31–70.PubMedCrossRefGoogle Scholar
  68. 68.
    Lanteri-Minet M, Valade D, Geraud G, et al. Revised French guidelines for the diagnosis and management of migraine in adults and children. J Headache Pain. 2014;15:2.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Pringsheim T, Davenport WJ, Mackie G, et al. Canadian Headache Society guideline for migraine prophylaxis. Can J Neurol Sci. 2012;39:S1–59.PubMedCrossRefGoogle Scholar
  70. 70.
    Horton R. Common sense and figures: the rhetoric of validity in medicine (Bradford Hill Memorial Lecture 1999). Stat Med. 2000;19:3149–64.PubMedCrossRefGoogle Scholar
  71. 71.
    Hamadeh IS, Langaee TY, Dwivedi R, et al. Impact of CYP2D6 polymorphisms on clinical efficacy and tolerability of metoprolol tartrate. Clin Pharmacol Ther. 2014;96:175–81.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Rosen JA. Observations on the efficacy of propranolol for the prophylaxis of migraine. Ann Neurol. 1983;13:92–3.PubMedCrossRefGoogle Scholar
  73. 73.
    Drugs.com. Prescription drug information, interactions and side effects. https://www.drugs.com/. Accessed 16 Sep 2016.
  74. 74.
    Weeke P, Roden DM. Applied pharmacogenomics in cardiovascular medicine. Ann Rev Med. 2014;65:81–94.PubMedCrossRefGoogle Scholar
  75. 75.
    Gugler R, Schell A, Eichelbaum M, et al. Disposition of valproic acid in man. Eur J Clin Pharmacol. 1977;12:125–32.PubMedCrossRefGoogle Scholar
  76. 76.
    Glazko AJ, Chang T, Daftsios AC, et al. Bioavailability of calcium valproate in normal men compared with the free acid and sodium salt. Ther Drug Monit. 1983;5:409–17.PubMedCrossRefGoogle Scholar
  77. 77.
    Levy RH, Cenraud B, Loiseau P, et al. Meal-dependent absorption of enteric-coated sodium valproate. Epilepsia. 1980;21:273–80.PubMedCrossRefGoogle Scholar
  78. 78.
    Webster LK, Mihaly GW, Jones DB, et al. Effect of cimetidine and ranitidine on carbamazepine and sodium valproate pharmacokinetics. Eur J Clin Pharmacol. 1984;27:341–3.PubMedCrossRefGoogle Scholar
  79. 79.
    Anderson P, Elwin CE. Single-dose kinetics and bioavailability of sodium-hydrogen divalproate. Clin Neuropharmacol. 1985;8:156–64.PubMedCrossRefGoogle Scholar
  80. 80.
    al-Shareef A, Buss DC, Shetty HG, et al. The effect of repeated-dose activated charcoal on the pharmacokinetics of sodium valproate in healthy volunteers. Br J Clin Pharmacol. 1997;43:109–11.PubMedCrossRefGoogle Scholar
  81. 81.
    Perucca E, Hedges A, Makki KA, et al. A comparative study of the relative enzyme inducing properties of anticonvulsant drugs in epileptic patients. Br J Clin Pharmacol. 1984;18:401–10.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Bialer M, Hussein Z, Raz I, et al. Pharmacokinetics of valproic acid in volunteers after a single dose study. Biopharm Drug Dispos. 1985;6:33–42.PubMedCrossRefGoogle Scholar
  83. 83.
    Fischer JH, Barr AN, Paloucek FP, et al. Effect of food on the serum concentration profile of enteric-coated valproic acid. Neurology. 1988;38:1319–22.PubMedCrossRefGoogle Scholar
  84. 84.
    Issy AM, Lanchote VL, de Carvalho D, Silva HC. Lack of kinetic interaction between valproic acid and citrus pectin. Ther Drug Monit. 1997;19:516–20.PubMedCrossRefGoogle Scholar
  85. 85.
    Yoshiyama Y, Nakano S, Ogawa N. Chronopharmacokinetic study of valproic acid in man: comparison of oral and rectal administration. J Clin Pharmacol. 1989;29:1048–52.PubMedCrossRefGoogle Scholar
  86. 86.
    Miljković B, Pokrajac M, Varagić V, Lević Z. Single dose and steady state pharmacokinetics of valproic acid in adult epileptic patients. Int J Clin Pharmacol Res. 1991;11:137–41.PubMedGoogle Scholar
  87. 87.
    Ohdo S, Nakano S, Ogawa N. Circadian changes of valproate kinetics depending on meal condition in humans. J Clin Pharmacol. 1992;32:822–6.PubMedCrossRefGoogle Scholar
  88. 88.
    Rha JH, Jang IJ, Lee KH, et al. Pharmacokinetic comparison of two valproic acid formulations–a plain and a controlled release enteric-coated tablets. J Korean Med Sci. 1993;8:251–6.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Kulkarni C, Vaz J, David J, Joseph T. Aminophylline alters pharmacokinetics of carbamazepine but not that of sodium valproate: a single dose pharmacokinetic study in human volunteers. Indian J Physiol Pharmacol. 1995;39:122–6.PubMedGoogle Scholar
  90. 90.
    Malloy MJ, Ravis WR, Pennell AT, Diskin CJ. Effect of cholestyramine resin on single dose valproate pharmacokinetics. Int J Clin Pharmacol Ther. 1996;34:208–11.PubMedGoogle Scholar
  91. 91.
    Retzow A, Vens-Cappell B, Wangemann M. Influence of food on the pharmacokinetics of a new multiple unit sustained release sodium valproate formulation. Arzneimittelforschung. 1997;47:1347–50.PubMedGoogle Scholar
  92. 92.
    Wangemann M, Retzow A, Vens-Cappell B. Pharmacokinetic characteristics of a new multiple unit sustained release formulation of sodium valproate. Int J Clin Pharmacol Ther. 1999;37:100–8.PubMedGoogle Scholar
  93. 93.
    Dutta S, Qiu Y, Samara E, et al. Once-a-day extended-release dosage form of divalproex sodium III: development and validation of a Level A in vitro-in vivo correlation (IVIVC). J Pharm Sci. 2005;94:1949–56.PubMedCrossRefGoogle Scholar
  94. 94.
    Fujisaki Y, Tsukune T, Funyû M, et al. Development of sustained-release tablets containing sodium valproate: in vitro and in vivo correlation. Drug Dev Ind Pharm. 2006;32:207–17.PubMedCrossRefGoogle Scholar
  95. 95.
    Marcelín-Jiménez G, Angeles-Moreno AP, Contreras-Zavala L, et al. A single-dose, three-period, six-sequence crossover study comparing the bioavailability of solution, suspension, and enteric-coated tablets of magnesium valproate in healthy Mexican volunteers under fasting conditions. Clin Ther. 2009;31:2002–11.PubMedCrossRefGoogle Scholar
  96. 96.
    Zakeri-Milani P, Nemati M, Ghanbarzadeh S, et al. Fasted state bioavailability of two delayed release formulations of divalproex sodium in healthy Iranian volunteers. Arzneimittelforschung. 2011;61:439–43.PubMedCrossRefGoogle Scholar
  97. 97.
    Perucca E, Gatti G, Frigo GM, et al. Disposition of sodium valproate in epileptic patients. Br J Clin Pharmacol. 1978;5:495–9.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Chun AH, Hoffman DJ, Friedmann N, Carrigan PJ. Bioavailability of valproic acid under fasting/nonfasting regimens. J Clin Pharmacol. 1980;20:30–6.PubMedCrossRefGoogle Scholar
  99. 99.
    Carrigan PJ, Brinker DR, Cavanaugh JH, et al. Absorption characteristics of a new valproate formulation: divalproex sodium-coated particles in capsules (Depakote Sprinkle). J Clin Pharmacol. 1990;30:743–7.PubMedCrossRefGoogle Scholar
  100. 100.
    Aadil N, Fassi-Fihri A, Houti I, et al. Influence of Ramadan on the pharmacokinetics of a single oral dose of valproic acid administered at two different times. Methods Find Exp Clin Pharmacol. 2000;22:109–14.PubMedCrossRefGoogle Scholar
  101. 101.
    Dutta S, Zhang Y, Lee LL, O’Dea R. Comparison of the bioavailability of 250 and 500 mg divalproex sodium extended-release tablets in healthy volunteers. Biopharm Drug Dispos. 2004;25:353–7.PubMedCrossRefGoogle Scholar
  102. 102.
    Dulac O, Alvarez J-C. Bioequivalence of a new sustained-release formulation of sodium valproate, valproate modified-release granules, compared with existing sustained-release formulations after once- or twice-daily administration. Pharmacotherapy. 2005;25:35–41.PubMedCrossRefGoogle Scholar
  103. 103.
    Dutta S, Reed RC, O’Dea RF. Comparative absorption profiles of divalproex sodium delayed-release versus extended-release tablets: clinical implications. Ann Pharmacother. 2006;40:619–25.PubMedCrossRefGoogle Scholar
  104. 104.
    Garikipati V, Toops DS, Fang Q. Bioequivalence studies of a new valproic acid delayed-release capsule and divalproex sodium delayed-release tablet. Curr Med Res Opin. 2008;24:1869–76.PubMedCrossRefGoogle Scholar
  105. 105.
    Nagai G, Ono S, Yasui-Furukori N, et al. Formulations of valproate alter valproate metabolism: a single oral dose kinetic study. Ther Drug Monit. 2009;31:592–6.PubMedCrossRefGoogle Scholar
  106. 106.
    Mohammadi B, Majnooni MB, Khatabi PM, et al. 9-fluorenylmethyl chloroformate as a fluorescence-labeling reagent for derivatization of carboxylic acid moiety of sodium valproate using liquid chromatography/tandem mass spectrometry for binding characterization: a human pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci. 2012;880:12–8.PubMedCrossRefGoogle Scholar
  107. 107.
    Ibarra M, Vázquez M, Fagiolino P, Derendorf H. Sex related differences on valproic acid pharmacokinetics after oral single dose. J Pharmacokinet Pharmacodyn. 2013;40:479–86.PubMedCrossRefGoogle Scholar
  108. 108.
    Cawello W, Bonn R. No pharmacokinetic interaction between lacosamide and valproic acid in healthy volunteers. J Clin Pharmacol. 2012;52:1739–48.PubMedCrossRefGoogle Scholar
  109. 109.
    Hooper WD, Franklin ME, Glue P, et al. Effect of felbamate on valproic acid disposition in healthy volunteers: inhibition of β-oxidation. Epilepsia. 1996;37:91–7.PubMedCrossRefGoogle Scholar
  110. 110.
    Samara EE, Granneman RG, Witt GF, Cavanaugh JH. Effect of valproate on the pharmacokinetics and pharmacodynamics of lorazepam. J Clin Pharmacol. 1997;37:442–50.PubMedCrossRefGoogle Scholar
  111. 111.
    Winter HR, DeVane CL, Figueroa C, et al. Open-label steady-state pharmacokinetic drug interaction study on co-administered quetiapine fumarate and divalproex sodium in patients with schizophrenia, schizoaffective disorder, or bipolar disorder. Hum Psychopharmacol. 2007;22:469–76.PubMedCrossRefGoogle Scholar
  112. 112.
    Suemaru K, Kawasaki H, Yasuhara K, et al. Steady-state serum concentrations of carbamazepine and valproic acid in obese and lean patients with epilepsy. Acta Med Okayama. 1998;52:139–42.PubMedGoogle Scholar
  113. 113.
    Felix S, Sproule BA, Hardy BG, Naranjo CA. Dose-related pharmacokinetics and pharmacodynamics of valproate in the elderly. J Clin Psychopharmacol. 2003;23:471–8.PubMedCrossRefGoogle Scholar
  114. 114.
    Ravindran A, Silverstone P, Lacroix D, et al. Risperidone does not affect steady-state pharmacokinetics of divalproex sodium in patients with bipolar disorder. Clin Pharmacokinet. 2004;43:733–40.PubMedCrossRefGoogle Scholar
  115. 115.
    Ragueneau-Majlessi I, Levy RH, Brodie M, et al. Lack of pharmacokinetic interactions between steady-state zonisamide and valproic acid in patients with epilepsy. Clin Pharmacokinet. 2005;44:517–23.PubMedCrossRefGoogle Scholar
  116. 116.
    Yasui-Furukori N, Saito M, Nakagami T, et al. Different serum concentrations of steady-state valproic acid in two sustained-release formulations. Psychiatry Clin Neurosci. 2007;61:308–12.PubMedCrossRefGoogle Scholar
  117. 117.
    Hussein Z, Mukherjee D, Lamm J, et al. Pharmacokinetics of valproate after multiple-dose oral and intravenous infusion administration: gastrointestinal-related diurnal variation. J Clin Pharmacol. 1994;34:754–9.PubMedCrossRefGoogle Scholar
  118. 118.
    Reed RC, Dutta S, Cavanaugh JH, et al. Every-12-hour administration of extended-release divalproex in patients with epilepsy: impact on plasma valproic acid concentrations. Epilepsy Behav. 2006;8:391–6.PubMedCrossRefGoogle Scholar
  119. 119.
    Rosenfeld WE, Liao S, Kramer LD, et al. Comparison of the steady-state pharmacokinetics of topiramate and valproate in patients with epilepsy during monotherapy and concomitant therapy. Epilepsia. 1997;38:324–33.PubMedCrossRefGoogle Scholar
  120. 120.
    Wagner ML, Graves NM, Leppik IE, et al. The effect of felbamate on valproic acid disposition. Clin Pharmacol Ther. 1994;56:494–502.PubMedCrossRefGoogle Scholar
  121. 121.
    Doose DR, Walker SA, Gisclon LG, Nayak RK. Single-dose pharmacokinetics and effect of food on the bioavailability of topiramate, a novel antiepileptic drug. J Clin Pharmacol. 1996;36:884–91.PubMedCrossRefGoogle Scholar
  122. 122.
    Britzi M, Perucca E, Soback S, et al. Pharmacokinetic and metabolic investigation of topiramate disposition in healthy subjects in the absence and in the presence of enzyme induction by carbamazepine. Epilepsia. 2005;46:378–84.PubMedCrossRefGoogle Scholar
  123. 123.
    Shank RP, Doose DR, Streeter AJ, Bialer M. Plasma and whole blood pharmacokinetics of topiramate: the role of carbonic anhydrase. Epilepsy Res. 2005;63:103–12.PubMedCrossRefGoogle Scholar
  124. 124.
    Almeida S, Spínola AC, Filipe A, et al. Truncated AUCs in the assessment of the bioequivalence of topiramate, a long half-life drug. Arzneimittelforschung. 2007;57:249–53.PubMedGoogle Scholar
  125. 125.
    Saavedra I, Tamayo E, Gamboa A, et al. Relative bioavailability study with two oral formulations of topiramate using a validated UPLC-MS/MS method. Int J Clin Pharmacol Ther. 2010;48:342–8.PubMedCrossRefGoogle Scholar
  126. 126.
    Manitpisitkul P, Curtin CR, Shalayda K, et al. Pharmacokinetics of topiramate in patients with renal impairment, end-stage renal disease undergoing hemodialysis, or hepatic impairment. Epilepsy Res. 2014;108:891–901.PubMedCrossRefGoogle Scholar
  127. 127.
    Clark AM, Halvorsen MB, Braun TL, et al. USL255 extended-release topiramate: dose-proportional pharmacokinetics and tolerability in healthy volunteers. Epilepsia. 2014;55:1069–76.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Sachdeo RC, Sachdeo SK, Walker SA, et al. Steady-state pharmacokinetics of topiramate and carbamazepine in patients with epilepsy during monotherapy and concomitant therapy. Epilepsia. 1996;37:774–80.PubMedCrossRefGoogle Scholar
  129. 129.
    Sachdeo RC, Sachdeo SK, Levy RH, et al. Topiramate and phenytoin pharmacokinetics during repetitive monotherapy and combination therapy to epileptic patients. Epilepsia. 2002;43:691–6.PubMedCrossRefGoogle Scholar
  130. 130.
    Doose DR, Brodie MJ, Wilson EA, et al. Topiramate and lamotrigine pharmacokinetics during repetitive monotherapy and combination therapy in epilepsy patients. Epilepsia. 2003;44:917–22.PubMedCrossRefGoogle Scholar
  131. 131.
    Mimrod D, Specchio LM, Britzi M, et al. A comparative study of the effect of carbamazepine and valproic acid on the pharmacokinetics and metabolic profile of topiramate at steady state in patients with epilepsy. Epilepsia. 2005;46:1046–54.PubMedCrossRefGoogle Scholar
  132. 132.
    Wagner JG, Ganes DA, Midha KK, et al. Stepwise determination of multicompartment disposition and absorption parameters from extravascular concentration-time data: application to mesoridazine, flurbiprofen, flunarizine, labetalol, and diazepam. J Pharmacokinet Biopharm. 1991;19:413–55.PubMedCrossRefGoogle Scholar
  133. 133.
    Mahmood I, Sahlroot JT. A limited sampling method for the estimation of flunarizine area under the curve (AUC) and maximum plasma concentration (C max). Biopharm Drug Dispos. 1997;18:117–26.PubMedCrossRefGoogle Scholar
  134. 134.
    Garland WA, Min BH, Birkett DJ. The kinetics of amitriptyline following single oral dose administration to man. Res Commun Chem Pathol Pharmacol. 1978;22:475–84.PubMedGoogle Scholar
  135. 135.
    Kukes VG, Kondratenko SN, Savelyeva MI, et al. Experimental and clinical pharmacokinetics of amitryptiline: comparative analysis. Bull Exp Biol Med. 2009;147:434–7.PubMedCrossRefGoogle Scholar
  136. 136.
    Jiang Z-P, Shu Y, Chen X-P, et al. The role of CYP2C19 in amitriptyline N-demethylation in Chinese subjects. Eur J Clin Pharmacol. 2002;58:109–13.PubMedCrossRefGoogle Scholar
  137. 137.
    Jorgensen A. Comparative bioavailability of a sustained release preparation of amitriptyline and conventional tablets. Eur J Clin Pharmacol. 1977;12:187–90.PubMedCrossRefGoogle Scholar
  138. 138.
    Kuss HJ, Jungkunz G, Johannes KJ. Single oral dose pharmacokinetics of amitriptylinoxide and amitriptyline in humans. Pharmacopsychiatry. 1985;18:259–62.PubMedCrossRefGoogle Scholar
  139. 139.
    Bhatt M, Shah S. Development and validation of amitriptyline and its metabolite in human plasma by ultra performance liquid chromatography-tandem mass spectrometry and its application to a bioequivalence study. Biomed Chromatogr. 2010;24:1247–54.PubMedCrossRefGoogle Scholar
  140. 140.
    Venkatakrishnan K, Schmider J, Harmatz JS, et al. Relative contribution of CYP3A to amitriptyline clearance in humans: in vitro and in vivo studies. J Clin Pharmacol. 2001;41:1043–54.PubMedCrossRefGoogle Scholar
  141. 141.
    Burch JE, Hullin RP. Amitriptyline pharmacokinetics: single doses of Lentizol compared with ordinary amitriptyline tablets. Psychopharmacology (Berl.). 1981;74:43–50.CrossRefGoogle Scholar
  142. 142.
    Gupta SK, Shah JC, Hwang SS. Pharmacokinetic and pharmacodynamic characterization of OROS and immediate-release amitriptyline. Br J Clin Pharmacol. 1999;48:71–8.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Henry JF, Altamura C, Gomeni R, et al. Pharmacokinetics of amitriptyline in the elderly. Int J Clin Pharmacol. 1981;19:1–5.Google Scholar
  144. 144.
    Sennef C, Timmer CJ, Sitsen JMA. Mirtazapine in combination with amitriptyline: a drug-drug interaction study in healthy subjects. Hum Psychopharmacol. 2003;18:91–101.PubMedCrossRefGoogle Scholar
  145. 145.
    Vezmar S, Miljkovic B, Vucicevic K, et al. Pharmacokinetics and efficacy of fluvoxamine and amitriptyline in depression. J Pharmacol Sci. 2009;110:98–104.PubMedCrossRefGoogle Scholar
  146. 146.
    Nam Y, Lim C-H, Lee HS, et al. Single-dose, randomized, open-label, 2-way crossover study of the pharmacokinetics of amitriptyline hydrochloride 10- and 25-mg tablet in healthy male Korean volunteers. Clin Ther. 2015;37:302–10.PubMedCrossRefGoogle Scholar
  147. 147.
    Burch JE. The demethylation of amitriptyline: a cross-over study of steady-state plasma levels of amitriptyline and nortriptyline in depressed patients. Psychopharmacology. 1983;80:254–8.PubMedCrossRefGoogle Scholar
  148. 148.
    Gupta SK, Shah J, Guinta D, Hwang S. Multiple-dose pharmacokinetics and pharmacodynamics of OROS and immediate-release amitriptyline hydrochloride formulations. J Clin Pharmacol. 1998;38:60–7.PubMedCrossRefGoogle Scholar
  149. 149.
    Johne A, Schmider J, Brockmöller J, et al. Decreased plasma levels of amitriptyline and its metabolites on comedication with an extract from St. John’s wort (Hypericum perforatum). J Clin Psychopharmacol. 2002;22:46–54.PubMedCrossRefGoogle Scholar
  150. 150.
    el-Yazigi A, Chaleby K, Gad A, Raines DA. Steady-state kinetics of fluoxetine and amitriptyline in patients treated with a combination of these drugs as compared with those treated with amitriptyline alone. J Clin Pharmacol. 1995;35:17–21.PubMedCrossRefGoogle Scholar
  151. 151.
    Baumann P, Jonzier-Perey M, Koeb L, et al. Amitriptyline pharmacokinetics and clinical response: II. Metabolic polymorphism assessed by hydroxylation of debrisoquine and mephenytoin. Int Clin Psychopharmacol. 1986;1:102–12.PubMedCrossRefGoogle Scholar
  152. 152.
    Bock JL, Giller E, Gray S, Jatlow P. Steady-state plasma concentrations of cis- and trans-10-OH amitriptyline metabolites. Clin Pharmacol Ther. 1982;31:609–16.PubMedCrossRefGoogle Scholar
  153. 153.
    Azizi M, Blanchard A, Charbit B, et al. Effect of contrasted sodium diets on the pharmacokinetics and pharmacodynamic effects of renin-angiotensin system blockers. Hypertension. 2013;61:1239–45.PubMedCrossRefGoogle Scholar
  154. 154.
    de Zeeuw D, Remuzzi G, Kirch W. Pharmacokinetics of candesartan cilexetil in patients with renal or hepatic impairment. J Hum Hypertens. 1997;11(Suppl. 2):S37–42.PubMedGoogle Scholar
  155. 155.
    Hoogkamer JF, Kleinbloesem CH, Ouwerkerk M, et al. Pharmacokinetics and safety of candesartan cilexetil in subjects with normal and impaired liver function. Eur J Clin Pharmacol. 1998;54:341–5.PubMedCrossRefGoogle Scholar
  156. 156.
    Tjandrawinata RR, Setiawati E, Yunaidi DA, et al. Bioequivalence study of two formulations of candesartan cilexetil tablet in healthy subjects under fasting conditions. Drug Des Devel Ther. 2013;7:841–7.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Jeon J-Y, Im Y, Kim Y, et al. Pharmacokinetic properties and bioequivalence of candesartan cilexetil in Korean healthy volunteers. Drug Dev Ind Pharm. 2013;39:1296–9.PubMedCrossRefGoogle Scholar
  158. 158.
    Cabaleiro T, Román M, Ochoa D, et al. Evaluation of the relationship between sex, polymorphisms in CYP2C8 and CYP2C9, and pharmacokinetics of angiotensin receptor blockers. Drug Metab Dispos. 2013;41:224–9.PubMedCrossRefGoogle Scholar
  159. 159.
    Buter H, Navis GY, Woittiez AJ, et al. Pharmacokinetics and pharmacodynamics of candesartan cilexetil in patients with normal to severely impaired renal function. Eur J Clin Pharmacol. 1999;54:953–8.PubMedCrossRefGoogle Scholar
  160. 160.
    Hübner R, Högemann AM, Sunzel M, Riddell JG. Pharmacokinetics of candesartan after single and repeated doses of candesartan cilexetil in young and elderly healthy volunteers. J Hum Hypertens. 1997;11(Suppl. 2):S19–25.PubMedGoogle Scholar
  161. 161.
    de Stoppelaar FM, Stolk LM, Beysens AJ, et al. The relative bioavailability of metoprolol following oral and rectal administration to volunteers and patients. Pharm World Sci. 1999;21:233–8.PubMedCrossRefGoogle Scholar
  162. 162.
    Bauer LA, Horn JR, Maxon MS, et al. Effect of metoprolol and verapamil administered separately and concurrently after single doses on liver blood flow and drug disposition. J Clin Pharmacol. 2000;40:533–43.PubMedCrossRefGoogle Scholar
  163. 163.
    Ravishankar H, Patil P, Samel A, et al. Modulated release metoprolol succinate formulation based on ionic interactions: in vivo proof of concept. J Control Release. 2006;111:65–72.PubMedCrossRefGoogle Scholar
  164. 164.
    Kendall MJ, Jack DB, Quarterman CP, et al. Beta-adrenoceptor blocker pharmacokinetics and the oral contraceptive pill. Br J Clin Pharmacol. 1984;17(Suppl. 1):87S–9S.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Aqil M, Ali A, Sultana Y, Saha N. Comparative bioavailability of metoprolol tartrate after oral and transdermal administration in healthy male volunteers. Clin Drug Investig. 2007;27:833–9.PubMedCrossRefGoogle Scholar
  166. 166.
    Jack DB, Quarterman CP, Zaman R, Kendall MJ. Variability of beta-blocker pharmacokinetics in young volunteers. Eur J Clin Pharmacol. 1982;23:37–42.PubMedCrossRefGoogle Scholar
  167. 167.
    Kirchheiner J, Heesch C, Bauer S, et al. Impact of the ultrarapid metabolizer genotype of cytochrome P450 2D6 on metoprolol pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther. 2004;76:302–12.PubMedCrossRefGoogle Scholar
  168. 168.
    Jin SK, Chung HJ, Chung MW, et al. Influence of CYP2D6*10 on the pharmacokinetics of metoprolol in healthy Korean volunteers. J Clin Pharm Ther. 2008;33:567–73.PubMedCrossRefGoogle Scholar
  169. 169.
    Seeringer A, Brockmöller J, Bauer S, Kirchheiner J. Enantiospecific pharmacokinetics of metoprolol in CYP2D6 ultra-rapid metabolizers and correlation with exercise-induced heart rate. Eur J Clin Pharmacol. 2008;64:883–8.PubMedCrossRefGoogle Scholar
  170. 170.
    Sharma A, Pibarot P, Pilote S, et al. Modulation of metoprolol pharmacokinetics and hemodynamics by diphenhydramine coadministration during exercise testing in healthy premenopausal women. J Pharmacol Exp Ther. 2005;313:1172–81.PubMedCrossRefGoogle Scholar
  171. 171.
    Lennard MS, Tucker GT, Silas JH, et al. Differential stereoselective metabolism of metoprolol in extensive and poor debrisoquin metabolizers. Clin Pharmacol Ther. 1983;34:732–7.PubMedCrossRefGoogle Scholar
  172. 172.
    Deroubaix X, Lins RL, Lens S, et al. Comparative bioavailability of a metoprolol controlled release formulation and a bisoprolol normal release tablet after single oral dose administration in healthy volunteers. Int J Clin Pharmacol Ther. 1996;34:61–70.PubMedGoogle Scholar
  173. 173.
    Regårdh CG, Johnsson G, Jordö L, Sölvell L. Comparative bioavailability and effect studies on metoprolol administered as ordinary and slow-release tablets in single and multiple doses. Acta Pharmacol Toxicol. 1975;36:45–58.CrossRefGoogle Scholar
  174. 174.
    Jordö L, Attman PO, Aurell M, et al. Pharmacokinetic and pharmacodynamic properties of metoprolol in patients with impaired renal function. Clin Pharmacokinet. 1980;5:169–80.PubMedCrossRefGoogle Scholar
  175. 175.
    Briant RH, Dorrington RE, Ferry DG, Paxton JW. Bioavailability of metoprolol in young adults and the elderly, with additional studies on the effects of metoclopramide and probanthine. Eur J Clin Pharmacol. 1983;25:353–6.PubMedCrossRefGoogle Scholar
  176. 176.
    Kelly JG, Salem SA, Kinney CD, et al. Effects of ranitidine on the disposition of metoprolol. Br J Clin Pharmacol. 1985;19:219–24.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Wagner F, Kalusche D, Trenk D, et al. Drug interaction between propafenone and metoprolol. Br J Clin Pharmacol. 1987;24:213–20.PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Chellingsworth MC, Laugher S, Akhlaghi S, et al. The effects of ranitidine and cimetidine on the pharmacokinetics and pharmacodynamics of metoprolol. Aliment Pharmacol Ther. 1988;2:521–7.PubMedCrossRefGoogle Scholar
  179. 179.
    Jonkers R, van Boxtel CJ, Koopmans RP, Oosterhuis B. A nonsteady-state agonist antagonist interaction model using plasma potassium concentrations to quantify the beta-2 selectivity of beta blockers. J Pharmacol Exp Ther. 1989;249:297–302.PubMedGoogle Scholar
  180. 180.
    Tateishi T, Nakashima H, Shitou T, et al. Effect of diltiazem on the pharmacokinetics of propranolol, metoprolol and atenolol. Eur J Clin Pharmacol. 1989;36:67–70.PubMedCrossRefGoogle Scholar
  181. 181.
    Hemeryck A, Lefebvre RA, De Vriendt C, Belpaire FM. Paroxetine affects metoprolol pharmacokinetics and pharmacodynamics in healthy volunteers. Clin Pharmacol Ther. 2000;67:283–91.PubMedCrossRefGoogle Scholar
  182. 182.
    Somer M, Kallio J, Pesonen U, et al. Influence of hydroxychloroquine on the bioavailability of oral metoprolol. Br J Clin Pharmacol. 2000;49:549–54.PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Donovan JM, Stypinski D, Stiles MR, et al. Drug interactions with colesevelam hydrochloride, a novel, potent lipid-lowering agent. Cardiovasc Drugs Ther. 2000;14:681–90.PubMedCrossRefGoogle Scholar
  184. 184.
    Burke SK, Amin NS, Incerti C, et al. Sevelamer hydrochloride (Renagel), a phosphate-binding polymer, does not alter the pharmacokinetics of two commonly used antihypertensives in healthy volunteers. J Clin Pharmacol. 2001;41:199–205.PubMedCrossRefGoogle Scholar
  185. 185.
    Krösser S, Neugebauer R, Dolgos H, et al. Investigation of sarizotan’s impact on the pharmacokinetics of probe drugs for major cytochrome P450 isoenzymes: a combined cocktail trial. Eur J Clin Pharmacol. 2006;62:277–84.PubMedCrossRefGoogle Scholar
  186. 186.
    Chen M-L, Straughn AB, Sadrieh N, et al. A modern view of excipient effects on bioequivalence: case study of sorbitol. Pharm Res. 2007;24:73–80.PubMedCrossRefGoogle Scholar
  187. 187.
    Wang Y, Zhou L, Dutreix C, et al. Effects of imatinib (Glivec) on the pharmacokinetics of metoprolol, a CYP2D6 substrate, in Chinese patients with chronic myelogenous leukaemia. Br J Clin Pharmacol. 2008;65:885–92.PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Turpault S, Brian W, Van Horn R, et al. Pharmacokinetic assessment of a five-probe cocktail for CYPs 1A2, 2C9, 2C19, 2D6 and 3A. Br J Clin Pharmacol. 2009;68:928–35.PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Sharma A, Pibarot P, Pilote S, et al. Toward optimal treatment in women: the effect of sex on metoprolol-diphenhydramine interaction. J Clin Pharmacol. 2010;50:214–25.PubMedCrossRefGoogle Scholar
  190. 190.
    Parker RB, Soberman JE. Effects of paroxetine on the pharmacokinetics and pharmacodynamics of immediate-release and extended-release metoprolol. Pharmacotherapy. 2011;31:630–41.PubMedCrossRefGoogle Scholar
  191. 191.
    Cho DY, Bae SH, Lee JK, et al. Effect of the potent CYP2D6 inhibitor sarpogrelate on the pharmacokinetics and pharmacodynamics of metoprolol in healthy male Korean volunteers. Xenobiotica. 2015;45:256–63.PubMedCrossRefGoogle Scholar
  192. 192.
    Oosterhuis B, Jonkman JH, Kerkhof FA. Pharmacokinetic and pharmacodynamic comparison of a new controlled-release formulation of metoprolol with a traditional slow-release formulation. Eur J Clin Pharmacol. 1988;33(Suppl):S15–8.PubMedCrossRefGoogle Scholar
  193. 193.
    Sandberg A, Blomqvist I, Jonsson UE, Lundborg P. Pharmacokinetic and pharmacodynamic properties of a new controlled-release formulation of metoprolol: a comparison with conventional tablets. Eur J Clin Pharmacol. 1988;33(Suppl. 1):S9–14.PubMedCrossRefGoogle Scholar
  194. 194.
    Toon S, Davidson EM, Garstang FM, et al. The racemic metoprolol H2-antagonist interaction. Clin Pharmacol Ther. 1988;43:283–9.PubMedCrossRefGoogle Scholar
  195. 195.
    Lee YT, Liau CS, Wong EC, et al. Pharmacokinetic and pharmacodynamic comparison of conventional and controlled release formulations of metoprolol [correction of motoprolol] in healthy Chinese subjects. Cardiovasc Drugs Ther. 1989;3:529–33.PubMedCrossRefGoogle Scholar
  196. 196.
    Feliciano NR, Bouvet AA, Redalieu E, et al. Pharmacokinetic and pharmacodynamic comparison of an osmotic release oral metoprolol tablet and the metoprolol conventional tablet. Am Heart J. 1990;120:483–9.PubMedCrossRefGoogle Scholar
  197. 197.
    Darmansjah I, Wong E, Setiawati A, et al. Pharmacokinetic and pharmacodynamic properties of controlled release (CR/ZOK) metoprolol in healthy Oriental subjects: a comparison with conventional formulations of metoprolol and atenolol. J Clin Pharmacol. 1990;30:S39–45.PubMedCrossRefGoogle Scholar
  198. 198.
    Sandberg A, Abrahamsson B, Svenheden A, et al. Steady-state bioavailability and day-to-day variability of a multiple-unit (CR/ZOK) and a single-unit (OROS) delivery system of metoprolol after once-daily dosing. Pharm Res. 1993;10:28–34.PubMedCrossRefGoogle Scholar
  199. 199.
    Koytchev R, Alken RG, Vlahov V, et al. Influence of the cytochrome P4502D6*4 allele on the pharmacokinetics of controlled-release metoprolol. Eur J Clin Pharmacol. 1998;54:469–74.PubMedCrossRefGoogle Scholar
  200. 200.
    Duricova J, Perinova I, Jurckova N, et al. Clinically important interaction between metoprolol and propafenone. Can Fam Physician. 2013;59:373–5.PubMedPubMedCentralGoogle Scholar
  201. 201.
    Koch HJ, Hartmann M, Bliesath H, et al. Pantoprazole has no influence on steady state pharmacokinetics and pharmacodynamics of metoprolol in healthy volunteers. Int J Clin Pharmacol Ther. 1996;34:420–3.PubMedGoogle Scholar
  202. 202.
    Luzier AB, Killian A, Wilton JH, et al. Gender-related effects on metoprolol pharmacokinetics and pharmacodynamics in healthy volunteers. Clin Pharmacol Ther. 1999;66:594–601.PubMedCrossRefGoogle Scholar
  203. 203.
    Mehuys E, Remon JP, Korst A, et al. Human bioavailability of propranolol from a matrix-in-cylinder system with a HPMC-Gelucire core. J Control Release. 2005;107:523–36.PubMedCrossRefGoogle Scholar
  204. 204.
    Wójcicki J, Jaroszynska M, Droździk M, et al. Comparative pharmacokinetics and pharmacodynamics of propranolol and atenolol in normolipaemic and hyperlipidaemic obese subjects. Biopharm Drug Dispos. 2003;24:211–8.PubMedCrossRefGoogle Scholar
  205. 205.
    Buch A, Barr WH. Absorption of propranolol in humans following oral, jejunal, and ileal administration. Pharm Res. 1998;15:953–7.PubMedCrossRefGoogle Scholar
  206. 206.
    Salman SA, Amrah S, Wahab MS, et al. Modification of propranolol’s bioavailability by Eurycoma longifolia water-based extract. J Clin Pharm Ther. 2010;35:691–6.PubMedCrossRefGoogle Scholar
  207. 207.
    Wójcicki J, Sulzyc-Bielicka V, Kutrzeba J, et al. Studies on the pharmacokinetics and pharmacodynamics of propranolol in hyperlipidemia. J Clin Pharmacol. 1999;39:826–33.PubMedCrossRefGoogle Scholar
  208. 208.
    Walle T, Walle UK, Olanoff LS, Conradi EC. Partial metabolic clearances as determinants of the oral bioavailability of propranolol. Br J Clin Pharmacol. 1986;22:317–23.PubMedPubMedCentralCrossRefGoogle Scholar
  209. 209.
    Telatyńska B, Wójcicki J, Droździk M, et al. Comparative pharmacokinetics of propranolol and atenolol in primary hyperlipidemia. Pol J Pharmacol. 2003;55:81–9.PubMedGoogle Scholar
  210. 210.
    Olanoff LS, Walle T, Cowart TD, et al. Food effects on propranolol systemic and oral clearance: support for a blood flow hypothesis. Clin Pharmacol Ther. 1986;40:408–14.PubMedCrossRefGoogle Scholar
  211. 211.
    Power JM, Morgan DJ, McLean AJ. Effects of sensory (teasing) exposure to food on oral propranolol bioavailability. Biopharm Drug Dispos. 1995;16:579–89.PubMedCrossRefGoogle Scholar
  212. 212.
    Mansur AP, Avakian SD, Paula RS, et al. Pharmacokinetics and pharmacodynamics of propranolol in hypertensive patients after sublingual administration: systemic availability. Braz J Med Biol Res. 1998;31:691–6.PubMedCrossRefGoogle Scholar
  213. 213.
    Wilson TW, Firor WB, Johnson GE, et al. Timolol and propranolol: bioavailability, plasma concentrations, and beta blockade. Clin Pharmacol Ther. 1982;32:676–85.PubMedCrossRefGoogle Scholar
  214. 214.
    Williams FM, Leeser JE, Rawlins MD. Pharmacodynamics and pharmacokinetics of single doses of ketanserin and propranolol alone and in combination in healthy volunteers. Br J Clin Pharmacol. 1986;22:301–8.PubMedPubMedCentralCrossRefGoogle Scholar
  215. 215.
    Straka RJ, Lalonde RL, Pieper JA, et al. Nonlinear pharmacokinetics of unbound propranolol after oral administration. J Pharm Sci. 1987;76:521–4.PubMedCrossRefGoogle Scholar
  216. 216.
    Homeida MM, Ali HM, Arbab BM, Harron DW. Propranolol disposition in patients with hepatosplenic schistosomiasis. Br J Clin Pharmacol. 1987;24:393–6.PubMedPubMedCentralCrossRefGoogle Scholar
  217. 217.
    Biswas NR, Garg SK, Lal R, et al. Pharmacokinetic study of a new sustained release preparation of propranolol in normal healthy volunteers. Int J Clin Pharmacol. 1988;26:436–8.Google Scholar
  218. 218.
    Flouvat B, Berlin I, Cournot A, et al. Pharmacokinetic and pharmacodynamic comparison of two doses of long acting propranolol (80 and 160 mg) in healthy subjects. Br J Clin Pharmacol. 1989;27:539–45.PubMedPubMedCentralCrossRefGoogle Scholar
  219. 219.
    Schoors DF, Vercruysse I, Musch G, et al. Influence of nicardipine on the pharmacokinetics and pharmacodynamics of propranolol in healthy volunteers. Br J Clin Pharmacol. 1990;29:497–501.PubMedPubMedCentralCrossRefGoogle Scholar
  220. 220.
    Zhou HH, Wood AJ. Differences in stereoselective disposition of propranolol do not explain sensitivity differences between white and Chinese subjects: correlation between the clearance of (−)- and (+)-propranolol. Clin Pharmacol Ther. 1990;47:719–23.PubMedCrossRefGoogle Scholar
  221. 221.
    Bano G, Raina RK, Zutshi U, et al. Effect of piperine on bioavailability and pharmacokinetics of propranolol and theophylline in healthy volunteers. Eur J Clin Pharmacol. 1991;41:615–7.PubMedCrossRefGoogle Scholar
  222. 222.
    Bennett PN, Fenn GC, Notarianni LJ, Lee CE. Misoprostol does not alter the pharmacokinetics of propranolol. Postgrad Med J. 1991;67:455–7.PubMedPubMedCentralCrossRefGoogle Scholar
  223. 223.
    Hall ST, Harding SM, Hassani H, et al. The pharmacokinetic and pharmacodynamic interaction between lacidipine and propranolol in healthy volunteers. J Cardiovasc Pharmacol. 1991;18(Suppl. 11):S13–7.PubMedCrossRefGoogle Scholar
  224. 224.
    Zhou HH, Whelan E, Wood AJ. Lack of effect of ageing on the stereochemical disposition of propranolol. Br J Clin Pharmacol. 1992;33:121–3.PubMedPubMedCentralCrossRefGoogle Scholar
  225. 225.
    Bleske BE, Welage LS, Rose S, et al. The effect of dosage release formulations on the pharmacokinetics of propranolol stereoisomers in humans. J Clin Pharmacol. 1995;35:374–8.PubMedCrossRefGoogle Scholar
  226. 226.
    Vercruysse I, Massart DL, Dupont AG. Increase in plasma propranolol caused by nicardipine is dependent on the delivery rate of propranolol. Eur J Clin Pharmacol. 1995;49:121–5.PubMedGoogle Scholar
  227. 227.
    Wójcicki J, Wojciechowski G, Wójcicki M, et al. Pharmacokinetics of propranolol and atenolol in patients after partial gastric resection: a comparative study. Eur J Clin Pharmacol. 2000;56:75–9.PubMedCrossRefGoogle Scholar
  228. 228.
    Dvornik D, Kraml M, Dubuc J, et al. Comparative bioavailability of propranolol: twice-daily versus four times-daily administration. J Clin Pharmacol. 1981;21:472–6.PubMedCrossRefGoogle Scholar
  229. 229.
    Hitzenberger G, Fitscha P, Beveridge T, et al. Effects of age and smoking on the pharmacokinetics of pindolol and propranolol. Br J Clin Pharmacol. 1982;13:217S–22S.PubMedPubMedCentralCrossRefGoogle Scholar
  230. 230.
    Garg DC, Jallad NS, Mishriki A, et al. Comparative pharmacodynamics and pharmacokinetics of conventional and long-acting propranolol. J Clin Pharmacol. 1987;27:390–6.PubMedCrossRefGoogle Scholar
  231. 231.
    Henry D, Brent P, Whyte I, et al. Propranolol steady-state pharmacokinetics are unaltered by omeprazole. Eur J Clin Pharmacol. 1987;33:369–73.PubMedCrossRefGoogle Scholar
  232. 232.
    Watson RG, Bastain W, Larkin KA, et al. A comparative pharmacokinetic study of conventional propranolol and long acting preparation of propranolol in patients with cirrhosis and normal controls. Br J Clin Pharmacol. 1987;24:527–35.PubMedPubMedCentralCrossRefGoogle Scholar
  233. 233.
    Sharoky M, Perkal M, Turner R, Lesko LJ. Steady state relative bioavailability and pharmacokinetics of oral propranolol in black and white North Americans. Biopharm Drug Dispos. 1988;9:447–56.PubMedCrossRefGoogle Scholar
  234. 234.
    Bennett PN, Fenn GC, Notarianni LJ. Potential drug interactions with misoprostol: effects on the pharmacokinetics of antipyrine and propranolol. Postgrad Med J. 1988;64(Suppl 1):21–4.PubMedGoogle Scholar
  235. 235.
    Eldon MA, Kinkel AW, Daniel JE, Latts JR. Bioavailability of propranolol hydrochloride tablet formulations: application of multiple dose crossover studies. Biopharm Drug Dispos. 1989;10:69–76.PubMedCrossRefGoogle Scholar
  236. 236.
    Dimmitt DC, Yu DK, Elvin AT, et al. Pharmacokinetics of diltiazem and propranolol when administered alone and in combination. Biopharm Drug Dispos. 1991;12:515–23.PubMedCrossRefGoogle Scholar
  237. 237.
    Elliott HL, Meredith PA, McNally C, Reid JL. The interactions between nisoldipine and two beta-adrenoceptor antagonists: atenolol and propranolol. Br J Clin Pharmacol. 1991;32:379–85.PubMedPubMedCentralCrossRefGoogle Scholar
  238. 238.
    Stoschitzky K, Lindner W, Egginger G, et al. Racemic (R, S)-propranolol versus half-dosed optically pure (S)-propranolol in humans at steady state: hemodynamic effects, plasma concentrations, and influence on thyroid hormone levels. Clin Pharmacol Ther. 1992;51:445–53.PubMedCrossRefGoogle Scholar
  239. 239.
    Shaw-Stiffel TA, Walker SE, Ogilvie RI, Leenen FH. Pharmacokinetic and pharmacodynamic interactions during multiple-dose administration of nisoldipine and propranolol. Clin Pharmacol Ther. 1994;55:661–9.PubMedCrossRefGoogle Scholar
  240. 240.
    Marathe PH, Greene DS, Kollia GD, Barbhaiya RH. A pharmacokinetic interaction study of avitriptan and propranolol. Clin Pharmacol Ther. 1998;63:367–78.PubMedCrossRefGoogle Scholar
  241. 241.
    Murdoch DL, Thomson GD, Thompson GG, et al. Evaluation of potential pharmacodynamic and pharmacokinetic interactions between verapamil and propranolol in normal subjects. Br J Clin Pharmacol. 1991;31:323–32.PubMedPubMedCentralCrossRefGoogle Scholar
  242. 242.
    Zhou HH, Koshakji RP, Silberstein DJ, et al. Altered sensitivity to and clearance of propranolol in men of Chinese descent as compared with American whites. N Engl J Med. 1989;320:565–70.PubMedCrossRefGoogle Scholar
  243. 243.
    Borgström L, Johansson CG, Larsson H, Lenander R. Pharmacokinetics of propranolol. J Pharmacokinet Biopharm. 1981;9:419–29.PubMedCrossRefGoogle Scholar
  244. 244.
    Rostock G, Faulhaber HD, Gohlke HR. Prehm C [Comparative pharmacokinetic studies on the relative biologic availability of two propranolol preparations in patients with steady state essential hypertension]. Pharmazie. 1986;41:258–60.PubMedGoogle Scholar
  245. 245.
    Krediet RT, Dunning AJ, Offerhaus L. Relationship of propranolol pharmacokinetics to antihypertensive effect and beta-adrenergic blockade in the treatment of hypertension. Eur J Clin Pharmacol. 1980;18:391–4.PubMedCrossRefGoogle Scholar
  246. 246.
    el-Yazigi A, el-Baage T, al-Humaidan A, Yusuf A. Steady state pharmacokinetics of propranolol in Saudi Arabian patients and comparison with data for different populations. J Clin Pharmacol. 1990;30:144–50.PubMedCrossRefGoogle Scholar
  247. 247.
    Kowey PR, Kirsten EB, Fu CH, Mason WD. Interaction between propranolol and propafenone in healthy volunteers. J Clin Pharmacol. 1989;29:512–7.PubMedCrossRefGoogle Scholar
  248. 248.
    Mason WD, Winer N, Kochak G, et al. Kinetics and absolute bioavailability of atenolol. Clin Pharmacol Ther. 1979;25:408–15.PubMedCrossRefGoogle Scholar
  249. 249.
    Chang MJ, Shin WG. Comparative pharmacokinetics and bioequivalence of two 50 mg atenolol tablet formulations in healthy Korean male volunteers. Arzneimittelforschung. 2012;62:410–3.PubMedCrossRefGoogle Scholar
  250. 250.
    Clementi WA, Garvey TQ, Clifton GD, et al. Single dose pharmacokinetics of (S)-atenolol administered orally as a single enantiomer formulation and as a racemic mixture (Tenormin). Chirality. 1994;6:169–74.PubMedCrossRefGoogle Scholar
  251. 251.
    Martins ML, Pierossi MA, Moraes LA, et al. Comparative bioavailability of two atenolol tablet formulations in healthy male volunteers after a single dose administration. Int J Clin Pharmacol Ther. 1997;35:324–8.PubMedGoogle Scholar
  252. 252.
    Lilja JJ, Juntti-Patinen L, Neuvonen PJ. Effect of rifampicin on the pharmacokinetics of atenolol. Basic Clin Pharmacol Toxicol. 2006;98:555–8.PubMedCrossRefGoogle Scholar
  253. 253.
    Najib NM, Idkaidek N, Adel A, et al. Comparative bioavailability of two brands of atenolol 100 mg tablets (Tensotin and Tenormin) in healthy human volunteers. Biopharm Drug Dispos. 2005;26:1–5.PubMedCrossRefGoogle Scholar
  254. 254.
    Irshaid YM, Rawashdeh NM, Awwadi FF, Kato MK. Comparative pharmacokinetics of two brands of atenolol following a single oral administration. Int J Clin Pharmacol Ther. 1996;34:457–61.PubMedGoogle Scholar
  255. 255.
    Schäfer-Korting M, Bach N, Knauf H, Mutschler E. Pharmacokinetics of nadolol in healthy subjects. Eur J Clin Pharmacol. 1984;26:125–7.PubMedCrossRefGoogle Scholar
  256. 256.
    Brown HC, Carruthers SG, Johnston GD, et al. Clinical pharmacologic observations on atenolol, a beta-adrenoceptor blocker. Clin Pharmacol Ther. 1976;20:524–34.PubMedCrossRefGoogle Scholar
  257. 257.
    Melander A, Stenberg P, Liedholm H, et al. Food-induced reduction in bioavailability of atenolol. Eur J Clin Pharmacol. 1979;16:327–30.PubMedCrossRefGoogle Scholar
  258. 258.
    Boyd RA, Chin SK, Don-Pedro O, et al. The pharmacokinetics of the enantiomers of atenolol. Clin Pharmacol Ther. 1989;45:403–10.PubMedCrossRefGoogle Scholar
  259. 259.
    Ferry N, Bernard N, Pozet N, et al. The effect of infinitesimal drug dilutions on the pharmacokinetics of nalidixic acid and atenolol. Br J Clin Pharmacol. 1991;32:39–44.PubMedPubMedCentralCrossRefGoogle Scholar
  260. 260.
    Czendlik CH, Sioufi A, Preiswerk G, Howald H. Pharmacokinetic and pharmacodynamic interaction of single doses of valsartan and atenolol. Eur J Clin Pharmacol. 1997;52:451–9.PubMedCrossRefGoogle Scholar
  261. 261.
    Greenblatt DJ, Scavone JM, Harmatz JS, et al. Cognitive effects of beta-adrenergic antagonists after single doses: pharmacokinetics and pharmacodynamics of propranolol, atenolol, lorazepam, and placebo. Clin Pharmacol Ther. 1993;53:577–84.PubMedCrossRefGoogle Scholar
  262. 262.
    Rojanasthien N, Manorot M, Kumsorn B. Bioequivalence study of generic atenolol tablets in healthy Thai volunteers. J Med Assoc Thail Chotmaihet Thangphaet. 1999;82:907–14.Google Scholar
  263. 263.
    Niopas I, Daftsios AC, Xanthakis I, et al. Bioequivalence of two tablet formulations of atenolol after single oral administration in healthy volunteers. Arzneimittelforschung. 2000;50:243–7.PubMedGoogle Scholar
  264. 264.
    Riva E, Farina PL, Sega R, et al. Pharmacokinetics of atenolol in hypertensive subjects with and without co-administration of chlorthalidone. Eur J Clin Pharmacol. 1980;17:333–7.PubMedCrossRefGoogle Scholar
  265. 265.
    Schäfer-Korting M, Kirch W, et al. Atenolol interaction with aspirin, allopurinol, and ampicillin. Clin Pharmacol Ther. 1983;33:283–8.PubMedCrossRefGoogle Scholar
  266. 266.
    Kovarik JM, Lu M, Riviere G-J, et al. The effect on heart rate of combining single-dose fingolimod with steady-state atenolol or diltiazem in healthy subjects. Eur J Clin Pharmacol. 2008;64:457–63.PubMedCrossRefGoogle Scholar
  267. 267.
    Held P, Regårdh CG, Swedberg K. Pharmacokinetic and pharmacodynamic properties of atenolol in acute myocardial infarction. J Cardiovasc Pharmacol. 1990;15:172–4.PubMedCrossRefGoogle Scholar
  268. 268.
    Lowenthal DT, Pitone JM, Affrime MB, et al. Timolol kinetics in chronic renal insufficiency. Clin Pharmacol Ther. 1978;23:606–15.PubMedCrossRefGoogle Scholar
  269. 269.
    Anttila M, Haataja M, Kasanen A. Pharmacokinetics of naproxen in subjects with normal and impaired renal function. Eur J Clin Pharmacol. 1980;18:263–8.PubMedCrossRefGoogle Scholar
  270. 270.
    Caillé G, du Souich P, Besner JG, et al. Effects of food and sucralfate on the pharmacokinetics of naproxen and ketoprofen in humans. Am J Med. 1989;86:38–44.PubMedCrossRefGoogle Scholar
  271. 271.
    Desager JP, Vanderbist M, Harvengt C. Naproxen plasma levels in volunteers after single-dose administration by oral and rectal routes. J Clin Pharmacol. 1976;16:189–93.PubMedCrossRefGoogle Scholar
  272. 272.
    Caillé G, Du Souich P, Gervais P, Besner JG. Single dose pharmacokinetics of ketoprofen, indomethacin, and naproxen taken alone or with sucralfate. Biopharm Drug Dispos. 1987;8:173–83.PubMedCrossRefGoogle Scholar
  273. 273.
    Weber SS, Bankhurst AD, Mroszczak E, Ding TL. Effect of Mylanta on naproxen bioavailability. Ther Drug Monit. 1981;3:75–83.PubMedGoogle Scholar
  274. 274.
    Ryley NJ, Lingam G. A pharmacokinetic comparison of controlled-release and standard naproxen tablets. Curr Med Res Opin. 1988;11:10–5.PubMedCrossRefGoogle Scholar
  275. 275.
    Cohen A, Basch C. Steady state pharmacokinetics of naproxen in young and elderly healthy volunteers. Semin Arthritis Rheum. 1988;17:7–11.PubMedCrossRefGoogle Scholar
  276. 276.
    Kelly JG, Kinney CD, Devane JG, et al. Pharmacokinetic properties and clinical efficacy of once-daily sustained-release naproxen. Eur J Clin Pharmacol. 1989;36:383–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Peer Tfelt-Hansen
    • 1
  • Frederik Nybye Ågesen
    • 2
  • Agniezka Pavbro
    • 1
  • Jacob Tfelt-Hansen
    • 2
  1. 1.Danish Headache Center, Department of Neurology, Rigshospitalet-Glostrup HospitalUniversity of CopenhagenGlostrupDenmark
  2. 2.Department of CardiologyUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations