CNS Drugs

, Volume 31, Issue 5, pp 373–388 | Cite as

Managing Negative Symptoms of Schizophrenia: How Far Have We Come?

Review Article


The specific efficacy of antipsychotics on negative symptoms is questionable, suggesting an urgent need for specific treatments for negative symptoms. This review includes studies published since 2014 with a primary or secondary focus on treating negative symptoms in schizophrenia. Special emphasis is given to recently published meta-analyses. Topics include novel pharmacological approaches, including glutamatergic-based and nicotinic-acetylcholinergic treatments, treatments approved for other indications by the US FDA (or other regulatory bodies) (antipsychotics, antidepressants, and mood stabilizers), brain stimulation, and behavioral- and activity-based approaches, including physical exercise. Potential complications regarding the design of current negative symptom trials are discussed and include inconsistent placebo effects, lack of reliable biomarkers, negative symptom scale and inclusion criteria variability, attempts to distinguish between primary and secondary negative symptoms, lack of focus on early psychosis, and the potential iatrogenic bias of clinical trials.


  1. 1.
    Carpenter WT, Bartko JJ, Strauss JS, Hawk AB. Signs and symptoms as predictors of outcome: a report from the International Pilot Study of Schizophrenia. Am J Psychiatry. 1978;135(8):940–4.PubMedCrossRefGoogle Scholar
  2. 2.
    Andreasen NC. Negative symptoms in schizophrenia. Arch Gen Psychiatry. 1982;39:784–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Goghari VM, Harrow M, Grossman LS, Rosen C. A 20-year multi-follow-up of hallucinations in schizophrenia, other psychotic, and mood disorders. Psychol Med. 2013;43(6):1151–60.PubMedCrossRefGoogle Scholar
  4. 4.
    Heilbronner U, Samara M, Leucht S, Falkai P, Schulze TG. The longitudinal course of schizophrenia across the lifespan: clinical, cognitive, and neurobiological aspects. Harv Rev Psychiatry. 2016;24(2):118–28.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Mancevski B, Keilp J, Kurzon M, Berman RM, Ortakov V, Harkavy-Friedman J, et al. Lifelong course of positive and negative symptoms in chronically institutionalized patients with schizophrenia. Psychopathology. 2007;40(2):83–92.PubMedCrossRefGoogle Scholar
  6. 6.
    Gur RE, Petty RG, Turetsky BI, Gur RC. Schizophrenia throughout life: sex differences in severity and profile of symptoms. Schizophr Res. 1996;21(1):1–12.PubMedCrossRefGoogle Scholar
  7. 7.
    Pfohl B, Winokur G. The evolution of symptoms in institutionalized hebephrenic/catatonic schizophrenics. Br J Psychiatry. 1982;141:567–72.PubMedCrossRefGoogle Scholar
  8. 8.
    Strauss JS, Carpenter WT Jr. The prediction of outcome in schizophrenia. I. Characteristics of outcome. Arch Gen Psychiatry. 1972;27(6):739–46.PubMedCrossRefGoogle Scholar
  9. 9.
    Waters F, Aleman A, Fernyhough C, Allen P. Report on the inaugural meeting of the International Consortium on Hallucination Research: a clinical and research update and 16 consensus-set goals for future research. Schizophr Bull. 2012;38(2):258–62.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Buchanan RW. Persistent negative symptoms in schizophrenia: an overview. Schizophr Bull. 2007;33(4):1013–22.PubMedCrossRefGoogle Scholar
  11. 11.
    Milev P, Ho BC, Arndt S, Andreasen NC. Predictive values of neurocognition and negative symptoms on functional outcome in schizophrenia: a longitudinal first-episode study with 7-year follow-up. Am J Psychiatry. 2005;162(3):495–506.PubMedCrossRefGoogle Scholar
  12. 12.
    American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Arlington: American Psychiatric Publishing; 2013.CrossRefGoogle Scholar
  13. 13.
    Kurtz MM, Moberg JP, Ragland JD, Gur RC, Gur RE. Symptoms versus neurocognitive test performance as predictors of psychosocial status in schizophrenia: a 1- and 4-year prospective study. Schizophr Bull. 2005;31:167–74.PubMedCrossRefGoogle Scholar
  14. 14.
    Fenton WS, McGlashan TH. Antecedents, symptom progression, and long-term outcome of the deficit syndrome in schizophrenia. Am J Psychiatry. 1994;151(3):351–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Kirkpatrick B, Buchanan RW, Ross DE, Carpenter WT Jr. A separate disease within the syndrome of schizophrenia. Arch Gen Psychiatry. 2001;58(2):165–71.PubMedCrossRefGoogle Scholar
  16. 16.
    Cohen AS, Saperstein AM, Gold JM, Kirkpatrick B, Carpenter WT Jr, Buchanan RW. Neuropsychology of the deficit syndrome: new data and meta-analysis of findings to date. Schizophr Bull. 2007;33(5):1201–12.PubMedCrossRefGoogle Scholar
  17. 17.
    Bobes J, Arango C, Garcia-Garcia M, Rejas J. Prevalence of negative symptoms in outpatients with schizophrenia spectrum disorders treated with antipsychotics in routine clinical practice: findings from the CLAMORS study. J Clin Psychiatry. 2010;71(3):280–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Seeman P, Lee T. Antipsychotic drugs: direct correlation between clinical potency and presynaptic action on dopamine neurons. Science. 1975;188(4194):1217–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Wong DF, Wagner HN, Tune LE, Dannals RF, Pearlson GD, Links JM, et al. Positron emission tomography reveals elevated D2 dopamine receptors in drug-naive schizophrenics. Science. 1986;234(4783):1558–63.PubMedCrossRefGoogle Scholar
  20. 20.
    Leucht S, Cipriani A, Spineli L, Mavridis D, Orey D, Richter F, et al. Comparative efficacy and tolerability of 15 antipsychotic drugs in schizophrenia: a multiple-treatments meta-analysis. Lancet. 2013;382(9896):951–62.PubMedCrossRefGoogle Scholar
  21. 21.
    Siskind D, McCartney L, Goldschlager R, Kisely S. Clozapine v. first- and second-generation antipsychotics in treatment-refractory schizophrenia: systematic review and meta-analysis. Br J Psychiatry. 2016;209(5):385–92.PubMedCrossRefGoogle Scholar
  22. 22.
    Lincoln TM, Dollfus S, Lyne J. Current developments and challenges in the assessment of negative symptoms. Schizophr Res. 2016. doi:10.1016/j.schres.2016.02.035.
  23. 23.
    Kirkpatrick B, Fenton WS, Carpenter WT Jr, Marder SR. The NIMH-MATRICS consensus statement on negative symptoms. Schizophr Bull. 2006;32(2):214–9.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Marder SR, Daniel DG, Alphs L, Awad AG, Keefe RS. Methodological issues in negative symptom trials. Schizophr Bull. 2011;37(2):250–4.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Kay S, Fiszbein A, Opler L. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull. 1987;13(2):261–76.PubMedCrossRefGoogle Scholar
  26. 26.
    Andreasen NC. The scale for the assessment of negative symptoms (SANS). Iowa City: University of Iowa; 1984.Google Scholar
  27. 27.
    Axelrod BN, Goldman RS, Alphs LD. Validation of the 16-item Negative Symptom Assessment. J Psychiatr Res. 1993;27(3):253–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Aleman A, Lincoln TM, Bruggeman R, Melle I, Arends J, Arango C, et al. Treatment of negative symptoms: where do we stand, and where do we go? Schizophr Res. 2017. doi:10.1016/j.schres.2016.05.015.
  29. 29.
    van Erp TG, Preda A, Nguyen D, Faziola L, Turner J, Bustillo J, et al. Converting positive and negative symptom scores between PANSS and SAPS/SANS. Schizophr Res. 2014;152(1):289–94.PubMedCrossRefGoogle Scholar
  30. 30.
    Strauss GP, Gold JM. A psychometric comparison of the Clinical Assessment Interview for Negative Symptoms and the Brief Negative Symptom Scale. Schizophr Bull. 2016;42(6):1384–94.PubMedCrossRefGoogle Scholar
  31. 31.
    Marder SR, Alphs L, Anghelescu IG, Arango C, Barnes TR, Caers I, et al. Issues and perspectives in designing clinical trials for negative symptoms in schizophrenia. Schizophr Res. 2013;150(2–3):328–33.PubMedCrossRefGoogle Scholar
  32. 32.
    Insel TR. The NIMH experimental medicine initiative. World Psychiatry. 2015;14(2):151–3.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Lendrem DW, Lendrem BC. Torching the Haystack: modelling fast-fail strategies in drug development. Drug Discov Today. 2013;18(7–8):331–6.PubMedCrossRefGoogle Scholar
  34. 34.
    Clark VP, Coffman BA, Mayer AR, Weisend MP, Lane TD, Calhoun VD, et al. TDCS guided using fMRI significantly accelerates learning to identify concealed objects. Neuroimage. 2012;59(1):117–28.PubMedCrossRefGoogle Scholar
  35. 35.
    Lavoie S, Murray MM, Deppen P, Knyazeva MG, Berk M, Boulat O, et al. Glutathione precursor, N-acetyl-cysteine, improves mismatch negativity in schizophrenia patients. Neuropsychopharmacology. 2008;33(9):2187–99.PubMedCrossRefGoogle Scholar
  36. 36.
    Kantrowitz JT, Epstein ML, Beggel O, Rohrig S, Lehrfeld JM, Revheim N, et al. Neurophysiological mechanisms of cortical plasticity impairments in schizophrenia and modulation by the NMDA receptor agonist d-serine. Brain. 2016;139(Pt 12):3281–95.PubMedCrossRefGoogle Scholar
  37. 37.
    Kantrowitz JT, Epstein ML, Lee M, Lehrfeld N, Nolan KA, Shope C, et al. Improvement in mismatch negativity generation during d-Serine treatment in schizophrenia: correlation with symptoms. Schizophr Res. 2017. doi:10.1016/j.schres.2017.02.027.
  38. 38.
    Fusar-Poli P, Papanastasiou E, Stahl D, Rocchetti M, Carpenter W, Shergill S, et al. Treatments of negative symptoms in schizophrenia: meta-analysis of 168 randomized placebo-controlled trials. Schizophr Bull. 2015;41(4):892–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Galderisi S, Farden A, Kaiser S. Dissecting negative symptoms of schizophrenia: history, assessment, pathophysiological mechanisms and treatment. Schizophr Res. 2016. doi:10.1016/j.schres.2016.04.046.
  40. 40.
    Garay RP, Citrome L, Samalin L, Liu CC, Thomsen MS, Correll CU, et al. Therapeutic improvements expected in the near future for schizophrenia and schizoaffective disorder: an appraisal of phase III clinical trials of schizophrenia-targeted therapies as found in US and EU clinical trial registries. Expert Opin Pharmacother. 2016;17(7):921–36.PubMedCrossRefGoogle Scholar
  41. 41.
    Arango C, Garibaldi G, Marder SR. Pharmacological approaches to treating negative symptoms: a review of clinical trials. Schizophr Res. 2013;150(2–3):346–52.PubMedCrossRefGoogle Scholar
  42. 42.
    Javitt DC, Zukin SR. Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry. 1991;148(10):1301–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD, et al. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry. 1994;51(3):199–214.PubMedCrossRefGoogle Scholar
  44. 44.
    Moghaddam B, Krystal JH. Capturing the angel in “angel dust”: twenty years of translational neuroscience studies of NMDA receptor antagonists in animals and humans. Schizophr Bull. 2012;38(5):942–9.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Coyle JT. NMDA receptor and schizophrenia: a brief history. Schizophr Bull. 2012;38(5):920–6.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Kantrowitz JT, Javitt DC. N-Methyl-d-aspartate (NMDA) receptor dysfunction or dysregulation: the final common pathway on the road to schizophrenia? Brain Res Bull. 2010;83(3–4):108–21.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Kantrowitz JT, Javitt DC. Thinking glutamatergically: changing concepts of schizophrenia based upon changing neurochemical models. Clin Schizophr Relat Psychoses. 2010;4(3):189–200.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Luby ED, Gottlieb JS, Cohen BD, Rosenbaum G, Domino EF. Model psychoses and schizophrenia. Am J Psychiatry. 1962;119:61–7.PubMedCrossRefGoogle Scholar
  49. 49.
    Korostenskaja M, Kicic D, Kahkonen S. The effect of methylphenidate on auditory information processing in healthy volunteers: a combined EEG/MEG study. Psychopharmacology. 2008;197(3):475–86.PubMedCrossRefGoogle Scholar
  50. 50.
    Umbricht D, Koller R, Vollenweider FX, Schmid L. Mismatch negativity predicts psychotic experiences induced by NMDA receptor antagonist in healthy volunteers. Biol Psychiatry. 2002;51(5):400–6.PubMedCrossRefGoogle Scholar
  51. 51.
    Umbricht D, Vollenweider FX, Schmid L, Grubel C, Skrabo A, Huber T, et al. Effects of the 5-HT2A agonist psilocybin on mismatch negativity generation and AX-continuous performance task: implications for the neuropharmacology of cognitive deficits in schizophrenia. Neuropsychopharmacology. 2003;28(1):170–81.PubMedCrossRefGoogle Scholar
  52. 52.
    Mayer ML, Vyklicky L Jr, Clements J. Regulation of NMDA receptor desensitization in mouse hippocampal neurons by glycine. Nature. 1989;338(6214):425–7.PubMedCrossRefGoogle Scholar
  53. 53.
    Vornov JJ, Coyle JT. Glutamate neurotoxicity and the inhibition of protein synthesis in the hippocampal slice. J Neurochem. 1991;56(3):996–1006.PubMedCrossRefGoogle Scholar
  54. 54.
    Balu DT, Coyle JT. The NMDA receptor ‘glycine modulatory site’ in schizophrenia: d-serine, glycine, and beyond. Curr Opin Pharmacol. 2015;20:109–15.PubMedCrossRefGoogle Scholar
  55. 55.
    Cho SE, Na KS, Cho SJ, Kang SG. Low d-serine levels in schizophrenia: a systematic review and meta-analysis. Neurosci Lett. 2016;634:42–51.PubMedCrossRefGoogle Scholar
  56. 56.
    Kantrowitz JT, Malhotra AK, Cornblatt B, Silipo G, Balla A, Suckow RF, et al. High dose d-serine in the treatment of schizophrenia. Schizophr Res. 2010;121(1–3):125–30.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Kantrowitz JT, Woods SW, Petkova E, Cornblatt B, Corcoran CM, Chen H, et al. D-serine for the treatment of negative symptoms in individuals at clinical high risk of schizophrenia: a pilot, double-blind, placebo-controlled, randomised parallel group mechanistic proof-of-concept trial. Lancet Psychiatry. 2015;2(5):403–12.PubMedCrossRefGoogle Scholar
  58. 58.
    Kantrowitz J, Javitt DC. Glutamatergic transmission in schizophrenia: from basic research to clinical practice. Curr Opin Psychiatry. 2012;25(2):96–102.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Javitt DC. Glycine transport inhibitors for the treatment of schizophrenia: symptom and disease modification. Curr Opin Drug Discov Dev. 2009;12(4):468–78.Google Scholar
  60. 60.
    Javitt DC, Sershen H, Hashim A, Lajtha A. Reversal of phencyclidine-induced hyperactivity by glycine and the glycine uptake inhibitor glycyldodecylamide. Neuropsychopharmacology. 1997;17(3):202–4.PubMedCrossRefGoogle Scholar
  61. 61.
    Javitt DC, Balla A, Burch S, Suckow R, Xie S, Sershen H. Reversal of phencyclidine-induced dopaminergic dysregulation by N-methyl-d-aspartate receptor/glycine-site agonists. Neuropsychopharmacology. 2004;29(2):300–7.PubMedCrossRefGoogle Scholar
  62. 62.
    Alberati D, Moreau JL, Lengyel J, Hauser N, Mory R, Borroni E, et al. Glycine reuptake inhibitor RG1678: a pharmacologic characterization of an investigational agent for the treatment of schizophrenia. Neuropharmacology. 2012;62(2):1152–61.PubMedCrossRefGoogle Scholar
  63. 63.
    Umbricht D, Alberati D, Martin-Facklam M, Borroni E, Youssef EA, Ostland M, et al. Effect of bitopertin, a glycine reuptake inhibitor, on negative symptoms of schizophrenia: a randomized, double-blind, proof-of-concept study. JAMA Psychiatry. 2014;71(6):637–46.PubMedCrossRefGoogle Scholar
  64. 64.
    Blaettler T, Bugarski-Kirola D, Fleischhacker WW, Bressan R, Arango C, Abi-Sabb D, et al. Efficacy and safety of adjunctive bitopertin (10 and 20 mg) versus placebo in subjects with persistent predominant negative symptoms of schizophrenia treated with antipsychotics—results from the Phase III FlashLyte Study. Schizophr Res. 2014;158:e2–3.CrossRefGoogle Scholar
  65. 65.
    Arango C, Nasrallah AT, Lawrie S, Lohmann TO, Zhu JL, Garibaldi G, et al. Efficacy and safety of adjunctive bitopertin (5 and 10 mg) versus placebo in subjects with persistent predominant negative symptoms of schizophrenia treated with antipsychotics—results from the phase III DayLyte study. Schizophr Res. 2014;158(1–3):e1.CrossRefGoogle Scholar
  66. 66.
    Bugarski-Kirola D, Iwata N, Sameljak S, Reid C, Blaettler T, Millar L, et al. Efficacy and safety of adjunctive bitopertin versus placebo in patients with suboptimally controlled symptoms of schizophrenia treated with antipsychotics: results from three phase 3, randomised, double-blind, parallel-group, placebo-controlled, multicentre studies in the SearchLyte clinical trial programme. Lancet Psychiatry. 2016;3(12):1115–28.PubMedCrossRefGoogle Scholar
  67. 67.
    Schoemaker JH, Jansen WT, Schipper J, Szegedi A. The selective glycine uptake inhibitor org 25935 as an adjunctive treatment to atypical antipsychotics in predominant persistent negative symptoms of schizophrenia: results from the GIANT trial. J Clin Psychopharmacol. 2014;34(2):190–8.PubMedCrossRefGoogle Scholar
  68. 68.
    Dunayevich E, Buchanan RW, Chen CY, Yang J, Nilsen J, Dietrich JM, et al. Efficacy and safety of the glycine transporter type-1 inhibitor AMG 747 for the treatment of negative symptoms associated with schizophrenia. Schizophr Res. 2017. doi:10.1016/j.schres.2016.10.027.
  69. 69.
    Tsai G, Lane HY, Yang P, Chong MY, Lange N. Glycine transporter I inhibitor, N-methylglycine (sarcosine), added to antipsychotics for the treatment of schizophrenia. Biol Psychiatry. 2004;55(5):452–6.PubMedCrossRefGoogle Scholar
  70. 70.
    Javitt DC, Duncan L, Balla A, Sershen H. Inhibition of system A-mediated glycine transport in cortical synaptosomes by therapeutic concentrations of clozapine: implications for mechanisms of action. Mol Psychiatry. 2005;10(3):275–87.PubMedCrossRefGoogle Scholar
  71. 71.
    Lin CY, Liang SY, Chang YC, Ting SY, Kao CL, Wu YH, et al. Adjunctive sarcosine plus benzoate improved cognitive function in chronic schizophrenia patients with constant clinical symptoms: a randomised, double-blind, placebo-controlled trial. World J Biol Psychiatry. doi:10.3109/15622975.2015.1117654.
  72. 72.
    Amiaz R, Kent I, Rubinstein K, Sela BA, Javitt D, Weiser M. Safety, tolerability and pharmacokinetics of open label sarcosine added on to anti-psychotic treatment in schizophrenia—preliminary study. Isr J Psychiatry Relat Sci. 2015;52(1):12–5.PubMedGoogle Scholar
  73. 73.
    Mantysalo S, Naatanen R. The duration of a neuronal trace of an auditory stimulus as indicated by event-related potentials. Biol Psychol. 1987;24(3):183–95.PubMedCrossRefGoogle Scholar
  74. 74.
    Javitt DC. Intracortical mechanisms of mismatch negativity dysfunction in schizophrenia. Audiol Neurootol. 2000;5(3–4):207–15.PubMedCrossRefGoogle Scholar
  75. 75.
    Lindenmayer JP, Bernstein-Hyman R, Grochowski S. A new five factor model of schizophrenia. Psychiatr Q. 1994;65(4):299–322.PubMedCrossRefGoogle Scholar
  76. 76.
    Kantrowitz JT, Nolan KA, Epstein M, Lehrfeld N, Shope C, Petkova E, et al. Neurophysiological effects of bitopertin in schizophrenia. J Clin Psychopharmacol. 2017;37(4) (in press).Google Scholar
  77. 77.
    Poels EM, Kegeles LS, Kantrowitz JT, Javitt DC, Lieberman JA, Abi-Dargham A, et al. Glutamatergic abnormalities in schizophrenia: a review of proton MRS findings. Schizophr Res. 2014;152(2–3):325–32.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Rowland LM, Bustillo JR, Mullins PG, Jung RE, Lenroot R, Landgraf E, et al. Effects of ketamine on anterior cingulate glutamate metabolism in healthy humans: a 4-T proton MRS study. Am J Psychiatry. 2005;162(2):394–6.PubMedCrossRefGoogle Scholar
  79. 79.
    Kantrowitz JT, Milak MS, Mao X, Shungu DC, Mann JJ. d-Cycloserine, an NMDA glutamate receptor glycine site partial agonist, induces acute increases in brain glutamate plus glutamine and GABA comparable to ketamine. Am J Psychiatry. 2016;173(12):1241–2.PubMedCrossRefGoogle Scholar
  80. 80.
    Milak MS, Proper CJ, Mulhern ST, Parter AL, Kegeles LS, Ogden RT, et al. A pilot in vivo proton magnetic resonance spectroscopy study of amino acid neurotransmitter response to ketamine treatment of major depressive disorder. Mol Psychiatry. 2015;21(3):320–7.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Strzelecki D, Podgorski M, Kaluzynska O, Stefanczyk L, Kotlicka-Antczak M, Gmitrowicz A, et al. Adding sarcosine to antipsychotic treatment in patients with stable schizophrenia changes the concentrations of neuronal and glial metabolites in the left dorsolateral prefrontal cortex. Int J Mol Sci. 2015;16(10):24475–89.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Strzelecki D, Podgorski M, Kaluzynska O, Gawlik-Kotelnicka O, Stefanczyk L, Kotlicka-Antczak M, et al. Supplementation of antipsychotic treatment with sarcosine—GlyT1 inhibitor—causes changes of glutamatergic (1)NMR spectroscopy parameters in the left hippocampus in patients with stable schizophrenia. Neurosci Lett. 2015;606:7–12.PubMedCrossRefGoogle Scholar
  83. 83.
    Moghaddam B, Adams B, Verma A, Daly D. Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J Neurosci. 1997;17(8):2921–7.PubMedGoogle Scholar
  84. 84.
    Moghaddam B, Adams BW. Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats. Science. 1998;281(5381):1349–52.PubMedCrossRefGoogle Scholar
  85. 85.
    Patil ST, Zhang L, Martenyi F, Lowe SL, Jackson KA, Andreev BV, et al. Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized Phase 2 clinical trial. Nat Med. 2007;13(9):1102–7.PubMedCrossRefGoogle Scholar
  86. 86.
    Stauffer VL, Millen BA, Andersen S, Kinon BJ, Lagrandeur L, Lindenmayer JP, et al. Pomaglumetad methionil: no significant difference as an adjunctive treatment for patients with prominent negative symptoms of schizophrenia compared to placebo. Schizophr Res. 2013;150(2–3):434–41.PubMedCrossRefGoogle Scholar
  87. 87.
    Kinon BJ, Adams DH, Baygani S, Millen B, Velona I, Kollack-Walker S. A long-term, phase 2, safety study of LY2140023 monohydrate vs. Atypical antipsychotic standard of care in schizophrenia. Schizophr Bull. 2011;37(Suppl 1):311.Google Scholar
  88. 88.
    Kinon BJ, Gomez JC. Clinical development of pomaglumetad methionil: a non-dopaminergic treatment for schizophrenia. Neuropharmacology. 2013;66:82–6.PubMedCrossRefGoogle Scholar
  89. 89.
    Litman RE, Smith MA, Doherty JJ, Cross A, Raines S, Gertsik L, et al. AZD8529, a positive allosteric modulator at the mGluR2 receptor, does not improve symptoms in schizophrenia: a proof of principle study. Schizophr Res. 2016;172(1–3):152–7.PubMedCrossRefGoogle Scholar
  90. 90.
    Behrens MM, Sejnowski TJ. Does schizophrenia arise from oxidative dysregulation of parvalbumin-interneurons in the developing cortex? Neuropharmacology. 2009;57(3):193–200.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Iranpour N, Zandifar A, Farokhnia M, Goguol A, Yekehtaz H, Khodaie-Ardakani MR, et al. The effects of pioglitazone adjuvant therapy on negative symptoms of patients with chronic schizophrenia: a double-blind and placebo-controlled trial. Hum Psychopharmacol. 2016;31(2):103–12.PubMedCrossRefGoogle Scholar
  92. 92.
    Wang JQ, Arora A, Yang L, Parelkar NK, Zhang G, Liu X, et al. Phosphorylation of AMPA receptors: mechanisms and synaptic plasticity. Mol Neurobiol. 2005;32(3):237–49.PubMedCrossRefGoogle Scholar
  93. 93.
    Chaves C, Marque CR, Trzesniak C, Machado de Sousa JP, Zuardi AW, Crippa JA, et al. Glutamate-N-methyl-d-aspartate receptor modulation and minocycline for the treatment of patients with schizophrenia: an update. Braz J Med Biol Res. 2009;42(11):1002–14.PubMedCrossRefGoogle Scholar
  94. 94.
    Solmi M, Veronese N, Thapa N, Facchini S, Stubbs B, Fornaro M, et al. Systematic review and meta-analysis of the efficacy and safety of minocycline in schizophrenia. CNS Spectr. 2017;9:1–12.CrossRefGoogle Scholar
  95. 95.
    Marx CE, Lee J, Subramaniam M, Rapisarda A, Bautista DC, Chan E, et al. Proof-of-concept randomized controlled trial of pregnenolone in schizophrenia. Psychopharmacology. 2014;231(17):3647–62.PubMedCrossRefGoogle Scholar
  96. 96.
    Schobel SA, Chaudhury NH, Khan UA, Paniagua B, Styner MA, Asllani I, et al. Imaging patients with psychosis and a mouse model establishes a spreading pattern of hippocampal dysfunction and implicates glutamate as a driver. Neuron. 2013;78(1):81–93.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Schobel SA, Lewandowski NM, Corcoran CM, Moore H, Brown T, Malaspina D, et al. Differential targeting of the CA1 subfield of the hippocampal formation by schizophrenia and related psychotic disorders. Arch Gen Psychiatry. 2009;66(9):938–46.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Gozzi A, Herdon H, Schwarz A, Bertani S, Crestan V, Turrini G, et al. Pharmacological stimulation of NMDA receptors via co-agonist site suppresses fMRI response to phencyclidine in the rat. Psychopharmacology. 2008;201(2):273–84.PubMedCrossRefGoogle Scholar
  99. 99.
    Meyer EC, Carrion RE, Cornblatt BA, Addington J, Cadenhead KS, Cannon TD, et al. The relationship of neurocognition and negative symptoms to social and role functioning over time in individuals at clinical high risk in the first phase of the North American Prodrome Longitudinal Study. Schizophr Bull. 2014;40(6):1452–61.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Woods SW, Walsh BC, Hawkins KA, Miller TJ, Saksa JR, D’Souza DC, et al. Glycine treatment of the risk syndrome for psychosis: report of two pilot studies. Eur Neuropsychopharmacol. 2013;23(8):931–40.PubMedCrossRefGoogle Scholar
  101. 101.
    McGlashan TH, Miller TJ, Woods SW, Hoffman RE, Davidson L. Instrument for the assessment of prodromal symptoms and states. In: Miller M, McGlashan TH, editors. Early intervention in psychotic disorders. Dordrecht: Kluwer Academic Publishers; 2001. p. 135–49.CrossRefGoogle Scholar
  102. 102.
    Liu F, Guo X, Wu R, Ou J, Zheng Y, Zhang B, et al. Minocycline supplementation for treatment of negative symptoms in early-phase schizophrenia: a double blind, randomized, controlled trial. Schizophr Res. 2014;153(1–3):169–76.PubMedCrossRefGoogle Scholar
  103. 103.
    Kinon BJ, Millen BA, Zhang L, McKinzie DL. Exploratory analysis for a targeted patient population responsive to the metabotropic glutamate 2/3 receptor agonist pomaglumetad methionil in schizophrenia. Biol Psychiatry. 2015;78(11):754–62.PubMedCrossRefGoogle Scholar
  104. 104.
    Freedman R. alpha7-nicotinic acetylcholine receptor agonists for cognitive enhancement in schizophrenia. Annu Rev Med. 2014;65:245–61.PubMedCrossRefGoogle Scholar
  105. 105.
    Preskorn SH, Gawryl M, Dgetluck N, Palfreyman M, Bauer LO, Hilt DC. Normalizing effects of EVP-6124, an alpha-7 nicotinic partial agonist, on event-related potentials and cognition: a proof of concept, randomized trial in patients with schizophrenia. J Psychiatr Pract. 2014;20(1):12–24.PubMedCrossRefGoogle Scholar
  106. 106.
    Huang M, Felix AR, Flood DG, Bhuvaneswaran C, Hilt D, Koenig G, et al. The novel alpha7 nicotinic acetylcholine receptor agonist EVP-6124 enhances dopamine, acetylcholine, and glutamate efflux in rat cortex and nucleus accumbens. Psychopharmacology. 2014;231(23):4541–51.PubMedCrossRefGoogle Scholar
  107. 107.
    Maex R, Grinevich VP, Grinevich V, Budygin E, Bencherif M, Gutkin B. Understanding the role alpha7 nicotinic receptors play in dopamine efflux in nucleus accumbens. ACS Chem Neurosci. 2014;5(10):1032–40.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Hughes JR, Hatsukami DK, Mitchell JE, Dahlgren LA. Prevalence of smoking among psychiatric outpatients. Am J Psychiatry. 1986;143(8):993–7.PubMedCrossRefGoogle Scholar
  109. 109.
    Olincy A, Young DA, Freedman R. Increased levels of the nicotine metabolite cotinine in schizophrenic smokers compared to other smokers. Biol Psychiatry. 1997;42(1):1–5.PubMedCrossRefGoogle Scholar
  110. 110.
    Freedman R, Adler LE, Bickford P, Byerley W, Coon H, Cullum CM, et al. Schizophrenia and nicotinic receptors. Harv Rev Psychiatry. 1994;2(4):179–92.PubMedCrossRefGoogle Scholar
  111. 111.
    Javitt DC, Freedman R. Sensory processing dysfunction in the personal experience and neuronal machinery of schizophrenia. Am J Psychiatry. 2015;172(1):17–31.PubMedCrossRefGoogle Scholar
  112. 112.
    Keefe RS, Meltzer HA, Dgetluck N, Gawryl M, Koenig G, Moebius HJ, et al. Randomized, double-blind, placebo-controlled study of encenicline, an alpha7 nicotinic acetylcholine receptor agonist, as a treatment for cognitive impairment in schizophrenia. Neuropsychopharmacology. 2015;40(13):3053–60.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Lieberman JA, Dunbar G, Segreti AC, Girgis RR, Seoane F, Beaver JS, et al. A randomized exploratory trial of an alpha-7 nicotinic receptor agonist (TC-5619) for cognitive enhancement in schizophrenia. Neuropsychopharmacology. 2013;38(6):968–75.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Walling D, Marder SR, Kane J, Fleischhacker WW, Keefe RS, Hosford DA, et al. Phase 2 trial of an alpha-7 nicotinic receptor agonist (TC-5619) in negative and cognitive symptoms of schizophrenia. Schizophr Bull. 2016;42(2):335–43.PubMedCrossRefGoogle Scholar
  115. 115.
    Umbricht D, Keefe RS, Murray S, Lowe DA, Porter R, Garibaldi G, et al. A randomized, placebo-controlled study investigating the nicotinic alpha7 agonist, RG3487, for cognitive deficits in schizophrenia. Neuropsychopharmacology. 2014;39(7):1568–77.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Haig GM, Bain EE, Robieson WZ, Baker JD, Othman AA. A randomized trial to assess the efficacy and safety of ABT-126, a selective alpha7 nicotinic acetylcholine receptor agonist, in the treatment of cognitive impairment in schizophrenia. Am J Psychiatry. 2016;173(8):827–35.PubMedCrossRefGoogle Scholar
  117. 117.
    Gee KW, Olincy A, Kanner R, Johnson L, Hogenkamp D, Harris J, et al. First in human trial of a type I positive allosteric modulator of alpha7-nicotinic acetylcholine receptors: pharmacokinetics, safety, and evidence for neurocognitive effect of AVL-3288. J Psychopharmacol. 2017;31(4):434–41.PubMedCrossRefGoogle Scholar
  118. 118.
    Helfer B, Samara MT, Huhn M, Klupp E, Leucht C, Zhu Y, et al. Efficacy and safety of antidepressants added to antipsychotics for schizophrenia: a systematic review and meta-analysis. Am J Psychiatry. 2016;173(9):876–86.PubMedCrossRefGoogle Scholar
  119. 119.
    Kantrowitz JT, Tampi RR. Risk of psychosis exacerbation by tricyclic antidepressants in unipolar major depressive disorder with psychotic features. J Affect Disord. 2008;106(3):279–84.PubMedCrossRefGoogle Scholar
  120. 120.
    Nikbakhat MR, Arabzadeh S, Zeinoddini A, Khalili Z, Rezaei F, Mohammadinejad P, et al. Duloxetine add-on to risperidone for treatment of negative symptoms in patients with stable schizophrenia: randomized double-blind placebo-controlled Study. Pharmacopsychiatry. 2016;49(4):162–9.PubMedCrossRefGoogle Scholar
  121. 121.
    Youdim MB, Gross A, Finberg JP. Rasagiline [N-propargyl-1R(+)-aminoindan], a selective and potent inhibitor of mitochondrial monoamine oxidase B. Br J Pharmacol. 2001;132(2):500–6.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Buchanan RW, Weiner E, Kelly DL, Gold JM, Keller WR, Waltz JA, et al. Rasagiline in the treatment of the persistent negative symptoms of schizophrenia. Schizophr Bull. 2015;41(4):900–8.PubMedCrossRefGoogle Scholar
  123. 123.
    Zheng W, Xiang YT, Xiang YQ, Li XB, Ungvari GS, Chiu HF, et al. Efficacy and safety of adjunctive topiramate for schizophrenia: a meta-analysis of randomized controlled trials. Acta Psychiatr Scand. 2016;134(5):385–98.PubMedCrossRefGoogle Scholar
  124. 124.
    Glick ID, Bosch J, Casey DE. A double-blind randomized trial of mood stabilizer augmentation using lamotrigine and valproate for patients with schizophrenia who are stabilized and partially responsive. J Clin Psychopharmacol. 2009;29(3):267–71.PubMedCrossRefGoogle Scholar
  125. 125.
    Leucht S, Komossa K, Rummel-Kluge C, Corves C, Hunger H, Schmid F, et al. A meta-analysis of head-to-head comparisons of second-generation antipsychotics in the treatment of schizophrenia. Am J Psychiatry. 2009;166(2):152–63.PubMedCrossRefGoogle Scholar
  126. 126.
    Veerman SR, Schulte PF, Begemann MJ, de Haan L. Non-glutamatergic clozapine augmentation strategies: a review and meta-analysis. Pharmacopsychiatry. 2014;47(7):231–8.PubMedCrossRefGoogle Scholar
  127. 127.
    Evins AE, Amico ET, Shih V, Goff DC. Clozapine treatment increases serum glutamate and aspartate compared to conventional neuroleptics. J Neural Transm. 1997;104(6–7):761–6.PubMedCrossRefGoogle Scholar
  128. 128.
    Neill JC, Grayson B, Kiss B, Gyertyan I, Ferguson P, Adham N. Effects of cariprazine, a novel antipsychotic, on cognitive deficit and negative symptoms in a rodent model of schizophrenia symptomatology. Eur Neuropsychopharmacol. 2016;26(1):3–14.PubMedCrossRefGoogle Scholar
  129. 129.
    Papp M, Gruca P, Lason-Tyburkiewicz M, Adham N, Kiss B, Gyertyan I. Attenuation of anhedonia by cariprazine in the chronic mild stress model of depression. Behav Pharmacol. 2014;25(5–6):567–74.PubMedGoogle Scholar
  130. 130.
    Nemeth G, Laszlovszky I, Czobor P, Szalai E, Szatmari B, Harsanyi J, et al. Cariprazine versus risperidone monotherapy for treatment of predominant negative symptoms in patients with schizophrenia: a randomised, double-blind, controlled trial. Lancet. 2017;389(10074):1103–13.PubMedCrossRefGoogle Scholar
  131. 131.
    Sawaguchi T, Goldman-Rakic PS. D1 dopamine receptors in prefrontal cortex: involvement in working memory. Science. 1991;251(4996):947–9.PubMedCrossRefGoogle Scholar
  132. 132.
    Arnsten AF, Cai JX, Murphy BL, Goldman-Rakic PS. Dopamine D1 receptor mechanisms in the cognitive performance of young adult and aged monkeys. Psychopharmacology. 1994;116(2):143–51.PubMedCrossRefGoogle Scholar
  133. 133.
    Girgis RR, Van Snellenberg JX, Glass A, Kegeles LS, Thompson JL, Wall M, et al. A proof-of-concept, randomized controlled trial of DAR-0100A, a dopamine-1 receptor agonist, for cognitive enhancement in schizophrenia. J Psychopharmacol. 2016;30(5):428–35.PubMedCrossRefGoogle Scholar
  134. 134.
    Andrade C, Kisely S, Monteiro I, Rao S. Antipsychotic augmentation with modafinil or armodafinil for negative symptoms of schizophrenia: systematic review and meta-analysis of randomized controlled trials. J Psychiatr Res. 2015;60:14–21.PubMedCrossRefGoogle Scholar
  135. 135.
    Brown RE, Stevens DR, Haas HL. The physiology of brain histamine. Progr Neurobiol. 2001;63(6):637–72.CrossRefGoogle Scholar
  136. 136.
    Haig GM, Bain E, Robieson W, Othman AA, Baker J, Lenz RA. A randomized trial of the efficacy and safety of the H3 antagonist ABT-288 in cognitive impairment associated with schizophrenia. Schizophr Bull. 2014;40(6):1433–42.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Jarskog LF, Lowy MT, Grove RA, Keefe RS, Horrigan JP, Ball MP, et al. A Phase II study of a histamine H(3) receptor antagonist GSK239512 for cognitive impairment in stable schizophrenia subjects on antipsychotic therapy. Schizophr Res. 2015;164(1–3):136–42.PubMedCrossRefGoogle Scholar
  138. 138.
    Shilling PD, Feifel D. Potential of oxytocin in the treatment of schizophrenia. CNS Drugs. 2016;30(3):193–208.PubMedCrossRefGoogle Scholar
  139. 139.
    Oya K, Matsuda Y, Matsunaga S, Kishi T, Iwata N. Efficacy and safety of oxytocin augmentation therapy for schizophrenia: an updated systematic review and meta-analysis of randomized, placebo-controlled trials. Eur Arch Psychiatry Clin Neurosci. 2016;266(5):439–50.PubMedCrossRefGoogle Scholar
  140. 140.
    Clark VP, Coffman BA, Trumbo MC, Gasparovic C. Transcranial direct current stimulation (tDCS) produces localized and specific alterations in neurochemistry: a (1)H magnetic resonance spectroscopy study. Neurosci Lett. 2011;500(1):67–71.PubMedCrossRefGoogle Scholar
  141. 141.
    Shi C, Yu X, Cheung EF, Shum DH, Chan RC. Revisiting the therapeutic effect of rTMS on negative symptoms in schizophrenia: a meta-analysis. Psychiatry Res. 2014;215(3):505–13.PubMedCrossRefGoogle Scholar
  142. 142.
    Dlabac-de Lange JJ, Bais L, van Es FD, Visser BG, Reinink E, Bakker B, et al. Efficacy of bilateral repetitive transcranial magnetic stimulation for negative symptoms of schizophrenia: results of a multicenter double-blind randomized controlled trial. Psychol Med. 2015;45(6):1263–75.PubMedCrossRefGoogle Scholar
  143. 143.
    Li Z, Yin M, Lyu XL, Zhang LL, Du XD, Hung GC. Delayed effect of repetitive transcranial magnetic stimulation (rTMS) on negative symptoms of schizophrenia: findings from a randomized controlled trial. Psychiatry Res. 2016;240:333–5.PubMedCrossRefGoogle Scholar
  144. 144.
    Wobrock T, Guse B, Cordes J, Wolwer W, Winterer G, Gaebel W, et al. Left prefrontal high-frequency repetitive transcranial magnetic stimulation for the treatment of schizophrenia with predominant negative symptoms: a sham-controlled, randomized multicenter trial. Biol Psychiatry. 2015;77(11):979–88.PubMedCrossRefGoogle Scholar
  145. 145.
    Priori A, Hallett M, Rothwell JC. Repetitive transcranial magnetic stimulation or transcranial direct current stimulation? Brain Stimul. 2009;2(4):241–5.PubMedCrossRefGoogle Scholar
  146. 146.
    Kurimori M, Shiozawa P, Bikson M, Aboseria M, Cordeiro Q. Targeting negative symptoms in schizophrenia: results from a proof-of-concept trial assessing prefrontal anodic tDCS protocol. Schizophr Res. 2015;166(1–3):362–3.PubMedCrossRefGoogle Scholar
  147. 147.
    Palm U, Keeser D, Hasan A, Kupka MJ, Blautzik J, Sarubin N, et al. Prefrontal transcranial direct current stimulation for treatment of schizophrenia with predominant negative symptoms: a double-blind, sham-controlled proof-of-concept study. Schizophr Bull. 2016;42(5):1253–61.PubMedCrossRefGoogle Scholar
  148. 148.
    Gomes JS, Shiozawa P, Dias AM, Valverde Ducos D, Akiba H, Trevizol AP, et al. Left dorsolateral prefrontal cortex anodal tDCS effects on negative symptoms in schizophrenia. Brain Stimul. 2015;8(5):989–91.PubMedCrossRefGoogle Scholar
  149. 149.
    Wykes T, Huddy V, Cellard C, McGurk SR, Czobor P. A meta-analysis of cognitive remediation for schizophrenia: methodology and effect sizes. Am J Psychiatry. 2011;168(5):472–85.PubMedCrossRefGoogle Scholar
  150. 150.
    Vinogradov S, Fisher M, de Villers-Sidani E. Cognitive training for impaired neural systems in neuropsychiatric illness. Neuropsychopharmacology. 2012;37(1):43–76.PubMedCrossRefGoogle Scholar
  151. 151.
    Fisher M, Holland C, Merzenich MM, Vinogradov S. Using neuroplasticity-based auditory training to improve verbal memory in schizophrenia. Am J Psychiatry. 2009;166(7):805–11.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Kantrowitz JT, Sharif Z, Medalia A, Keefe RSE, Harvey PD, Bruder GE, et al. A multicenter, rater-blind, randomized controlled study of auditory processing focused cognitive remediation combined with open label lurasidone in patients with schizophrenia and schizoaffective disorder. J Clin Psychiatry. 2016;77(6):799–806.PubMedCrossRefGoogle Scholar
  153. 153.
    Velthorst E, Koeter M, van der Gaag M, Nieman DH, Fett AK, Smit F, et al. Adapted cognitive-behavioural therapy required for targeting negative symptoms in schizophrenia: meta-analysis and meta-regression. Psychol Med. 2015;45(3):453–65.PubMedCrossRefGoogle Scholar
  154. 154.
    Velligan DI, Roberts D, Mintz J, Maples N, Li X, Medellin E, et al. A randomized pilot study of MOtiVation and Enhancement (MOVE) Training for negative symptoms in schizophrenia. Schizophr Res. 2015;165(2–3):175–80.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Rakitzi S, Georgila P, Efthimiou K, Mueller DR. Efficacy and feasibility of the integrated psychological therapy for outpatients with schizophrenia in Greece: final results of a RCT. Psychiatry Res. 2016;242:137–43.PubMedCrossRefGoogle Scholar
  156. 156.
    Calvo A, Moreno M, Ruiz-Sancho A, Rapado-Castro M, Moreno C, Sanchez-Gutierrez T, et al. Intervention for adolescents with early-onset psychosis and their families: a randomized controlled trial. J Am Acad Child Adolesc Psychiatry. 2014;53(6):688–96.PubMedCrossRefGoogle Scholar
  157. 157.
    Gold R, Butler PD, Revheim N, Leitman DI, Hansen JA, Gur RC, et al. Auditory emotion recognition impairments in schizophrenia: relationship to acoustic features and cognition. Am J Psychiatry. 2012;169(4):424–32.PubMedCrossRefGoogle Scholar
  158. 158.
    Leitman DI, Laukka P, Juslin PN, Saccente E, Butler P, Javitt DC. Getting the cue: sensory contributions to auditory emotion recognition impairments in schizophrenia. Schizophr Bull. 2010;36(3):545–56.PubMedCrossRefGoogle Scholar
  159. 159.
    Penn DL, Sanna LJ, Roberts DL. Social cognition in schizophrenia: an overview. Schizophr Bull. 2008;34(3):408–11.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Kantrowitz JT, Hoptman MJ, Leitman DI, Moreno-Ortega M, Lehrfeld JM, Dias E, et al. Neural substrates of auditory emotion recognition deficits in schizophrenia. J Neurosci. 2015;35(44):14909–21.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Kantrowitz JT, Leitman DI, Lehrfeld JM, Laukka P, Juslin PN, Butler PD, et al. Reduction in tonal discriminations predicts receptive emotion processing deficits in schizophrenia and schizoaffective disorder. Schizophr Bull. 2013;39(1):86–93.PubMedCrossRefGoogle Scholar
  162. 162.
    Green MF, Hellemann G, Horan WP, Lee J, Wynn JK. From perception to functional outcome in schizophrenia: modeling the role of ability and motivation. Arch Gen Psychiatry. 2012;69(12):1216–24.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Kantrowitz JT, Hoptman MJ, Leitman DI, Silipo G, Javitt DC. The 5% difference: early sensory processing predicts sarcasm perception in schizophrenia and schizo-affective disorder. Psychol Med. 2014;44(1):25–36.PubMedCrossRefGoogle Scholar
  164. 164.
    Kalin M, Kaplan S, Gould F, Pinkham AE, Penn DL, Harvey PD. Social cognition, social competence, negative symptoms and social outcomes: inter-relationships in people with schizophrenia. J Psychiatr Res. 2015;68:254–60.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Escoffier N, Zhong J, Schirmer A, Qiu A. Emotional expressions in voice and music: same code, same effect? Hum Brain Map. 2013;34(8):1796–810.CrossRefGoogle Scholar
  166. 166.
    Juslin P, Laukka P. Communication of emotions in vocal expression and music performance: different channels, same code? Psychol Bull. 2003;129(5):770–814.PubMedCrossRefGoogle Scholar
  167. 167.
    Kantrowitz JT, Scaramello N, Jakubovitz A, Lehrfeld JM, Laukka P, Elfenbein HA, et al. Amusia and protolanguage impairments in schizophrenia. Psychol Med. 2014;44(13):2739–48.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Hatada S, Sawada K, Akamatsu M, Doi E, Minese M, Yamashita M, et al. Impaired musical ability in people with schizophrenia. J Psychiatry Neurosci. 2013;38(5):120207.Google Scholar
  169. 169.
    Tseng PT, Chen YW, Lin PY, Tu KY, Wang HY, Cheng YS, et al. Significant treatment effect of adjunct music therapy to standard treatment on the positive, negative, and mood symptoms of schizophrenic patients: a meta-analysis. BMC Psychiatry. 2016;26(16):16.CrossRefGoogle Scholar
  170. 170.
    Firth J, Cotter J, Elliott R, French P, Yung AR. A systematic review and meta-analysis of exercise interventions in schizophrenia patients. Psychol Med. 2015;45(7):1343–61.PubMedCrossRefGoogle Scholar
  171. 171.
    Dauwan M, Begemann MJ, Heringa SM, Sommer IE. Exercise improves clinical symptoms, quality of life, global functioning, and depression in schizophrenia: a systematic review and meta-analysis. Schizophr Bull. 2016;42(3):588–99.PubMedCrossRefGoogle Scholar
  172. 172.
    Martin LA, Koch SC, Hirjak D, Fuchs T. Overcoming disembodiment: the effect of movement therapy on negative symptoms in schizophrenia—a multicenter randomized controlled trial. Front Psychol. 2016;7:483.PubMedPubMedCentralGoogle Scholar
  173. 173.
    Röhricht F, Papadopoulos N. A treatment manual: body oriented psychological therapy for chronic schizophrenia. London: Newham Centre for Mental Health; 2010.Google Scholar
  174. 174.
    Agid O, Siu CO, Potkin SG, Kapur S, Watsky E, Vanderburg D, et al. Meta-regression analysis of placebo response in antipsychotic trials, 1970–2010. Am J Psychiatry. 2013;170(11):1335–44.PubMedCrossRefGoogle Scholar
  175. 175.
    Rutherford BR, Pott E, Tandler JM, Wall MM, Roose SP, Lieberman JA. Placebo response in antipsychotic clinical trials: a meta-analysis. JAMA Psychiatry. 2014;71(12):1409–21.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Schizophrenia Research CenterNathan Kline Institute for Psychiatric ResearchOrangeburgUSA
  2. 2.Division of Experimental Therapeutics, Department of PsychiatryColumbia UniversityNew YorkUSA
  3. 3.New York State Psychiatric InstituteNew YorkUSA

Personalised recommendations