CNS Drugs

, Volume 30, Issue 9, pp 791–806 | Cite as

Pharmacologic Neuroprotection for Functional Outcomes After Traumatic Brain Injury: A Systematic Review of the Clinical Literature

  • Shaun E. Gruenbaum
  • Alexander Zlotnik
  • Benjamin F. Gruenbaum
  • Denise Hersey
  • Federico BilottaEmail author
Systematic Review



Traumatic brain injury (TBI) is a major cause of death and disability worldwide. The deleterious effects of secondary brain injury may be attenuated by early pharmacological therapy in the emergency room and intensive care unit (ICU). Current medical management of acute TBI is primarily supportive, aimed at reducing intracranial pressure (ICP) and optimizing cerebral perfusion. There are no pharmacological therapies to date that have been unequivocally demonstrated to improve neurological outcomes after TBI.


The purpose of this systematic review was to evaluate the recent clinical studies from January 2013 through November 2015 that investigated neuroprotective functional outcomes of pharmacological agents after TBI.


The following databases were searched for relevant studies: MEDLINE (OvidSP January Week 1, 2013–November Week 2 2015), Embase (OvidSP 2013 January 1–2015 November 24), and the unindexed material in PubMed (National Library of Medicine/National Institutes of Health [NLM/NIH]). This systematic review included only full-length clinical studies and case series that included at least five patients and were published in the English language. Only studies that examined functional clinical outcomes were included.


Twenty-five of 527 studies met our inclusion criteria, which investigated 15 independent pharmacological therapies. Eight of these therapies demonstrated possible neuroprotective properties and improved functional outcomes, of which five were investigated with randomized clinical trials: statins, N-acetyl cysteine (NAC), Enzogenol, Cerebrolysin, and nitric oxide synthase inhibitor (VAS203). Three pharmacological agents did not demonstrate neuroprotective effects, and four agents had mixed results.


While there is currently no single pharmacological therapy that will unequivocally improve clinical outcomes after TBI, several agents have demonstrated promising clinical benefits for specific TBI patients and should be investigated further.


Growth Hormone Traumatic Brain Injury Glibenclamide Rosuvastatin Growth Hormone Deficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Compliance with Ethical Standards


Shaun Gruenbaum is an Investigative Medicine MD to PhD Program graduate student. This publication was made possible by Clinical and Translational Science Awards (CTSA) Grant number UL1 TR000142 from the National Center for Advancing Translational Science (NCATS), a component of the NIH. Its contents are solely the responsibility of the authors and do not necessarily represent the official view of the NIH.

Conflicts of interest

Shaun Gruenbaum, Alexander Zlotnik, Benjamin Gruenbaum, Denise Hersey, and Federico Bilotta declare no conflicts of interest.

Supplementary material

40263_2016_355_MOESM1_ESM.pdf (77 kb)
Supplementary material 1 (PDF 77 kb)


  1. 1.
    Kirkpatrick AW, Ball CG, D’Amours SK, Zygun D. Acute resuscitation of the unstable adult trauma patient: bedside diagnosis and therapy. Can J Surg. 2008;51(1):57–69.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Lu C, Xia J, Bin W, Wu Y, Liu X, Zhang Y. Advances in diagnosis, treatments, and molecular mechanistic studies of traumatic brain injury. Biosci Trends. 2015;9(3):138–48.PubMedCrossRefGoogle Scholar
  3. 3.
    Teasdale G, Jennett B. Assessment of coma and impaired consciousness. A practical scale. Lancet. 1974;2(7872):81–4.PubMedCrossRefGoogle Scholar
  4. 4.
    Gerber LM, Chiu YL, Carney N, Hartl R, Ghajar J. Marked reduction in mortality in patients with severe traumatic brain injury. J Neurosurg. 2013;119(6):1583–90.PubMedCrossRefGoogle Scholar
  5. 5.
    Marmarou A, Lu J, Butcher I, McHugh GS, Mushkudiani NA, Murray GD, et al. IMPACT database of traumatic brain injury: design and description. J Neurotrauma. 2007;24(2):239–50.PubMedCrossRefGoogle Scholar
  6. 6.
    Levin HS, Saydjari C, Eisenberg HM, Foulkes M, Marshall LF, Ruff RM, et al. Vegetative state after closed-head injury. A Traumatic Coma Data Bank report. Arch Neurol. 1991;48(6):580–5.PubMedCrossRefGoogle Scholar
  7. 7.
    Murray LS, Teasdale GM, Murray GD, Miller DJ, Pickard JD, Shaw MD. Head injuries in four British neurosurgical centres. Br J Neurosurg. 1999;13(6):564–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Murray GD, Teasdale GM, Braakman R, Cohadon F, Dearden M, Iannotti F, et al. The European Brain Injury Consortium survey of head injuries. Acta Neurochir. 1999;141(3):223–36.PubMedCrossRefGoogle Scholar
  9. 9.
    Stocchetti N, Paterno R, Citerio G, Beretta L, Colombo A. Traumatic brain injury in an aging population. J Neurotrauma. 2012;29(6):1119–25.PubMedCrossRefGoogle Scholar
  10. 10.
    Myburgh JA, Cooper DJ, Finfer SR, Venkatesh B, Jones D, Higgins A, et al. Epidemiology and 12-month outcomes from traumatic brain injury in australia and new zealand. J Trauma. 2008;64(4):854–62.PubMedCrossRefGoogle Scholar
  11. 11.
    Muehlschlegel S, Carandang R, Ouillette C, Hall W, Anderson F, Goldberg R. Frequency and impact of intensive care unit complications on moderate-severe traumatic brain injury: early results of the Outcome Prognostication in Traumatic Brain Injury (OPTIMISM) Study. Neurocrit Care. 2013;18(3):318–31.PubMedCrossRefGoogle Scholar
  12. 12.
    McConeghy KW, Hatton J, Hughes L, Cook AM. A review of neuroprotection pharmacology and therapies in patients with acute traumatic brain injury. CNS Drugs. 2012;26(7):613–36.PubMedCrossRefGoogle Scholar
  13. 13.
    Falleti MG, Maruff P, Burman P, Harris A. The effects of growth hormone (GH) deficiency and GH replacement on cognitive performance in adults: a meta-analysis of the current literature. Psychoneuroendocrinology. 2006;31(6):681–91.PubMedCrossRefGoogle Scholar
  14. 14.
    Agha A, Rogers B, Sherlock M, O’Kelly P, Tormey W, Phillips J, et al. Anterior pituitary dysfunction in survivors of traumatic brain injury. J Clin Endocrinol Metab. 2004;89(10):4929–36.PubMedCrossRefGoogle Scholar
  15. 15.
    Prodam F, Pagano L, Corneli G, Golisano G, Belcastro S, Busti A, et al. Update on epidemiology, etiology, and diagnosis of adult growth hormone deficiency. J Endocrinol Invest. 2008;31(9 Suppl):6–11.PubMedGoogle Scholar
  16. 16.
    Moreau OK, Cortet-Rudelli C, Yollin E, Merlen E, Daveluy W, Rousseaux M. Growth hormone replacement therapy in patients with traumatic brain injury. J Neurotrauma. 2013;30(11):998–1006.PubMedCrossRefGoogle Scholar
  17. 17.
    Devesa J, Reimunde P, Devesa P, Barbera M, Arce V. Growth hormone (GH) and brain trauma. Horm Behav. 2013;63(2):331–44.PubMedCrossRefGoogle Scholar
  18. 18.
    Gardner CJ, Mattsson AF, Daousi C, Korbonits M, Koltowska-Haggstrom M, Cuthbertson DJ. GH deficiency after traumatic brain injury: improvement in quality of life with GH therapy: analysis of the KIMS database. Eur J Endocrinol. 2015;172(4):371–81.PubMedCrossRefGoogle Scholar
  19. 19.
    Mahmood A, Goussev A, Kazmi H, Qu C, Lu D, Chopp M. Long-term benefits after treatment of traumatic brain injury with simvastatin in rats. Neurosurgery. 2009;65(1):187–91 (discussion 91-2).PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Lu D, Goussev A, Chen J, Pannu P, Li Y, Mahmood A, et al. Atorvastatin reduces neurological deficit and increases synaptogenesis, angiogenesis, and neuronal survival in rats subjected to traumatic brain injury. J Neurotrauma. 2004;21(1):21–32.PubMedCrossRefGoogle Scholar
  21. 21.
    Sanchez-Aguilar M, Tapia-Perez JH, Sanchez-Rodriguez JJ, Vinas-Rios JM, Martinez-Perez P, de la Cruz-Mendoza E, et al. Effect of rosuvastatin on cytokines after traumatic head injury. J Neurosurg. 2013;118(3):669–75.PubMedCrossRefGoogle Scholar
  22. 22.
    Orlando A, Bar-Or D, Salottolo K, Levy AS, Mains CW, Slone DS, et al. Unintentional discontinuation of statins may increase mortality after traumatic brain injury in elderly patients: a preliminary observation. J Clin Med Res. 2013;5(3):168–73.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Yoles E, Belkin M, Schwartz M. HU-211, a nonpsychotropic cannabinoid, produces short- and long-term neuroprotection after optic nerve axotomy. J Neurotrauma. 1996;13(1):49–57.PubMedCrossRefGoogle Scholar
  24. 24.
    Shohami E, Biegon A. Novel approach to the role of NMDA receptors in traumatic brain injury. CNS Neurol Disord Drug Targets. 2014;13(4):567–73.PubMedCrossRefGoogle Scholar
  25. 25.
    Brewster ME, Pop E, Foltz RL, Reuschel S, Griffith W, Amselem S, et al. Clinical pharmacokinetics of escalating i.v. doses of dexanabinol (HU-211), a neuroprotectant agent, in normal volunteers. Int J Clin Pharmacol Ther. 1997;35(9):361–5.PubMedGoogle Scholar
  26. 26.
    Knoller N, Levi L, Shoshan I, Reichenthal E, Razon N, Rappaport ZH, et al. Dexanabinol (HU-211) in the treatment of severe closed head injury: a randomized, placebo-controlled, phase II clinical trial. Crit Care Med. 2002;30(3):548–54.PubMedCrossRefGoogle Scholar
  27. 27.
    Maas AI, Murray G, Henney H 3rd, Kassem N, Legrand V, Mangelus M, et al. Efficacy and safety of dexanabinol in severe traumatic brain injury: results of a phase III randomised, placebo-controlled, clinical trial. Lancet Neurol. 2006;5(1):38–45.PubMedCrossRefGoogle Scholar
  28. 28.
    Nguyen BM, Kim D, Bricker S, Bongard F, Neville A, Putnam B, et al. Effect of marijuana use on outcomes in traumatic brain injury. Am Surg. 2014;80(10):979–83.PubMedGoogle Scholar
  29. 29.
    Clifton GL, Ziegler MG, Grossman RG. Circulating catecholamines and sympathetic activity after head injury. Neurosurgery. 1981;8(1):10–4.PubMedCrossRefGoogle Scholar
  30. 30.
    Arbabi S, Campion EM, Hemmila MR, Barker M, Dimo M, Ahrns KS, et al. Beta-blocker use is associated with improved outcomes in adult trauma patients. J Trauma. 2007;62(1):56–61 (discussion 61–2).PubMedCrossRefGoogle Scholar
  31. 31.
    Mohseni S, Talving P, Wallin G, Ljungqvist O, Riddez L. Preinjury beta-blockade is protective in isolated severe traumatic brain injury. J Trauma Acute Care Surg. 2014;76(3):804–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Sekhon B, Sekhon C, Khan M, Patel SJ, Singh I, Singh AK. N-Acetyl cysteine protects against injury in a rat model of focal cerebral ischemia. Brain Res. 2003;971(1):1–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Hicdonmez T, Kanter M, Tiryaki M, Parsak T, Cobanoglu S. Neuroprotective effects of N-acetylcysteine on experimental closed head trauma in rats. Neurochem Res. 2006;31(4):473–81.PubMedCrossRefGoogle Scholar
  34. 34.
    Hoffer ME, Balaban C, Slade MD, Tsao JW, Hoffer B. Amelioration of acute sequelae of blast induced mild traumatic brain injury by N-acetyl cysteine: a double-blind, placebo controlled study. PloS One. 2013;8(1):e54163.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Shand B, Strey C, Scott R, Morrison Z, Gieseg S. Pilot study on the clinical effects of dietary supplementation with Enzogenol, a flavonoid extract of pine bark and vitamin C. Phytother Res. 2003;17(5):490–4.PubMedCrossRefGoogle Scholar
  36. 36.
    Theadom A, Mahon S, Barker-Collo S, McPherson K, Rush E, Vandal AC, et al. Enzogenol for cognitive functioning in traumatic brain injury: a pilot placebo-controlled RCT. Eur J Neurol. 2013;20(8):1135–44.PubMedCrossRefGoogle Scholar
  37. 37.
    Masliah E, Diez-Tejedor E. The pharmacology of neurotrophic treatment with Cerebrolysin: brain protection and repair to counteract pathologies of acute and chronic neurological disorders. Drugs Today (Barc). 2012;48(Suppl A):3–24.Google Scholar
  38. 38.
    Chen CC, Wei ST, Tsaia SC, Chen XX, Cho DY. Cerebrolysin enhances cognitive recovery of mild traumatic brain injury patients: double-blind, placebo-controlled, randomized study. Br J Neurosurg. 2013;27(6):803–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Guzik TJ, West NE, Pillai R, Taggart DP, Channon KM. Nitric oxide modulates superoxide release and peroxynitrite formation in human blood vessels. Hypertension. 2002;39(6):1088–94.PubMedCrossRefGoogle Scholar
  40. 40.
    Terpolilli NA, Zweckberger K, Trabold R, Schilling L, Schinzel R, Tegtmeier F, et al. The novel nitric oxide synthase inhibitor 4-amino-tetrahydro-L-biopterine prevents brain edema formation and intracranial hypertension following traumatic brain injury in mice. J Neurotrauma. 2009;26(11):1963–75.PubMedCrossRefGoogle Scholar
  41. 41.
    Stover JF, Belli A, Boret H, Bulters D, Sahuquillo J, Schmutzhard E, et al. Nitric oxide synthase inhibition with the antipterin VAS203 improves outcome in moderate and severe traumatic brain injury: a placebo-controlled randomized phase IIa trial (NOSTRA). J Neurotrauma. 2014;31(19):1599–606.PubMedCrossRefGoogle Scholar
  42. 42.
    Kunte H, Schmidt S, Eliasziw M, del Zoppo GJ, Simard JM, Masuhr F, et al. Sulfonylureas improve outcome in patients with type 2 diabetes and acute ischemic stroke. Stroke. 2007;38(9):2526–30.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Zweckberger K, Hackenberg K, Jung CS, Hertle DN, Kiening KL, Unterberg AW, et al. Glibenclamide reduces secondary brain damage after experimental traumatic brain injury. Neuroscience. 2014;272:199–206.PubMedCrossRefGoogle Scholar
  44. 44.
    Patel AD, Gerzanich V, Geng Z, Simard JM. Glibenclamide reduces hippocampal injury and preserves rapid spatial learning in a model of traumatic brain injury. J Neuropathol Exp Neurol. 2010;69(12):1177–90.PubMedCrossRefGoogle Scholar
  45. 45.
    Simard JM, Woo SK, Schwartzbauer GT, Gerzanich V. Sulfonylurea receptor 1 in central nervous system injury: a focused review. J Cereb Blood Flow Metab. 2012;32(9):1699–717.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Ding J, Yuan F, Guo JY, Chen H, Tian HL. Influence of glibenclamide on outcome in patients with type 2 diabetes and traumatic brain injury. Clin Neurlo Neurosurg. 2013;115(10):2166–9.CrossRefGoogle Scholar
  47. 47.
    Aminmansour B, Fard SA, Habibabadi MR, Moein P, Norouzi R, Naderan M. The efficacy of cyclosporine-a on diffuse axonal injury after traumatic brain injury. Adv Biomed Res. 2014;3:35.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Temkin NR. Antiepileptogenesis and seizure prevention trials with antiepileptic drugs: meta-analysis of controlled trials. Epilepsia. 2001;42(4):515–24.PubMedCrossRefGoogle Scholar
  49. 49.
    Temkin NR, Dikmen SS, Wilensky AJ, Keihm J, Chabal S, Winn HR. A randomized, double-blind study of phenytoin for the prevention of post-traumatic seizures. N Engl J Med. 1990;323(8):497–502.PubMedCrossRefGoogle Scholar
  50. 50.
    Rowe AS, Goodwin H, Brophy GM, Bushwitz J, Castle A, Deen D, et al. Seizure prophylaxis in neurocritical care: a review of evidence-based support. Pharmacotherapy. 2014;34(4):396–409.PubMedCrossRefGoogle Scholar
  51. 51.
    Szaflarski JP, Sangha KS, Lindsell CJ, Shutter LA. Prospective, randomized, single-blinded comparative trial of intravenous levetiracetam versus phenytoin for seizure prophylaxis. Neurocrit Care. 2010;12(2):165–72.PubMedCrossRefGoogle Scholar
  52. 52.
    Taylor S, Heinrichs RJ, Janzen JM, Ehtisham A. Levetiracetam is associated with improved cognitive outcome for patients with intracranial hemorrhage. Neurocrit Care. 2011;15(1):80–4.PubMedCrossRefGoogle Scholar
  53. 53.
    Wang H, Gao J, Lassiter TF, McDonagh DL, Sheng H, Warner DS, et al. Levetiracetam is neuroprotective in murine models of closed head injury and subarachnoid hemorrhage. Neurocrit Care. 2006;5(1):71–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Chen HI, Malhotra NR, Oddo M, Heuer GG, Levine JM, LeRoux PD. Barbiturate infusion for intractable intracranial hypertension and its effect on brain oxygenation. Neurosurgery. 2008;63(5):880–6 (discussion 6–7).PubMedCrossRefGoogle Scholar
  55. 55.
    Gabriel WM, Rowe AS. Long-term comparison of GOS-E scores in patients treated with phenytoin or levetiracetam for posttraumatic seizure prophylaxis after traumatic brain injury. Ann Pharmacother. 2014;48(11):1440–4.PubMedCrossRefGoogle Scholar
  56. 56.
    Deutsch ER, Espinoza TR, Atif F, Woodall E, Kaylor J, Wright DW. Progesterone’s role in neuroprotection, a review of the evidence. Brain Res. 2013;1530:82–105.PubMedCrossRefGoogle Scholar
  57. 57.
    Wei J, Xiao GM. The neuroprotective effects of progesterone on traumatic brain injury: current status and future prospects. Acta Pharmacol Sin. 2013;34(12):1485–90.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Shakeri M, Boustani MR, Pak N, Panahi F, Salehpour F, Lotfinia I, et al. Effect of progesterone administration on prognosis of patients with diffuse axonal injury due to severe head trauma. Clin Neurol Neurosurg. 2013;115(10):2019–22.PubMedCrossRefGoogle Scholar
  59. 59.
    Xiao G, Wei J, Yan W, Wang W, Lu Z. Improved outcomes from the administration of progesterone for patients with acute severe traumatic brain injury: a randomized controlled trial. Crit Care. 2008;12(2):R61.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Wright DW, Kellermann AL, Hertzberg VS, Clark PL, Frankel M, Goldstein FC, et al. ProTECT: a randomized clinical trial of progesterone for acute traumatic brain injury. Ann Emerg Med. 2007;49(4):391–402 (e1–2).PubMedCrossRefGoogle Scholar
  61. 61.
    Shakeri M, Boustani MR, Mahdkhah A. Effect of progesterone administration on prognosis of patients with diffuse axonal injury due to severe head trauma. Neurosurg Q. 2013;24(4):282–5.CrossRefGoogle Scholar
  62. 62.
    Skolnick BE, Maas AI, Narayan RK, van der Hoop RG, MacAllister T, Ward JD, et al. A clinical trial of progesterone for severe traumatic brain injury. N Engl J Med. 2014;371(26):2467–76.PubMedCrossRefGoogle Scholar
  63. 63.
    Wright DW, Yeatts SD, Silbergleit R, Palesch YY, Hertzberg VS, Frankel M, et al. Very early administration of progesterone for acute traumatic brain injury. N Engl J Med. 2014;371(26):2457–66.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Kelly DF. Alcohol and head injury: an issue revisited. J Neurotrauma. 1995;12(5):883–90.PubMedCrossRefGoogle Scholar
  65. 65.
    Raj R, Skrifvars MB, Kivisaari R, Hernesniemi J, Lappalainen J, Siironen J. Acute alcohol intoxication and long-term outcome in patients with traumatic brain injury. J Neurotrauma. 2015;32(2):95–100.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Pandit V, Patel N, Rhee P, Kulvatunyou N, Aziz H, Green DJ, et al. Effect of alcohol in traumatic brain injury: is it really protective? J Surg Res. 2014;190(2):634–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Scheyerer MJ, Dutschler J, Billeter A, Zimmermann SM, Sprengel K, Werner CM, et al. Effect of elevated serum alcohol level on the outcome of severely injured patients. Emerg Med J. 2014;31(10):813–7.PubMedCrossRefGoogle Scholar
  68. 68.
    Cormio M, Gopinath SP, Valadka A, Robertson CS. Cerebral hemodynamic effects of pentobarbital coma in head-injured patients. J Neurotrauma. 1999;16(10):927–36.PubMedCrossRefGoogle Scholar
  69. 69.
    Levin AB, Duff TA, Javid MJ. Treatment of increased intracranial pressure: a comparison of different hyperosmotic agents and the use of thiopental. Neurosurgery. 1979;5(5):570–5.PubMedCrossRefGoogle Scholar
  70. 70.
    Schwartz ML, Tator CH, Rowed DW, Reid SR, Meguro K, Andrews DF. The University of Toronto head injury treatment study: a prospective, randomized comparison of pentobarbital and mannitol. Can J Neurol Sci. 1984;11(4):434–40.PubMedCrossRefGoogle Scholar
  71. 71.
    Ward JD, Becker DP, Miller JD, Choi SC, Marmarou A, Wood C, et al. Failure of prophylactic barbiturate coma in the treatment of severe head injury. J Neurosurg. 1985;62(3):383–8.PubMedCrossRefGoogle Scholar
  72. 72.
    Majdan M, Mauritz W, Wilbacher I, Brazinova A, Rusnak M, Leitgeb J. Barbiturates use and its effects in patients with severe traumatic brain injury in five European countries. J Neurotrauma. 2013;30(1):23–9.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Mellion SA, Bennett KS, Ellsworth GL, Moore K, Riva-Cambrin J, Metzger RR, et al. High-dose barbiturates for refractory intracranial hypertension in children with severe traumatic brain injury. Pediatr Crit Care Med. 2013;14(3):239–47.PubMedCrossRefGoogle Scholar
  74. 74.
    Siren AL, Fratelli M, Brines M, Goemans C, Casagrande S, Lewczuk P, et al. Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress. Proc Natl Acad Sci USA. 2001;98(7):4044–9.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Robertson CS, Hannay HJ, Yamal JM, Gopinath S, Goodman JC, Tilley BC, et al. Effect of erythropoietin and transfusion threshold on neurological recovery after traumatic brain injury: a randomized clinical trial. JAMA. 2014;312(1):36–47.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Aloizos S, Evodia E, Gourgiotis S, Isaia EC, Seretis C, Baltopoulos GJ. Neuroprotective effects of erythropoietin in patients with severe closed brain injury. Turk Neurosurg. 2015;25(4):552–8.PubMedGoogle Scholar
  77. 77.
    Nichol A, French C, Little L, Haddad S, Presneill J, Arabi Y, et al. Erythropoietin in traumatic brain injury (EPO-TBI): a double-blind randomised controlled trial. Lancet. 2015;386(10012):2499–506.PubMedCrossRefGoogle Scholar
  78. 78.
    Concato J, Peduzzi P, Huang GD, O’Leary TJ, Kupersmith J. Comparative effectiveness research: what kind of studies do we need? J Invest Med. 2010;58(6):764–9.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Shaun E. Gruenbaum
    • 1
  • Alexander Zlotnik
    • 2
  • Benjamin F. Gruenbaum
    • 1
  • Denise Hersey
    • 3
  • Federico Bilotta
    • 4
    Email author
  1. 1.Department of AnesthesiologyYale University School of MedicineNew HavenUSA
  2. 2.Department of Anesthesiology and Critical CareBen-Gurion University of the NegevBeer-ShevaIsrael
  3. 3.Cushing/Whitney Medical LibraryYale UniversityNew HavenUSA
  4. 4.Department of Anesthesiology, Critical Care and Pain Medicine‘La Sapienza’ University of RomeRomeItaly

Personalised recommendations