Skip to main content
Log in

Neurocognitive, Neuroprotective, and Cardiometabolic Effects of Raloxifene: Potential for Improving Therapeutic Outcomes in Schizophrenia

  • Review Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Raloxifene is a selective estrogen receptor modulator that has been approved for treating osteoporosis and breast cancer in high-risk postmenopausal women. However, recent evidence suggests that raloxifene adjunct therapy improves cognition and reduces symptom severity in men and women with schizophrenia. In animal models, raloxifene increases forebrain neurogenesis and enhances working memory and synaptic plasticity. It may consequently repair the neuronal and synaptic connectivity that is disrupted in schizophrenia. It also reduces oxidative stress and neuroinflammation, which are potent etiological factors in the neuropathology of schizophrenia. Furthermore, in postmenopausal women, raloxifene reduces the risks for atherosclerosis, diabetes mellitus, and weight gain, which are serious adverse effects associated with long-term antipsychotic treatment in schizophrenia; therefore, it may improve the safety and efficacy of antipsychotic drugs. In this review, recent insights into the neurocognitive, neuroprotective, and cardiometabolic effects of raloxifene in relation to therapeutic outcomes in schizophrenia are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Good KP, Sullivan RL. Olfactory function in psychotic disorders: insights from neuroimaging studies. World J Psychiatry. 2015;5(2):210–21.

    PubMed  PubMed Central  Google Scholar 

  2. Turetsky BI, Hahn CG, Arnold SE, Moberg PJ. Olfactory receptor neuron dysfunction in schizophrenia. Neuropsychopharmacology. 2009;34(3):767–74.

    Article  CAS  PubMed  Google Scholar 

  3. Kahn RS, Keefe RS. Schizophrenia is a cognitive illness: time for a change in focus. JAMA Psychiatry. 2013;70(10):1107–12.

    Article  PubMed  Google Scholar 

  4. Wykes T, Huddy V, Cellard C, McGurk SR, Czobor P. A meta-analysis of cognitive remediation for schizophrenia: methodology and effect sizes. Am J Psychiatry. 2011;168(5):472–85.

    Article  PubMed  Google Scholar 

  5. Harrison PJ. The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain. 1999;122(4):593–624.

    Article  PubMed  Google Scholar 

  6. Inta D, Meyer-Lindenberg A, Gass P. Alterations in postnatal neurogenesis and dopamine dysregulation in schizophrenia: a hypothesis. Schizophr Bull. 2011;37:674–80.

    Article  PubMed  Google Scholar 

  7. Toro CT, Deakin JF. Adult neurogenesis and schizophrenia: a window on abnormal early brain development? Schizophr Res. 2007;90:1–14.

    Article  CAS  PubMed  Google Scholar 

  8. Crabtree GW, Gogos JA. Synaptic plasticity, neural circuits, and the emerging role of altered short-term information processing in schizophrenia. Front Synaptic Neurosci. 2014;6:28.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Pantelis C, Yücel M, Wood SJ, Velakoulis D, Sun D, Berger G. Structural brain imaging evidence for multiple pathological processes at different stages of brain development in schizophrenia. Schizophr Bull. 2005;31:672–96.

    Article  PubMed  Google Scholar 

  10. Shelton MA, Newman JT, Gu H, Sampson AR, Fish KN, MacDonald ML. Loss of microtubule-associated protein 2 immunoreactivity linked to dendritic spine loss in schizophrenia. Biol Psychiatry. 2015;78:374–85.

    Article  CAS  PubMed  Google Scholar 

  11. Najjar S, Pearlman DM. Neuroinflammation, and white matter pathology in schizophrenia: systematic review. Schizophr Res. 2015;161:102–12.

    Article  PubMed  Google Scholar 

  12. Flatow J, Buckley P, Miller BJ. Meta-analysis of oxidative stress in schizophrenia. Biol Psychiatry. 2013;74:400–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lieberman JA, Stroup TS, McEvoy JP, Swartz MS, Rosenheck RA, Perkins DO, Keefe RS, Davis SM, Davis CE, Lebowitz BD, Severe J, Hsiao JK, Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) Investigators. Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N Engl J Med. 2005;353(12):1209–23.

    Article  CAS  PubMed  Google Scholar 

  14. Khan MM, Evans DR, Gunna V, Scheffer RE, Parikh VV, Mahadik SP. Reduced erythrocyte membrane essential fatty acids increased lipid peroxides in schizophrenia at the never medicated first-episode of psychosis and after years of treatment with antipsychotics. Schizophr Res. 2002;58:1–10.

    Article  PubMed  Google Scholar 

  15. Hyde JS. Sex and cognition: gender and cognitive functions. Curr Opin Neurobiol. 2016;38:53–6.

    Article  CAS  PubMed  Google Scholar 

  16. Bao AM, Swaab BF. Sex differences in the brain, behavior, and neuropsychiatric disorders. Neuroscientist. 2010;16(5):550–65.

    Article  PubMed  Google Scholar 

  17. Hampson E. Spatial cognition in humans: possible modulation by androgens and estrogens. J Psychiatry Neurosci. 1995;20(5):397–404.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kimura D, Clarke PG. Women’s advantage on verbal memory is not restricted to concrete words. Psychol Rep. 2002;9:1137–42.

    Article  Google Scholar 

  19. Norbury R, Craig M, Cutter WJ, Whitehead M, Murphy DG. Oestrogen: brain ageing, cognition and neuropsychiatric disorder. J Br Menopause Soc. 2004;10(3):118–22.

    Article  PubMed  Google Scholar 

  20. Sherwin BB. Estrogen and cognitive functioning in women. Proc Soc Exp Biol Med. 1998;217(1):17–22.

    Article  CAS  PubMed  Google Scholar 

  21. Krug R, Born J, Rasch B. A 3-day estrogen treatment improves prefrontal cortex-dependent cognitive function in postmenopausal women. Psychoneuroendocrinology. 2006;31(8):965–75.

    Article  CAS  PubMed  Google Scholar 

  22. Keenan PA, Ezzat WH, Ginsburg K, Moore GJ. Prefrontal cortex as the site of estrogen’s effect on cognition. Psychoneuroendocrinology. 2001;26(6):577–90.

    Article  CAS  PubMed  Google Scholar 

  23. Joffe H, Hall JE, Gruber S, Sarmiento IA, Cohen LS, Yurgelun-Todd D, Martin KA. Estrogen therapy selectively enhances prefrontal cognitive processes: a randomized, double-blind, placebo-controlled study with functional magnetic resonance imaging in perimenopausal and recently postmenopausal women. Menopause. 2006;13(3):411–22.

    Article  PubMed  Google Scholar 

  24. Sherwin BB. Estrogen and/or androgen replacement therapy and cognitive functioning in surgically menopausal women. Psychoneuroendocrinology. 1988;13:345–57.

    Article  CAS  PubMed  Google Scholar 

  25. Phillps SM, Sherwin BB. Effects of estrogen on memory function in surgically menopausal women. Psychoneuroendocrinology. 1992;17:485–95.

    Article  Google Scholar 

  26. Sherwin BB. Estrogen and cognitive function in women. Endocr Rev. 2003;24:133–51.

    Article  CAS  PubMed  Google Scholar 

  27. Barrett-Connor E, Stuenkel CA. Hormone replacement therapy (HRT)—risks and benefits. Int J Epidemiol. 2001;30(3):423–6.

    Article  CAS  PubMed  Google Scholar 

  28. Kulkarni J, Gavrilidis E, Wang W, Worsley R, Fitzgerald PB, Gurvich C, Van Rheenen T, Berk M, Burger H. Estradiol for treatment-resistant schizophrenia: a large-scale randomized-controlled trial in women of child-bearing age. Mol Psychiatry. 2015;20(6):695–702.

    Article  CAS  PubMed  Google Scholar 

  29. Kulkarni J, Gavrilidis E, Worsley R, Hayes E. Role of estrogen treatment in the management of schizophrenia. CNS Drugs. 2012;26:549–57.

    Article  CAS  PubMed  Google Scholar 

  30. Maximov PY, Lee TM, Jordon VC. The discovery and development of selective estrogen receptor modulators (SERMs) for clinical practice. Curr Clin Pharmacol. 2013;8:135–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Velázquez-Zamora DA, Garcia-Segura LM, González-Burgos I. Effects of selective estrogen receptor modulators on allocentric working memory performance and on dendritic spines in medial prefrontal cortex pyramidal neurons of ovariectomized rats. Horm Behav. 2012;61:512–7.

    Article  PubMed  CAS  Google Scholar 

  32. González-Burgos I, Rivera-Cervantes MC, Velázquez-Zamora DA, Feria-Velasco A, Garcia-Segura LM. Selective estrogen receptor modulators regulate dendritic spine plasticity in the hippocampus of male rats. Neural Plast. 2012;2012:309494.

    PubMed  Google Scholar 

  33. Lamas AZ, Caliman IF, Dalpiaz PL, de Melo AF, Jr Abreu GR, Lemos EM, Gouvea SA, Bissoli NS. Comparative effects of estrogen, raloxifene, and tamoxifen on endothelial dysfunction, inflammatory markers and oxidative stress in ovariectomized rats. Life Sci. 2015;124:101–9.

    Article  CAS  PubMed  Google Scholar 

  34. Pottoo FH, Bhowmik M, Vohora D. Raloxifene protects against seizures and neurodegeneration in a mouse model mimicking epilepsy in postmenopausal woman. Eur J Pharm Sci. 2014;65:167–73.

    Article  CAS  PubMed  Google Scholar 

  35. O’Neill K, Chen S, Brinton RD. Impact of the selective estrogen receptor modulator, raloxifene, on neuronal survival and outgrowth following toxic insults associated with aging and Alzheimer’s disease. Exp Neurol. 2004;185(1):63–80.

    Article  PubMed  CAS  Google Scholar 

  36. Kokiko ON, Murashov AK, Hoane MR. Administration of raloxifene reduces sensorimotor and working memory deficits following traumatic brain injury. Behav Brain Res. 2006;170:233–40.

    Article  CAS  PubMed  Google Scholar 

  37. Khan MM, Wakade C, de Sevilla L, Brann DW. Selective estrogen receptor modulators (SERMs) enhance neurogenesis and spine density following focal cerebral ischemia. J Steroid Biochem Mol Biol. 2014;146:38–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Insel TR. Rethinking schizophrenia. Nature. 2010;468(7321):187–93.

    Article  CAS  PubMed  Google Scholar 

  39. Keefe RS, Buchanan RW, Marder SR, Schooler NR, Dugar A, Zivkov M, Stewart M. Clinical trials of potential cognitive-enhancing drugs in schizophrenia: what have we learned so far? Schizophr Bull. 2013;39(2):417–35.

    Article  PubMed  Google Scholar 

  40. Kulkarni J, Gurvich C, Lee SJ, Gilbert H, Gavrilidis E, de Castella A, Berk M, Dodd S, Fitzgerald PB, Davis SR. Piloting the effective therapeutic dose of adjunctive selective estrogen receptor modulator treatment in postmenopausal women with schizophrenia. Psychoneuroendocrinology. 2010;35(8):1142–7.

    Article  CAS  PubMed  Google Scholar 

  41. Usall J, Huerta-Ramos E, Labad J, Cobo J, Núñez C, Creus M, Parés GG, Cuadras D, Franco J, Miquel E, Reyes JC, Roca M, RALOPSYCAT Group. Raloxifene as an adjunctive treatment for postmenopausal women with schizophrenia: a 24 weeks double-blind, randomized, parallel, placebo-controlled trial. Schizophr Bull. 2016;42(2):309–17.

    Article  PubMed  Google Scholar 

  42. Weickert TW, Weinberg D, Lenroot R, Catts SV, Wells R, Vercammen A, O’Donnell M, Galletly C, Liu D, Balzan R, Short B, Pellen D, Curtis J, Carr VJ, Kulkarni J, Schofield PR, Weickert CS. Adjunctive raloxifene treatment improves attention and memory in men and women with schizophrenia. Mol Psychiatry. 2015;20(6):685–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Usall J, Huerta-Ramos E, Iniesta R, Cobo J, Araya S, Roca M, Serrano-Blanco A, Teba F, Ochoa S. Raloxifene as an adjunctive treatment for postmenopausal women with schizophrenia: a double-blind, randomized, placebo-controlled trial. J Clin Psychiatry. 2011;72(11):1552–7.

    Article  CAS  PubMed  Google Scholar 

  44. Shivakumar V, Venkatasubramanian G. Successful use of adjuvant raloxifene treatment in clozapine-resistant schizophrenia. Indian J Psychiatry. 2012;54:394.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Tharoor H, Goyal A. Raloxifene trial in postmenopausal woman with treatment-resistant schizophrenia. Arch Womens Ment Health. 2015;18:741–2.

    Article  PubMed  Google Scholar 

  46. Weiler JA, Bellebaum C, Brüne M, Juckel G, Daum I. Impairment of probabilistic reward-based learning in schizophrenia. Neuropsychology. 2009;23(5):571–80.

    Article  PubMed  Google Scholar 

  47. Kindler J, Weickert CS, Skilleter AJ, Catts SV, Lenroot R, Weickert TW. Selective estrogen receptor modulation increases hippocampal activity during probabilistic association learning in schizophrenia. Neuropsychopharmacology. 2015;40(10):2388–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Goekoop R, Barkhof F, Duschek EJ, Netelenbos C, Knol DL, Scheltens P, Rombouts SA. Raloxifene treatment enhances brain activation during recognition of familiar items: a pharmacological fMRI study in healthy elderly males. Neuropsychopharmacology. 2006;31(7):1508–18.

    Article  CAS  PubMed  Google Scholar 

  49. Goekoop R, Duschek EJ, Knol DL, Barkhof F, Netelenbos C, Scheltens P, Rombouts SA. Raloxifene exposure enhances brain activation during memory performance in healthy elderly males; its possible relevance to behavior. Neuroimage. 2005;25(1):63–75.

    Article  CAS  PubMed  Google Scholar 

  50. Fornito A, Harrison BJ, Goodby E, Dean A, Ooi C, Nathan PJ, Lennox BR, Jones PB, Suckling J, Bullmore ET. Functional dysconnectivity of corticostriatal circuitry as a risk phenotype for psychosis. JAMA Psychiatry. 2013;70(11):1143–51.

    Article  PubMed  Google Scholar 

  51. Dandash O, Fornito A, Lee J, Keefe RS, Chee MW, Adcock RA, Pantelis C, Wood SJ, Harrison BJ. Altered striatal functional connectivity in subjects with an at-risk mental state for psychosis. Schizophr Bull. 2014;40(4):904–13.

    Article  PubMed  Google Scholar 

  52. Kumari V, Soni W, Mathew VM, Sharma T. Prepulse inhibition of the startle response in men with schizophrenia: effects of age of onset of illness, symptoms, and medication. Arch Gen Psychiatry. 2000;57(6):609–14.

    Article  CAS  PubMed  Google Scholar 

  53. Ludewig K, Geyer MA, Vollenweider FX. Deficits in prepulse inhibition and habituation in never-medicated, first-episode schizophrenia. Biol Psychiatry. 2003;54(2):121–8.

    Article  PubMed  Google Scholar 

  54. Gogos A, Van den Buuse M. Estrogen and progesterone prevent disruption of prepulse inhibition by the serotonin-1A receptor agonist 8-hydroxy-2-dipropylaminotetralin. J Pharmacol Exp Ther. 2004;309(1):267–74.

    Article  CAS  PubMed  Google Scholar 

  55. Labouesse MA, Langhans W, Meyer U. Effects of selective estrogen receptor alpha and beta modulators on prepulse inhibition in male mice. Psychopharmacology. 2015;232:2981–94.

    Article  CAS  PubMed  Google Scholar 

  56. Gogos A, van den Buuse M. Comparing the effects of 17β-oestradiol and the selective oestrogen receptor modulators, raloxifene and tamoxifen, on prepulse inhibition in female rats. Schizophr Res. 2015;168(3):634–9.

    Article  PubMed  Google Scholar 

  57. Abdolmaleky HM, Yaqubi S, Papageorgis P, Lambert AW, Ozturk S, Sivaraman V, Thiagalingam S. Epigenetic dysregulation of HTR2A in the brain of patients with schizophrenia and bipolar disorder. Schizophr Res. 2011;129(2–3):183–90.

    Article  PubMed  Google Scholar 

  58. Hahn CG, Wang HY, Cho DS, Talbot K, Gur RE, Berrettini WH, Bakshi K, Kamins J, Borgmann-Winter KE, Siegel SJ, Gallop RJ, Arnold SE. Altered neuregulin 1-erbB4 signaling contributes to NMDA receptor hypofunction in schizophrenia. Nat Med. 2006;12(7):824–8.

    Article  CAS  PubMed  Google Scholar 

  59. Kahn RS, Sommer IE. The neurobiology and treatment of first-episode schizophrenia. Mol Psychiatry. 2015;20(1):84–97.

    Article  CAS  PubMed  Google Scholar 

  60. Wu X, Glinn MA, Ostrowski NL, Su Y, Ni B, Cole HW, Bryant HU, Paul SM. Raloxifene and estradiol benzoate both fully restore hippocampal choline acetyltransferase activity in ovariectomized rats. Brain Res. 1999;847(1):98–104.

    Article  CAS  PubMed  Google Scholar 

  61. Cyr M, Ghribi O, Thibault C, Morissette M, Landry M, Di Paolo T. Ovarian steroids and selective estrogen receptor modulators activity on rat brain NMDA and AMPA receptors. Brain Res Brain Res Rev. 2001;37:153–61.

    Article  CAS  PubMed  Google Scholar 

  62. Cyr M, Thibault C, Morissette M, Landry M, Di Paolo T. Estrogen-like activity of tamoxifen and raloxifene on NMDA receptor binding and expression of its subunits in rat brain. Neuropsychopharmacology. 2001;25:242–57.

    Article  CAS  PubMed  Google Scholar 

  63. Le Saux M, Di Paolo T. Changes in 5-HT1A receptor binding and G-protein activation in the rat brain after estrogen treatment: comparison with tamoxifen and raloxifene. J Psychiatry Neurosci. 2005;30:110–7.

    PubMed  PubMed Central  Google Scholar 

  64. Cyr M, Landry M, Di Paolo T. Modulation by estrogen-receptor directed drugs of 5-hydroxytryptamine-2A receptors in rat brain. Neuropsychopharmacology. 2000;23:69–78.

    Article  CAS  PubMed  Google Scholar 

  65. Hajjo R, Setola V, Roth BL, Tropsha A. Chemocentric informatics approach to drug discovery: identification and experimental validation of selective estrogen receptor modulators as ligands of 5-hydroxytryptamine-6 receptors and as potential cognition enhancers. J Med Chem. 2012;55(12):5704–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ismailoglu O, Oral B, Sutcu R, Kara Y, Tomruk O, Demir N. Neuroprotective effects of raloxifene on experimental spinal cord injury in rats. Am J Med Sci. 2013;345:39–44.

    Article  PubMed  Google Scholar 

  67. Suuronen T, Nuutinen T, Huuskonen J, Ojala J, Thornell A, Salminen A. Anti-inflammatory effect of selective estrogen receptor modulators (SERMs) in microglial cells. Inflamm Res. 2005;54:194–203.

    Article  CAS  PubMed  Google Scholar 

  68. Cerciat M, Unkila M, Garcia-Segura LM, Arevalo MA. Selective estrogen receptor modulators decrease the production of interleukin-6 and interferon-gamma-inducible protein-10 by astrocytes exposed to inflammatory challenge in vitro. Glia. 2010;58:93–102.

    Article  CAS  PubMed  Google Scholar 

  69. Tapia-Gonzalez S, Carrero P, Pernia O, Garcia-Segura LM, Diz-Chaves Y. Selective oestrogen receptor (ER) modulators reduce microglia reactivity in vivo after peripheral inflammation: potential role of microglial ERs. J Endocrinol. 2008;198:219–30.

    Article  CAS  PubMed  Google Scholar 

  70. Arevalo MA, Diz-Chaves Y, Santos-Galindo M, Bellini MJ, Garcia-Segura LM. Selective oestrogen receptor modulators decrease the inflammatory response of glial cells. J Neuroendocrinol. 2012;24:183–90.

    Article  CAS  PubMed  Google Scholar 

  71. Ishihara Y, Itoh K, Ishida A, Yamazaki T. Selective estrogen-receptor modulators suppress microglial activation and neuronal cell death via an estrogen receptor-dependent pathway. J Steroid Biochem Mol Biol. 2015;145:85–93.

    Article  CAS  PubMed  Google Scholar 

  72. Ozmen B, Kirmaz C, Aydin K, Kafesciler SO, Guclu F, Hekimsoy Z. Influence of the selective oestrogen receptor modulator (raloxifene hydrochloride) on IL-6, TNF-alpha, TGF-beta1 and bone turnover markers in the treatment of postmenopausal osteoporosis. Eur Cytokine Netw. 2007;18:148–53.

    CAS  PubMed  Google Scholar 

  73. Gianni W. Raloxifene modulates interleukin-6 and tumor necrosis factor-alpha synthesis in vivo: results from a pilot clinical study. J Clin Endocrinol Metab. 2004;89:6097–9.

    Article  CAS  PubMed  Google Scholar 

  74. Barreto G, Santos-Galindo M, Diz-Chaves Y, Pernía O, Carrero P, Azcoitia I, Garcia-Segura LM. Selective estrogen receptor modulators decrease reactive astrogliosis in the injured brain: effects of aging and prolonged depletion of ovarian hormones. Endocrinology. 2009;150(11):5010–5.

    Article  CAS  PubMed  Google Scholar 

  75. Barreto GE, Santos-Galindo M, Garcia-Segura LM. Selective estrogen receptor modulators regulate reactive microglia after penetrating brain injury. Front Aging Neurosci. 2014;6:132.

    PubMed  PubMed Central  Google Scholar 

  76. Lei DL, Long JM, Hengemihle J, O’Neill J, Manaye KF, Ingram DK, Mouton PR. Effects of estrogen and raloxifene on neuroglia number and morphology in the hippocampus of aged female mice. Neuroscience. 2003;121(3):659–66.

    Article  CAS  PubMed  Google Scholar 

  77. Li R, Xu W, Chen Y, Qiu W, Shu Y, Wu A, Dai Y, Bao J, Lu Z, Hu X. Raloxifene suppresses experimental autoimmune encephalomyelitis and NF-κB-dependent CCL20 expression in reactive astrocytes. PLoS One. 2014;9(4):e94320.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Mahadik SP, Mukherjee S, Scheffer R, Correnti EE, Mahadik JS. Elevated plasma lipid peroxides at the onset of nonaffective psychosis. Biol Psychiatry. 1998;43:674–9.

    Article  CAS  PubMed  Google Scholar 

  79. Reddy RD, Keshavan MS, Yao JK. Reduced red blood cell membrane essential polyunsaturated fatty acids in first episode schizophrenia at neuroleptic-naive baseline. Schizophr Bull. 2004;30:901–11.

    Article  PubMed  Google Scholar 

  80. Behrens MM, Ali SS, Dugan LL. Interleukin-6 mediates the increase in NADPH-oxidase in the ketamine model of schizophrenia. J Neurosci. 2008;28(51):13957–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jorgensen A, Broedbaek K, Fink-Jensen A, Knorr U, Greisen Soendergaard M, Henriksen T, Weimann A, Jepsen P, Lykkesfeldt J, Poulsen HE, Balslev Jorgensen M. Increased systemic oxidatively generated DNA and RNA damage in schizophrenia. Psychiatry Res. 2013;209(3):417–23.

    Article  CAS  PubMed  Google Scholar 

  82. Kim HK, Andreazza AC, Yeung PY, Isaacs-Trepanier C, Young LT. Oxidation and nitration in dopaminergic areas of the prefrontal cortex from patients with bipolar disorder and schizophrenia. J Psychiatry Neurosci. 2014;39:276–85.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Ranjekar PK, Hinge A, Hegde MV, Ghate M, Kale A, Sitasawad S, Wagh UV, Debsikdar VB, Mahadik SP. Decreased antioxidant enzymes and membrane essential polyunsaturated fatty acids in schizophrenic and bipolar mood disorder patients. Psychiatry Res. 2003;121(2):109–22.

    Article  CAS  PubMed  Google Scholar 

  84. Reddy R, Sahebarao MP, Mukherjee S, Murthy JN. Enzymes of the antioxidant defense system in chronic schizophrenic patients. Biol Psychiatry. 1991;30:409–12.

    Article  CAS  PubMed  Google Scholar 

  85. Do KQ, Trabesinger AH, Kirsten-Krüger M, Lauer CJ, Dydak U, Hell D, Holsboer F, Boesiger P, Cuénod M. Schizophrenia: glutathione deficit in cerebrospinal fluid and prefrontal cortex in vivo. Eur J Neurosci. 2000;12(10):3721–8.

    Article  CAS  PubMed  Google Scholar 

  86. Gawryluk JW, Wang JF, Andreazza AC, Shao L, Yatham LN, Young LT. Prefrontal cortex glutathione S-transferase levels in patients with bipolar disorder, major depression and schizophrenia. Int J Neuropsychopharmacol. 2011;14:1069–74.

    Article  CAS  PubMed  Google Scholar 

  87. Ozgonul M, Oge A, Sezer ED, Bayraktar F, Sözmen EY. The effects of estrogen and raloxifene treatment on antioxidant enzymes in brain and liver of ovarectomized female rats. Endocr Res. 2003;29:183–9.

    Article  PubMed  CAS  Google Scholar 

  88. Oge A, Sezer ED, Ozgönül M, Bayraktar F, Sözmen EY. The effects of estrogen and raloxifene treatment on the antioxidant enzymes and nitrite-nitrate levels in brain cortex of ovariectomized rats. Neurosci Lett. 2003;338:217–20.

    Article  CAS  PubMed  Google Scholar 

  89. Armagan G, Kanit L, Terek CM, Sozmen EY, Yalcin A. The levels of glutathione and nitrite-nitrate and the expression of Bcl-2 mRNA in ovariectomized rats treated by raloxifene against kainic acid. Int J Neurosci. 2009;119(2):227–39.

    Article  CAS  PubMed  Google Scholar 

  90. Yalcin A, Kanit L, Durmaz G, Sargin S, Terek CH, Tanyolac B. Altered level of apurinic/apyrimidinic endonuclease/redox factor-1 (APE/REF-1) mRNA in the hippocampus of ovariectomized rats treated by raloxifene against kainic acid. Clin Exp Pharmacol Physiol. 2005;32(8):611–4.

    Article  CAS  PubMed  Google Scholar 

  91. Konyalioglu S, Durmaz G, Yalcin A. The potential antioxidant effect of raloxifene treatment: a study on heart, liver and brain cortex of ovariectomized female rats. Cell Biochem Funct. 2007;25(3):259–66.

    Article  CAS  PubMed  Google Scholar 

  92. Ozgocmen S, Kaya H, Fadillioglu E, Yilmaz Z. Effects of calcitonin, risedronate, and raloxifene on erythrocyte antioxidant enzyme activity, lipid peroxidation, and nitric oxide in postmenopausal osteoporosis. Arch Med Res. 2007;38:196–205.

    Article  CAS  PubMed  Google Scholar 

  93. Korucuoğlu U, Ciftçi B, Gülbahar O, Biri A, Nas T, Gürsoy R, Aricioğlu A. Assessment of protein oxidation in women using raloxifene. Mol Cell Biochem. 2006;290(1–2):97–101.

    Article  PubMed  CAS  Google Scholar 

  94. Haijma SV, Van Haren N, Cahn W, Koolschijn PC, Hulshoff Pol HE, Kahn RS. Brain volumes in schizophrenia: a meta-analysis in over 18,000 subjects. Schizophr Bull. 2013;39:1129–38.

    Article  PubMed  Google Scholar 

  95. Hulshoff Pol HE, Brans RG, van Haren NE, Schnack HG, Langen M, Baaré WF, van Oel CJ, Kahn RS. Gray and white matter volume abnormalities in monozygotic and same-genderdizygotic twins discordant for schizophrenia. Biol Psychiatry. 2004;55(2):126–30.

    Article  PubMed  Google Scholar 

  96. van Haren NE, Schnack HG, Cahn W, van den Heuvel MP, Lepage C, Collins L, Evans AC, Hulshoff Pol HE, Kahn RS. Changes in cortical thickness during the course of illness in schizophrenia. Arch Gen Psychiatry. 2011;68(9):871–80.

    Article  PubMed  Google Scholar 

  97. Bakhshi K, Chance SA. The neuropathology of schizophrenia: a selective review of past studies and emerging themes in brain structure and cytoarchitecture. Neuroscience. 2015;303:82–102.

    Article  CAS  PubMed  Google Scholar 

  98. Morissette M, Al Sweidi S, Callier S, Di Paolo T. Estrogen and SERM neuroprotection in animal models of Parkinson’s disease. Mol Cell Endocrinol. 2008;290:60–9.

    Article  CAS  PubMed  Google Scholar 

  99. Bourque M, Morissette M, Di Paolo T. Raloxifene activates G protein-coupled estrogen receptor 1/Akt signaling to protect dopamine neurons in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mice. Neurobiol Aging. 2014;35:2347–56.

    Article  CAS  PubMed  Google Scholar 

  100. Huang Y, Huang YL, Lai B, Zheng P, Zhu YC, Yao T. Raloxifene acutely reduces glutamate-induced intracellular calcium increase in cultured rat cortical neurons via inhibition of high-voltage-activated calcium current. Neuroscience. 2007;147:334–41.

    Article  CAS  PubMed  Google Scholar 

  101. Zhou X, Yang Z, Han L, Li X, Feng M, Zhang T, Luo H, Zhu L, Zhang J, Zhang Q, Hu Q. Raloxifene neutralizes the adverse effects of glutamate on cultured neurons by regulation of calcium oscillations. Mol Med Rep. 2015;12(4):6207–14.

    CAS  PubMed  Google Scholar 

  102. Correll CU, Joffe BI, Rosen LM, Sullivan TB, Joffe RT. Cardiovascular and cerebrovascular risk factors and events associated with second-generation antipsychotic compared to antidepressant use in a non-elderly adult sample: results from a claims-based inception cohort study. World Psychiatry. 2015;14:56–63.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Correll CU, Detraux J, Lepeleire JD, Hert MD. Effects of antipsychotics, antidepressants and mood stabilizers on risk for physical diseases in people with schizophrenia, depression and bipolar disorder. World Psychiatry. 2015;14:119–36.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Rodrigues-Junior DM, Lopes-Costa PV, dos Santos AR, da Silva BB. Effects of tamoxifen and raloxifene on body and uterine weights of rats in persistent estrus. Clin Exp Obstet Gynecol. 2012;39:362–4.

    CAS  PubMed  Google Scholar 

  105. Meli R, Pacilio M, Raso GM, Esposito E, Coppola A, Nasti A. Estrogen and raloxifene modulate leptin and its receptor in hypothalamus and adipose tissue from ovariectomized rats. Endocrinology. 2004;145:3115–21.

    Article  CAS  PubMed  Google Scholar 

  106. Francucci CM, Daniele P, Iori N, Camilletti A, Massi F, Boscaro M. Effects of raloxifene on body fat distribution and lipid profile in healthy post-menopausal women. J Endocrinol Invest. 2005;28:623–31.

    Article  CAS  PubMed  Google Scholar 

  107. Tommaselli GA, Di Carlo C, Di Spiezio Sardo A, Bifulco G, Cirillo D, Guida M. Serum leptin levels and body composition in postmenopausal women treated with tibolone and raloxifene. Menopause. 2006;13:660–8.

    Article  PubMed  Google Scholar 

  108. Martins-Maciel ER, Campos LB, Salgueiro-Pagadigorria CL, Bracht A, Ishii-Iwamoto EL. Raloxifene affects fatty acid oxidation in livers from ovariectomized rats by acting as a pro-oxidant agent. Toxicol Lett. 2013;217:82–9.

    Article  CAS  PubMed  Google Scholar 

  109. Nishi Y, Satoh M, Nagasu H, Kadoya H, Ihoriya C, Kidokoro K. Selective estrogen receptor modulation attenuates proteinuria-induced renal tubular damage by modulating mitochondrial oxidative status. Kidney Int. 2013;83:662–73.

    Article  CAS  PubMed  Google Scholar 

  110. Misiak B, Frydecka D, Łaczmański Ł, Ślęzak R, Kiejna A. Effects of second-generation antipsychotics on selected markers of one-carbon metabolism and metabolic syndrome components in first-episode schizophrenia patients. Eur J Clin Pharmacol. 2014;70:1433–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Johnston CC Jr, Bjarnason NH, Cohen FJ, Shah A, Lindsay R, Mitlak BH, Huster W, Draper MW, Harper KD, Heath H 3rd, Gennari C, Christiansen C, Arnaud CD, Delmas PD. Long-term effects of raloxifene on bone mineral density, bone turnover, and serum lipid levels in early postmenopausal women: three-year data from 2 double-blind, randomized, placebo-controlled trials. Arch Intern Med. 2000;160:3444–50.

    Article  CAS  PubMed  Google Scholar 

  112. Saitta A, Morabito N, Frisina N, Cucinotte D, Corrado F, D’Anna R, Altavilla D, Squadrito G, Minutoli L, Arcoraci V, Cancellieri F, Squadrito F. Cardiovascular effects of raloxifene hydrochloride. Cardiovasc Drug Rev. 2001;19(1):57–74.

    Article  CAS  PubMed  Google Scholar 

  113. Saitta A, Altavilla D, Cucinotta D, Morabito N, Frisina N, Corrado F, D’Anna R, Lasco A, Squadrito G, Gaudio A, Cancellieri F, Arcoraci V, Squadrito F. Randomized, double-blind, placebo-controlled study on effects of raloxifene and hormone replacement therapy on plasma no concentrations, endothelin-1 levels, and endothelium-dependent vasodilation in postmenopausal women. Arterioscler Thromb Vasc Biol. 2001;21(9):1512–9.

    Article  CAS  PubMed  Google Scholar 

  114. Gol M, Akan P, Dogan E, Karas C, Saygili U, Posaci C. Effects of estrogen, raloxifene, and hormone replacement therapy on serum C-reactive protein and homocysteine levels. Maturitas. 2006;53:252–9.

    Article  CAS  PubMed  Google Scholar 

  115. De Leo V, la Marca A, Morgante G, Lanzetta D, Setacci C, Petraglia F. Randomized control study of the effects of raloxifene on serum lipids and homocysteine in older women. Am J Obstet Gynecol. 2001;184:350–3.

    Article  PubMed  Google Scholar 

  116. Colacurci N, Fornaro F, Cobellis L, De Franciscis P, Torella M, Sepe E, Arciello A, Cacciapuoti F, Paolisso G, Manzella D. Raloxifene slows down the progression of intima-media thickness in postmenopausal women. Menopause. 2007;14(5):879–84.

    Article  PubMed  Google Scholar 

  117. Mack WJ, Dhungana B, Dowsett SA, Keech CA, Feng M, Li Y, Hodis HN. Carotid artery intima-media thickness after raloxifene treatment. J Womens Health (Larchmt). 2007;16:370–8.

    Article  Google Scholar 

  118. Dayspring T, Qu Y, Keech C. Effects of raloxifene on lipid and lipoprotein levels in postmenopausal osteoporotic women with and without hypertriglyceridemia. Metabolism. 2006;55:972–9.

    Article  CAS  PubMed  Google Scholar 

  119. Duvernoy CS, Kulkarni PM, Dowsett SA, Keech CA. Vascular events in the Multiple Outcomes of Raloxifene Evaluation (MORE) trial: incidence, patient characteristics, and effect of raloxifene. Menopause. 2005;12:444–52.

    Article  PubMed  Google Scholar 

  120. Keech CA, Sashegyi A, Barrett-Connor E. Year-by-year analysis of cardiovascular events in the Multiple Outcomes of Raloxifene Evaluation (MORE) trial. Curr Med Res Opin. 2005;21(1):135–40.

    Article  CAS  PubMed  Google Scholar 

  121. Vancampfort D, Wampers M, Mitchell AJ, Correll CU, De Herdt A, Probst M, De Hert M. A meta-analysis of cardio-metabolic abnormalities in drug naive, first-episode and multi-episode patients with schizophrenia versus general population controls. World Psychiatry. 2013;12(3):240–50.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Mitchell AJ, Vancampfort D, Sweers K, van Winkel R, Yu W, De Hert M. Prevalence of metabolic syndrome and metabolic abnormalities in schizophrenia and related disorders: a systematic review and meta-analysis. Schizophr Bull. 2013;39:306–18.

    Article  PubMed  Google Scholar 

  123. Hartling L, Abou-Setta AM, Dursun S, Mousavi SS, Pasichnyk D, Newton AS. Antipsychotics in adults with schizophrenia: comparative effectiveness of first generation versus second-generation medications: a systematic review and meta-analysis. Ann Intern Med. 2012;157:498–511.

    Article  PubMed  Google Scholar 

  124. Fiedorowicz JG, Miller DD, Bishop JR, Calarge CA, Ellingrod VL, Haynes WG. Systematic review and meta-analysis of pharmacological interventions for weight gain from antipsychotics and mood stabilizers. Curr Psychiatry Rev. 2012;8:25–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Yood MU, DeLorenze G, Quesenberry CP Jr, Oliveria SA, Tsai AL, Willey VJ, McQuade R, Newcomer J, L’Italien G. The incidence of diabetes in atypical antipsychotic users differs according to agent-results from a multisite epidemiologic study. Pharmacoepidemiol Drug Saf. 2009;18(9):791–9.

    Article  PubMed  Google Scholar 

  126. Nielsen J, Skadhede S, Correll CU. Antipsychotics associated with the development of type 2 diabetes in antipsychotic-naıve schizophrenia patients. Neuropsychopharmacology. 2010;35:1997–2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Bobo WV, Cooper WO, Stein CM, Olfson M, Graham D, Daugherty J, Fuchs DC, Ray WA. Antipsychotics and the risk of type 2 diabetes mellitus in children and youth. JAMA Psychiatry. 2013;70(10):1067–75.

    Article  PubMed  Google Scholar 

  128. Samaras K, Correll CU, Mitchell AJ, De Hert M. Diabetes risk potentially underestimated in youth and children receiving antipsychotics. JAMA Psychiatry. 2014;71:209–10.

    Article  PubMed  Google Scholar 

  129. Assié MB, Carilla-Durand E, Bardin L, Maraval M, Aliaga M, Malfètes N, Barbara M, Newman-Tancredi A. The antipsychotics clozapine and olanzapine increase plasma glucose and corticosterone levels in rats: comparison with aripiprazole, ziprasidone, bifeprunox and F15063. Eur J Pharmacol. 2008;592(1–3):160–6.

    Article  PubMed  CAS  Google Scholar 

  130. Barrett-Connor E, Ensrud KE, Harper K, Mason TM, Sashegyi A, Krueger KA. Post hoc analysis of data from the Multiple Outcomes of Raloxifene Evaluation (MORE) trial on the effects of three years of raloxifene treatment on glycemic control and cardiovascular disease risk factors in women with and without type 2 diabetes. Clin Ther. 2003;25:919–30.

    Article  CAS  PubMed  Google Scholar 

  131. Andersson B, Johannsson G, Holm G, Bengtsson BA, Sashegyi A, Pavo I. Raloxifene does not affect insulin sensitivity or glycemic control in postmenopausal women with type 2 diabetes mellitus: a randomized clinical trial. J Clin Endocrinol Metab. 2002;87:122–8.

    Article  PubMed  Google Scholar 

  132. Oleksik AM, Duong T, Pliester N, Asma G, Popp-Snijders C, Lips P. Effects of the selective estrogen receptor modulator, raloxifene, on the somatotropic axis and insulin-glucose homeostasis. J Clin Endocrinol Metab. 2001;86:2763–8.

    Article  CAS  PubMed  Google Scholar 

  133. Grover-Paez F, Zavalza-Gomez AB, Anaya-Prado R. Raloxifene modifies the insulin sensitivity and lipid profile of postmenopausal insulin resistant women. Gynecol Endocrinol. 2013;29:674–7.

    Article  CAS  PubMed  Google Scholar 

  134. Duschek EJ, de Valk-de Roo GW, Gooren LJ, Netelenbos C. Effects of conjugated equine estrogen vs. raloxifene on serum insulin-like growth factor-1 and insulin-like growth factor binding protein-3: a 2-year, double-blind, placebo-controlled study. Fertil Steril. 2004;82:384–90.

    Article  CAS  PubMed  Google Scholar 

  135. Nagamani M, Szymajda A, Sepilian V, Urban RJ, Gilkison C. Effects of raloxifene on insulin sensitivity, beta-cell function, and hepatic insulin extraction in normal postmenopausal women. Fertil Steril. 2008;89:614–9.

    Article  CAS  PubMed  Google Scholar 

  136. Palomba S, Russo T, Orio F Jr, Sammartino A, Sbano FM, Nappi C, Colao A, Mastrantonio P, Lombardi G, Zullo F. Lipid, glucose and homocysteine metabolism in women treated with a GnRH agonist with or without raloxifene. Hum Reprod. 2004;19(2):415–21.

    Article  CAS  PubMed  Google Scholar 

  137. Raz L, Khan MM, Mahesh VB, Vadlamudi RK, Brann DW. Rapid estrogen signaling in the brain. Neurosignals. 2008;16:140–53.

    Article  CAS  PubMed  Google Scholar 

  138. Khan MM, Hadman M, Wakade C, De Sevilla LM, Dhandapani KM, Mahesh VB, Vadlamudi RK, Brann DW. Cloning, expression, and localization of MNAR/PELP1 in rodent brain: colocalization in estrogen receptor-alpha- but not in gonadotropin-releasing hormone-positive neurons. Endocrinology. 2005;146(12):5215–27.

    Article  CAS  PubMed  Google Scholar 

  139. Khan MM, Hadman M, De Sevilla LM, Mahesh VB, Buccafusco J, Hill WD, Brann DW. Cloning, distribution, and colocalization of MNAR/PELP1 with glucocorticoid receptors in primate and nonprimate brain. Neuroendocrinology. 2006;84(5):317–29.

    CAS  PubMed  Google Scholar 

  140. Deal CL, Draper MW. Raloxifene: a selective estrogen-receptor modulator for postmenopausal osteoporosis—a clinical update on efficacy and safety. Womens Health (Lond Engl). 2006;2:199–210.

    Article  CAS  Google Scholar 

  141. Cranney A, Adachi JD. Benefit-risk assessment of raloxifene in postmenopausal osteoporosis. Drug Saf. 2005;28:721–30.

    Article  CAS  PubMed  Google Scholar 

  142. Gizzo S, Saccardi C, Patrelli TS, Berretta R, Capobianco G, Di Gangi S, Vacilotto A, Bertocco A, Noventa M, Ancona E, D’Antona D, Nardelli GB. Update on raloxifene: mechanism of action, clinical efficacy, adverse effects, and contraindications. Obstet Gynecol Surv. 2013;68(6):467–81.

    Article  PubMed  Google Scholar 

  143. Ando H, Otoda T, Ookami H, Nagai Y, Inano A, Takamura T, Ushijima K, Hosohata K, Matsushita E, Saito T, Kaneko S, Fujimura A. Dosing time-dependent effect of raloxifene on plasma plasminogen activator inhibitor-1 concentrations in post-menopausal women with osteoporosis. Clin Exp Pharmacol Physiol. 2013;40(3):227–32.

    Article  CAS  PubMed  Google Scholar 

  144. Heringa SM, Begemann MJ, Goverde AJ, Sommer IE. Sex hormones and oxytocin augmentation strategies in schizophrenia: a quantitative review. Schizophr Res. 2015;168(3):603–13.

    Article  PubMed  Google Scholar 

  145. Sanfilipo M, Lafargue T, Rusinek H, Arena L, Loneragan C, Lautin A, Feiner D, Rotrosen J, Wolkin A. Volumetric measure of the frontal and temporal lobe regions in schizophrenia: relationship to negative symptoms. Arch Gen Psychiatry. 2000;57(5):471–80.

    Article  CAS  PubMed  Google Scholar 

  146. Wong AH, Van Tol HH. Schizophrenia: from phenomenology to neurobiology. Neurosci Biobehav Rev. 2003;27:269–306.

    Article  PubMed  Google Scholar 

  147. Andersen JK. Oxidative stress in neurodegeneration: cause or consequence? Nat Med. 2004;Suppl:S18–25. (Review).

Download references

Acknowledgments

Facilities provided by the Faculty of Medicine, University of Zawia, Libya are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad M. Khan.

Ethics declarations

Funding

No funding was received for the preparation of this manuscript.

Conflict of interest

Mohammad Khan declares no conflicts of interest related to the work discussed in this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.M. Neurocognitive, Neuroprotective, and Cardiometabolic Effects of Raloxifene: Potential for Improving Therapeutic Outcomes in Schizophrenia. CNS Drugs 30, 589–601 (2016). https://doi.org/10.1007/s40263-016-0343-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-016-0343-6

Keywords

Navigation