The Female Sexual Response: Current Models, Neurobiological Underpinnings and Agents Currently Approved or Under Investigation for the Treatment of Hypoactive Sexual Desire Disorder

Abstract

How a woman responds to sexual cues is highly dependent on a number of distinct, yet related, factors. Researchers have attempted to explain the female sexual response for decades, but no single model reigns supreme. Proper female sexual function relies on the interplay of somatic, psychosocial and neurobiological factors; misregulation of any of these components could result in sexual dysfunction. The most common sexual dysfunction disorder is hypoactive sexual desire disorder (HSDD). HSDD is a disorder affecting women across the world; a recent in-person diagnostic interview study conducted in the USA found that an estimated 7.4 % of US women suffer from HSDD. Despite the disorder’s prevalence, it is often overlooked as a formal diagnosis. In a survey of primary care physicians and obstetrics/gynaecology specialists, the number one reason for not assigning an HSDD diagnosis was the lack of a safe and effective therapy approved by the US Food and Drug Administration (FDA). This changed with the recent FDA approval of flibanserin (Addyi™) for the treatment of premenopausal women with acquired, generalized HSDD; there are still, however, no treatments approved outside the USA. HSDD is characterized by a marked decrease in sexual desire, an absence of motivation (also known as avolition) to engage in sexual activity, and the condition’s hallmark symptom, marked patient distress. Research suggests that HSDD may arise from an imbalance of the excitatory and inhibitory neurobiological pathways that regulate the mammalian sexual response; top-down inhibition from the prefrontal cortex may be hyperactive, and/or bottom-up excitation to the limbic system may be hypoactive. Key neuromodulators for the excitatory pathways include norepinephrine, oxytocin, dopamine and melanocortins. Serotonin, opioids and endocannabinoids serve as key neuromodulators for the inhibitory pathways. Evolving treatment strategies have relied heavily on these crucial research findings, as many of the agents currently being investigated as treatment options for HSDD target and influence key players within these excitatory and inhibitory pathways, including various hormone therapies and centrally acting drugs, such as buspirone, bupropion and bremelanotide.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Biddle AK, West SL, D’Aloisio AA, Wheeler SD, Borisov NN, Thorp J. Hypoactive sexual desire disorder in postmenopausal women: quality of life and health burden. Value Health. 2009;12(5):763–72.

    PubMed  Article  Google Scholar 

  2. 2.

    Rosen RC, Connor MK, Miyasato G, Link C, Shifren JL, Fisher WA, Derogatis LR, Schobelock MJ. Sexual desire problems in women seeking healthcare: a novel study design for ascertaining prevalence of hypoactive sexual desire disorder in clinic-based samples of US women. J Womens Health. 2012;21(5):505–15.

    Article  Google Scholar 

  3. 3.

    Dennerstein L, Koochaki P, Barton I, Graziottin A. Hypoactive sexual desire disorder in menopausal women: a survey of Western European women. J Sex Med. 2006;3(2):212–22.

    PubMed  Article  Google Scholar 

  4. 4.

    Hayes RD, Dennerstein L, Bennett CM, Fairley CK. What is the “true” prevalence of female sexual dysfunctions and does the way we assess these conditions have an impact? J Sex Med. 2008;5(4):777–87.

    PubMed  Article  Google Scholar 

  5. 5.

    Shifren JL, Monz BU, Russo PA, Segretti A, Johannes CB. Sexual problems and distress in United States women: prevalence and correlates. Obstet Gynecol. 2008;112(5):970–8.

    PubMed  Article  Google Scholar 

  6. 6.

    Sobecki JN, Curlin FA, Rasinski KA, Lindau ST. What we don’t talk about when we don’t talk about sex: results of a national survey of US obstetrician/gynecologists. J Sex Med. 2012;9(5):1285–94.

    PubMed Central  PubMed  Article  Google Scholar 

  7. 7.

    Masters WE, Johnson VE. Human sexual response. Boston: Little, Brown & Co.; 1966.

    Google Scholar 

  8. 8.

    Kaplan HS. Disorders of sexual desire and other new concepts and techniques in sex therapy. New York: Brunner/Hazel; 1979.

    Google Scholar 

  9. 9.

    Whipple B, Brash-McGreer K. Management of female sexual dysfunction. In: Sipski ML, Alexander CJ, editors. Sexual function in people with disability and chronic illness: a health professional’s guide. Gaithersburg: Aspen; 1997. p. 509–34.

    Google Scholar 

  10. 10.

    Basson R. A model of women’s sexual arousal. J Sex Marital Ther. 2002;28(1):1–10.

    PubMed  Article  Google Scholar 

  11. 11.

    Sand M, Fisher WA. Women’s endorsement of models of female sexual response: the Nurses’ Sexuality Study. J Sex Med. 2007;4(3):708–19.

    PubMed  Article  Google Scholar 

  12. 12.

    Giles KR, McCabe MP. Conceptualizing women’s sexual function: linear vs. circular models of sexual response. J Sex Med. 2009;6(10):2761–71.

    PubMed  Article  Google Scholar 

  13. 13.

    Graziottin A. Prevalence and evaluation of sexual health problems—HSDD in Europe. J Sex Med. 2007;4(Suppl 3):211–9.

    PubMed  Article  Google Scholar 

  14. 14.

    Sidi H, Puteh SE, Abdullah N, Midin M. The prevalence of sexual dysfunction and potential risk factors that may impair sexual function in Malaysian women. J Sex Med. 2007;4(2):311–21.

    PubMed  Article  Google Scholar 

  15. 15.

    American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Washington, DC: American Psychiatric Press; 2013.

    Google Scholar 

  16. 16.

    Clayton AH, DeRogatis LR, Rosen RC, Pyke R. Intended or unintended consequences? The likely implications of raising the bar for sexual dysfunction diagnosis in the proposed DSM-V revisions: 1. For women with incomplete loss of desire or sexual receptivity. J Sex Med. 2012;9(8):2027–39.

    PubMed  Article  Google Scholar 

  17. 17.

    Clayton AH, DeRogatis LR, Rosen RC, Pyke R. Intended or unintended consequences? The likely implications of raising the bar for sexual dysfunction diagnosis in the proposed DSM-V revisions: 2. For women with loss of subjective sexual arousal. J Sex Med. 2012;9(8):2040–6.

    PubMed  Article  Google Scholar 

  18. 18.

    Pfaus JG. Pathways of sexual desire. J Sex Med. 2009;6:1506–33.

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Stahl SM. Targeting circuits of sexual desire as a treatment strategy for hypoactive sexual desire disorder. J Clin Psychiatry. 2010;71(7):821–2.

    PubMed  Article  Google Scholar 

  20. 20.

    Russo SJ, Nestler EJ. The brain reward circuitry in mood disorders. Nat Rev Neurosci. 2013;14:609–25.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Dalley JW, Everitt BJ, Robbins TW. Impulsivity, compulsivity, and top-down cognitive control. Neuron. 2011;69:680–94.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Robbins TW, Gillan CM, Smith DG, de Wit S, Ersche KD. Neurocognitive endophenotypes of impulsivity and compulsivity: towards dimensional psychiatry. Trends Cogn Sci. 2012;16(1):81–91.

    PubMed  Article  Google Scholar 

  23. 23.

    Millan MJ, Agid Y, Brüne M, Bullmore ET, et al. Cognitive dysfunction in psychiatric disorders: characteristics, causes and the quest for improved therapy. Nat Rev Drug Discov. 2012;11(2):141–68.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Dayan P, Niv Y. Reinforcement learning: the good, the bad and the ugly. Curr Opin Neurobiol. 2008;18:185–96.

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Tripp G, Wickens J. Reinforcement, dopamine and rodent models in drug development for ADHD. Neurotherapeutics. 2012;9:622–34.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  26. 26.

    Der-Avakian A, Markou A. The neurobiology of anhedonia and other reward-related deficits. Trends Neurosci. 2012;35(1):68–77.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  27. 27.

    Treadway MT, Zald DH. Reconsidering anhedonia in depression: lessons from translational neuroscience. Neurosci Biobehav Rev. 2011;35:537–55.

    PubMed Central  PubMed  Article  Google Scholar 

  28. 28.

    Cuthbert BN, Insel TR. Toward the future of psychiatric diagnosis: the seven pillars of RDoC. BMC Med. 2013;11:126.

    PubMed Central  PubMed  Article  Google Scholar 

  29. 29.

    Arnow BA, Millheiser L, Garrett A, et al. Women with hypoactive sexual desire disorder compared to normal females: a functional magnetic resonance imaging study. Neuroscience. 2009;158(2):484–502.

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Fong TW. Understanding and managing compulsive sexual behaviors. Psychiatry (Edgmont). 2006;3(11):51–8.

    PubMed Central  PubMed  Google Scholar 

  31. 31.

    Davis JF, Loos M, Di Sebastiano AR, Brown JL, Lehman MN, Coolen LM. Lesions of the medial prefrontal cortex cause maladaptive sexual behavior in male rats. Biol Psychiatry. 2010;67(12):1199–204.

    PubMed Central  PubMed  Article  Google Scholar 

  32. 32.

    Smith DG, Robbins TW. The neurobiological underpinnings of obesity and binge eating: a rationale for adopting the food addiction model. Biol Psychiatry. 2013;73:804–10.

    PubMed  Article  Google Scholar 

  33. 33.

    Tang DW, Fellows LK, Small DM, Dagher A. Food and drug cues activate similar brain regions: a meta-analysis of functional MRI studies. Physiol Behav. 2012;106:317–24.

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Voon V, Mole TB, Banca P, et al. Neural correlates of sexual cue reactivity in individuals with and without compulsive sexual behaviors. PLoS One. 2014;9(7):e102419.

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  35. 35.

    Floresco SB, Magyar O. Mesocortical dopamine modulation of executive functions: beyond working memory. Psychopharmacol. 2006;188:567–85.

    CAS  Article  Google Scholar 

  36. 36.

    Alcaro A, Huber R, Panksepp J. Behavioral functions of the mesolimbic dopaminergic system: an effective neuroethological perspective. Brain Res Rev. 2007;56(2):283–321.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  37. 37.

    Faure A, Haberland U, Condé F, El Massioui N. Lesions to the nigrostriatal dopamine system disrupts stimulus–response habit formation. J Neurosci. 2005;25(11):2771–80.

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Kelley AE. Ventral striatal control of appetitive motivation: role in ingestive behavior and reward-related learning. Neurosci Biobehav Rev. 2004;27(8):765–76.

    PubMed  Article  Google Scholar 

  39. 39.

    Brown E, Brown GM, Kofman O, Quarrington B. Sexual function and affect in parkinsonian men treated with L-DOPA. Am J Psychiatry. 1978;135(12):1552–5.

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Argiolas A, Collu M, D’Aquila G, Gessa L, Melis MR, Serra G. Apomorphine stimulation of male copulatory behavior is prevented by the oxytocin antagonist d(CH2)5 Tyr(Me)-Orn8-vasotocin in rats. Pharmacol Biochem Behav. 1989;33(1):81–3.

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Heaton JP, Varrin SJ, Morales A. The characterization of a bio-assay of erectile function in a rat model. J Urol. 1991;145:1099–102.

    CAS  PubMed  Google Scholar 

  42. 42.

    Lal S, Ackman D, Thavundayil JX, Kiely ME, Etienne P. Effect of apomorphine, a dopamine receptor agonist, on penile tumescence in normal subjects. Prog Neuropsychopharmacol Biol Psychiatry. 1984;8:695–9.

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    McIntosh TK, Barfield RJ. Brain monoaminergic control of male reproductive behavior. II. Dopamine and the post-ejaculatory refractory period. Behav Brain Res. 1984;12:267–73.

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Pfaus JG, Phillips AG. Role of dopamine in anticipatory and consummatory aspects of sexual behavior in the male rat. Behav Neurosci. 1991;105:727–43.

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Graham MD, Pfaus JG. Differential effects of dopamine antagonists infused to the medial preoptic area on the sexual behavior of females rats primed with estrogen and progesterone. Pharmacol Biochem Behav. 2012;102(4):532–9.

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Pfaus JG, Phillips AG. Differential effects of dopamine receptor antagonists on the sexual behavior of male rats. Psychopharmacology. 1989;98:363–8.

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Damsma G, Pfaus JG, Wenkstern D, Phillips AG, Fibiger HC. Sexual behavior increases dopamine transmission in the nucleus accumbens and striatum of male rats: comparison with novelty and locomotion. Behav Neurosci. 1992;106(1):181–91.

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Pfaus JG, Damsma G, Wenkstern D, Fibiger HC. Sexual behavior increases dopamine transmission in the nucleus accumbens and striatum of female rats. Brain Res. 1995;693(1–2):21–30.

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Kopetz CE, Reynolds EK, Hart CL, Kruglanksi AW, Lejeuz CW. Social context and perceived effects of drugs on sexual behavior among individuals who both use heroin and cocaine. Exp Clin Psychopharmacol. 2010;18(3):214–20.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  50. 50.

    McElrath K. MDMA and sexual behavior: ecstasy users’ perceptions about sexuality and sexual risk. Subst Use Misuse. 2005;40(9–10):1461–77.

    PubMed  Article  Google Scholar 

  51. 51.

    Everitt BJ. Sexual motivation: a neural and behavioural analysis of the mechanisms underlying appetitive and copulatory responses of male rats. Neurosci Biobehav Rev. 1990;14:217–32.

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Jenkins WJ, Becker JB. Role of the striatum and nucleus accumbens in paced copulatory behavior in the female rat. Behav Brain Res. 2001;121(1–2):119–28.

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Krüger TH, Haake P, Chereath D, et al. Specificity of the neuroendocrine response to orgasm during sexual arousal in men. J Endocrinol. 2003;177(1):57–64.

    PubMed  Article  Google Scholar 

  54. 54.

    Exton MS, Bindert A, Krüger T, Scheller F, Hartmann U, Schedlowski M. Cardiovascular and endocrine alterations after masturbation-induced orgasm in women. Psychosom Med. 1999;61(3):280–9.

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Samuels ER, Szabadi E. Functional neuroanatomy of the noradrenergic locus coeruleus: its roles in the regulation of arousal and autonomic function part I: principles of functional organization. Curr Neuropharmacol. 2008;6(3):235–53.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  56. 56.

    Gregorian RS, Golden KA, Bahce A, Goodman C, Kwong JW, Khan ZM. Antidepressant-induced sexual dysfunction. Ann Pharmacother. 2002;36(10):1577–89.

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Clark JT, Smith ER. Clonidine suppresses copulatory behavior and erectile reflexes in male rats: lack of effect of naloxone pretreatment. Neuroendocrinology. 1990;51:357–64.

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Meston CM, Gorzalka BB, Wright JM. Inhibition of physiological and subjective sexual arousal in women by clonidine. Psychosom Med. 1997;59:399–407.

    CAS  PubMed  Article  Google Scholar 

  59. 59.

    Allard J, Giuliano F. Central nervous system agents in the treatment of erectile dysfunction: how do they work? Curr Urol Rep. 2001;2:488–94.

    CAS  PubMed  Article  Google Scholar 

  60. 60.

    Rodríguez-Manzo G, Fernández-Guasti A. Reversal of sexual exhaustion by serotonergic and noradrenergic agents. Behav Brain Res. 1994;62:127–34.

    PubMed  Article  Google Scholar 

  61. 61.

    Clark JT. Sexual arousal and performance are modified by adrenergic-neuropeptide-steroid interactions. In: Bancroft J, editor. The pharmacology of sexual function and dysfunction. Amsterdam: Excerpta Medica; 1995. p. 55–68.

    Google Scholar 

  62. 62.

    Dalló J. Effect of two brain serotonin depletors on the sexual behavior of male rats. Pol J Pharmacol Pharm. 1977;29:247–51.

    PubMed  Article  Google Scholar 

  63. 63.

    McIntosh TK, Barfield RJ. Brain monoaminergic control of male reproductive behavior. I. Serotonin and the post-ejaculatory refractory period. Behav Brain Res. 1984;12:255–65.

    CAS  PubMed  Article  Google Scholar 

  64. 64.

    Marson L, McKenna KE. Serotonergic neurotoxic lesions facilitate male sexual reflexes. Pharmacol Biochem Behav. 1994;47:883–8.

    CAS  PubMed  Article  Google Scholar 

  65. 65.

    Camacho FJ, Castro M, Hernández V, Paredes RG. Facilitation of ejaculation induced by 8-OH-DPAT does not produce conditioned place preference in male rats. Behav Neurosci. 2007;121:579–85.

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    Fernández-Guasti A, Rodríguez-Manzo G. 8-OH-DPAT and male rat sexual behavior: partial blockade by noradrenergic lesion and sexual exhaustion. Pharmacol Biochem Behav. 1997;56:111–6.

    PubMed  Article  Google Scholar 

  67. 67.

    Grierson JP, James MD, Pearson JR, Wilson CA. The effect of selective D1 and D2 dopaminergic agents on sexual receptivity in the female rat. Neuropharmacology. 1988;27:181–9.

    CAS  PubMed  Article  Google Scholar 

  68. 68.

    Mendelson SD, Gorzalka BB. 5-HT1A receptors: differential involvement in female and male sexual behavior in the rat. Physiol Behav. 1986;37:345–51.

    CAS  PubMed  Article  Google Scholar 

  69. 69.

    Mendelson SD, Gorzalka BB. A facilitatory role for serotonin in the sexual behavior of the female rat. Pharmacol Biochem Behav. 1985;22:1025–33.

    CAS  PubMed  Article  Google Scholar 

  70. 70.

    Clarke HF, Dalley JW, Crofts HS, Robbins TW, Roberts AC. Cognitive inflexibility after prefrontal serotonin depletion. Science. 2004;304(5672):878–80.

    CAS  PubMed  Article  Google Scholar 

  71. 71.

    Celada P, Puig MV, Artigas F. Serotonin modulation of cortical neurons and networks. Front Integr Neurosci. 2013;7:25.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  72. 72.

    Gantz I, Fong TM. The melanocortin system. Am J Physiol Endocrinol Metab. 2003;284:E468–74.

    CAS  PubMed  Article  Google Scholar 

  73. 73.

    Diamond LE, Earle DC, Rosen RC, Willett MS, Molinoff PB. Double-blind, placebo-controlled evaluation of the safety, pharmacokinetic proper- ties, and pharmacodynamic effects of intranasal PT-141, a melanocortin receptor agonist, in healthy males and patients with mild-to-moderate erectile dysfunction. Int J Impot Res. 2004;16:51–9.

    CAS  PubMed  Article  Google Scholar 

  74. 74.

    Rosen RC, Diamond LE, Earle DC, Shadiack AM, Molinoff PB. Evaluation of the safety, pharmacokinetics, and pharmacodynamic effects of subcutaneously administered PT-141, a melanocortin receptor agonist, in healthy male subjects and in patients with an inadequate response to Viagra. Int J Impot Res. 2004;16:135–42.

    CAS  PubMed  Article  Google Scholar 

  75. 75.

    Hadley ME. Discovery that a melanocortin regulates sexual functions in male and female humans. Peptides. 2005;26:1687–9.

    CAS  PubMed  Article  Google Scholar 

  76. 76.

    Diamond LE, Earle DC, Heiman JR, Rosen RC, Perelman MA, Harning R. An effect of the subjective sexual response in premenopausal women with sexual arousal disorder by bremelanotide (PT-141), a melanocortin receptor agonist. J Sex Med. 2006;3:628–38.

    CAS  PubMed  Article  Google Scholar 

  77. 77.

    Pfaus JG, Shadiack A, Van Soest T, Tse M, Molinoff P. Selective facilitation of sexual solicitation in the female rat by a melanocortin receptor agonist. Proc Natl Acad Sci. 2004;101:10201–4.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  78. 78.

    Rössler AS, Pfaus JG, Kia HK, Bernabé J, Alexandre L, Giuliano F. The melanocortin agonist, melanotan II, enhances proceptive sexual behaviors in the female rat. Pharmacol Biochem Behav. 2006;85:514–21.

    PubMed  Article  CAS  Google Scholar 

  79. 79.

    Pfaus JG, Giuliano F, Gelez H. Bremelanotide: an overview of preclinical CNS effects on female sexual function. J Sex Med. 2007;4(4 Suppl):269–79.

    CAS  PubMed  Article  Google Scholar 

  80. 80.

    Carmichael MS, Warburton VL, Dixen J, Davidson JM. Relationships among cardiovascular, muscular, and oxytocin responses during human sexual activity. Arch Sex Behav. 1994;23(1):59–77.

    CAS  PubMed  Article  Google Scholar 

  81. 81.

    Behnia B, Heinrichs M, Bergmann W, Jung S, Germann J, Schedlowski M, Hartmann U, Kruger TH. Differential effects of intranasal oxytocin on sexual experiences and partner interactions in couples. Horm Behav. 2014;65(3):308–18.

    CAS  PubMed  Article  Google Scholar 

  82. 82.

    Kita I, Yoshida Y, Nishino S. An activation of parvocellular oxytocinergic neurons in the paraventricular nucleus in oxytocin-induced yawning and penile erection. Neurosci Res. 2006;54:269–75.

    CAS  PubMed  Article  Google Scholar 

  83. 83.

    Caldwell JD, Jirikowski GF, Greer ER, Pedersen CA. Medial preoptic area oxytocin and female sexual receptivity. Behav Neurosci. 1989;103:655–62.

    CAS  PubMed  Article  Google Scholar 

  84. 84.

    Schulze HG, Gorzalka BB. Oxytocin effects on lordosis frequency and lordosis duration following infusion into the medial pre-optic area and ventromedial hypothalamus of female rats. Neuropeptides. 1991;18:99–106.

    CAS  PubMed  Article  Google Scholar 

  85. 85.

    Succu S, Sanna F, Melis T, Boi A, Argiolas A, Melis MR. Stimulation of dopamine receptors in the paraventricular nucleus of the hypothalamus of male rats induces penile erection and increases extra-cellular dopamine in the nucleus accumbens: involvement of central oxytocin. Neuropharmacology. 2007;52:1034–43.

    CAS  PubMed  Article  Google Scholar 

  86. 86.

    Meyer-Lindenberg A, Domes G, Kirsch P, Heinrichs M. Oxytocin and vasopressin in the human brain: social neuropeptides for translational medicine. Nat Rev Neurosci. 2011;12(9):524–38.

    CAS  PubMed  Article  Google Scholar 

  87. 87.

    Le Merrer J, Becker JA, Befort K, Kieffer BL. Reward processing by the opioid system in the brain. Physiol Rev. 2009;89(4):1379–412.

    PubMed Central  PubMed  Article  Google Scholar 

  88. 88.

    Pfaus JG, Gorzalka BB. Opioids and sexual behavior. Neurosci Biobehav Rev. 1987;11:1–34.

    CAS  PubMed  Article  Google Scholar 

  89. 89.

    Chessick RD. The “pharmacogenic orgasm” in the drug addict. Arch Gen Psychiatry. 1960;3:545–56.

    CAS  PubMed  Article  Google Scholar 

  90. 90.

    Vuong C, Van Uum SHM, O’Dell LE, Lufty K, Friedman TO. The effects of opioids and opioid analogs on animal and human endocrine systems. Endocr Rev. 2010;31(1):98–132.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  91. 91.

    Rodríguez-Manzo G, Fernández-Guasti A. Opioid antagonists and the sexual satiation phenomenon. Psychopharmacology. 1995;122(2):131–6.

    PubMed  Article  Google Scholar 

  92. 92.

    Band LC, Hull EM. Morphine and dynorphin(1-13) microinjected into the medial preoptic area and nucleus accumbens: effects on sexual behavior in male rats. Brain Res. 1990;524:77–84.

    CAS  PubMed  Article  Google Scholar 

  93. 93.

    Hughes AM, Everitt BJ, Herbert J. Selective effects of beta-endorphin infused into the hypothalamus, preoptic area and bed nucleus of the stria terminalis on the sexual and ingestive behaviour of male rats. Neuroscience. 1987;23:1063–73.

    CAS  PubMed  Article  Google Scholar 

  94. 94.

    Matuszewich L, Ormsby JL, Moses J, Lorrain DS, Hull EM. Effects of morphiceptin in the medial preoptic area on male sexual behavior. Psychopharmacology. 1995;122:330–5.

    CAS  PubMed  Article  Google Scholar 

  95. 95.

    Acosta-Martinez M, Etgen AM. Activation of mu-opioid receptors inhibits lordosis behavior in estrogen and progesterone-primed female rats. Horm Behav. 2002;41:88–100.

    CAS  PubMed  Article  Google Scholar 

  96. 96.

    van Furth WR, van Ree JM. Sexual motivation: involvement of endogenous opioids in the ventral tegmental area. Brain Res. 1996;729(1):20–8.

    PubMed  Article  Google Scholar 

  97. 97.

    Gorzalka BB, Hill MN. Cannabinoids, reproduction, and sexual behavior. Annu Rev Sex Res. 2006;17(1):132–61.

    Google Scholar 

  98. 98.

    Martinez-Gonzalez D, Bonilla-Jaime H, Morales-Otal A, Henriksen SJ, Velazquez-Moctezuma J, Prospero-Garcia O. Oleamide and anandamide effects on food intake and sexual behavior of rats. Neurosci Lett. 2004;364:1–6.

    CAS  PubMed  Article  Google Scholar 

  99. 99.

    Navarro M, Fernandez-Ruiz JJ, de Miguel R, Hernandez ML, Cebeira M, Ramos JA. An acute dose of delta 9-tetrahydrocannabinol affects behavioral and neurochemical indices of mesolimbic dopaminergic activity. Behav Brain Res. 1993;57:37–47.

    CAS  PubMed  Article  Google Scholar 

  100. 100.

    Ferrari F, Ottani A, Giuliani D. Inhibitory effects of the cannabinoid agonist HU 210 on rat sexual behavior. Physiol Behav. 2000;69:547–54.

    CAS  PubMed  Article  Google Scholar 

  101. 101.

    Gorzalka BB, Morish AD, Hill MN. Endocannabinoid modulation of male sexual behavior. Psychopharmacology. 2008;198:479–86.

    CAS  PubMed  Article  Google Scholar 

  102. 102.

    Mellis MR, Succu S, Mascia MS, Argiolas A. Antagonism of CB 1 receptors in the paraventricular nucleus of male rats induces penile erection. Neurosci Lett. 2004;359:17–20.

    Article  CAS  Google Scholar 

  103. 103.

    Succu S, Mascia MS, Sanna F, Melis T, Argiolas A, Melis MR. The cannabinoid CB 1 receptor antagonist SR 141716A induces penile erection by increasing extra-cellular glutamic acid in the paraventricular nucleus of male rats. Behav Brain Res. 2006;169:274–81.

    CAS  PubMed  Article  Google Scholar 

  104. 104.

    López HH, Webb SA, Nash S. Cannabinoid receptor antagonism increases female sexual motivation. Pharmacol Biochem Behav. 2009;92:17–24.

    PubMed  Article  CAS  Google Scholar 

  105. 105.

    Klein C, Hill MN, Chang SC, Hillard CJ, Gorzalka BB. Circulating endocannabinoid concentrations and sexual arousal in women. J Sex Med. 2012;9(6):1588–601.

    PubMed  Article  Google Scholar 

  106. 106.

    Burnett AL. The role of nitric oxide in erectile dysfunction: implications for medical therapy. J Clin Hypertens (Greenwich). 2006;8(12 Suppl 4):53–62.

    CAS  Article  Google Scholar 

  107. 107.

    Burnett AL, Calvin DC, Silver RI, Peppas DS, Docimo SG. Immunohistochemical description of nitric oxide synthase isoforms in human clitoris. J Urol. 1997;158(1):75–8.

    CAS  PubMed  Article  Google Scholar 

  108. 108.

    Meston CM, Frohlich PF. The neurobiology of sexual function. Arch Gen Psychiatry. 2000;57:1012–30.

    CAS  PubMed  Article  Google Scholar 

  109. 109.

    Traish AM, Botchevar E, Kim NN. Biochemical factors modulating female genital sexual arousal physiology. J Sex Med. 2010;7(9):2925–46.

    CAS  PubMed  Article  Google Scholar 

  110. 110.

    Fink G, Sumner BE, Rosie R, Grace O, Quinn JP. Estrogen control of central neurotransmission: effect on mood, mental state, and memory. Cell Mol Neurobiol. 1996;16(3):325–44.

    CAS  PubMed  Article  Google Scholar 

  111. 111.

    Panzica GC, Viglietti-Panzica C, Sica M, Gotti S, Martini M, Pinos H, Carrillo B, Collado P. Effects of gonadal hormones on central nitric oxide producing systems. Neuroscience. 2006;138(3):987–95.

    CAS  PubMed  Article  Google Scholar 

  112. 112.

    Prast H, Philippu A. Nitric oxide as modulator of neuronal function. Prog Neurobiol. 2001;64(1):51–68.

    CAS  PubMed  Article  Google Scholar 

  113. 113.

    Christensen LW, Clemens LG. Intrahypothalamic implants of testosterone or estradiol and resumption of masculine sexual behavior in long-term castrated male rats. Endocrinology. 1974;95:984–90.

    CAS  PubMed  Article  Google Scholar 

  114. 114.

    Södersten P, Larsson K. Sexual behavior in castrated male rats treated with monoamine synthesis inhibitors and testosterone. Pharmacol Biochem Behav. 1976;5:319–27.

    PubMed  Article  Google Scholar 

  115. 115.

    Smith ER, Damassa DA, Davidson JM. Plasma testosterone and sexual behavior following intracerebral implantation of testosterone propionate in the castrated male rat. Horm Behav. 1977;8:77–87.

    CAS  PubMed  Article  Google Scholar 

  116. 116.

    Turna B, Apaydin E, Semerci B, Altay B, Cikili N, Nazli O. Women with low libido: correlation of decreased androgen levels with female sexual function index. Int J Impot Res. 2005;17:148–53.

    CAS  PubMed  Article  Google Scholar 

  117. 117.

    Guay A, Jacobson J, Munarriz R, et al. Serum androgen levels in healthy premenopausal women with and without sexual dysfunction: part B. Reduced serum androgen levels in healthy premenopausal women with complaints of sexual dysfunction. Int J Impot Res. 2004;16:121–9.

    CAS  PubMed  Article  Google Scholar 

  118. 118.

    Dennerstein L, Randolph J, Taffe J, Dudley E, Burger H. Hormones, mood, sexuality, and the menopausal transition. Fertil Steril. 2002;77(4):S42–8.

    PubMed  Article  Google Scholar 

  119. 119.

    Davis SR, Davison SL, Donath S, Bell RJ. Circulating androgen levels and self-reported sexual function in women. JAMA. 2005;294:91–6.

    CAS  PubMed  Article  Google Scholar 

  120. 120.

    Wierman ME, Basson R, Davis SR, et al. Androgen therapy in women: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2006;91:3697–710.

    CAS  PubMed  Article  Google Scholar 

  121. 121.

    North American Menopause Society. The role of testosterone therapy in postmenopausal women: position statement of the North American Menopause Society. Menopause. 2005;12:496–511.

    Article  Google Scholar 

  122. 122.

    Kingsberg S. Testosterone treatment for hypoactive sexual desire disorder in postmenopausal women. J Sex Med. 2007;4(Suppl 3):227–34.

    CAS  PubMed  Article  Google Scholar 

  123. 123.

    Shifren JL, Davis SR, Moreau M, Waldbaum A, Bouchard C, DeRogatis L, Derzko C, Bearnson P, Kakos N, O’Neill S, Levine S, Wekselman K, Buch A, Rodenberg C, Kroll R. Testosterone patch for the treatment of hypoactive sexual desire disorder in naturally menopausal women: results from the INTIMATE NM1 study. Menopause. 2006;13(5):770–9.

    PubMed  Article  Google Scholar 

  124. 124.

    Davis SR, Moreau M, Kroll R, Bouchard C, Panay N, Gass M, Braunstein GD, Hirschberg AL, Rodenberg C, Pack S, Koch H, Moufarege A, Studd J, APHRODITE Study Team. Testosterone for low libido in postmenopausal women not taking estrogen. N Engl J Med. 2008;359(19):2005–17.

    CAS  PubMed  Article  Google Scholar 

  125. 125.

    Braunstein GD, Sundwall DA, Katz M, Shifren JL, Buster JE, Simon JA, Bachman G, Aguirre OA, Lucas JD, Rodenberg C, Buch A, Watts NB. Safety and efficacy of a testosterone patch for the treatment of hypoactive sexual desire disorder in surgically menopausal women: a randomized, placebo-controlled trial. Arch Intern Med. 2005;165(14):1582–9.

    CAS  PubMed  Article  Google Scholar 

  126. 126.

    Simon J, Braunstein G, Nachtigall L, Utian W, Katz M, Miller S, Waldbaum A, Bouchard C, Derzko C, Buch A, Rodenberg C, Lucas J, Davis S. Testosterone patch increases sexual activity and desire in surgically menopausal women with hypoactive sexual desire disorder. J Clin Endocrinol Metab. 2005;90(9):5226–33.

    CAS  PubMed  Article  Google Scholar 

  127. 127.

    Buster JE, Kingsberg SA, Aguirre O, Brown C, Breaux JG, Buch A, Rodenberg CA, Wekselman K, Casson P. Testosterone patch for low sexual desire in surgically menopausal women: a randomized trial. Obstet Gynecol. 2005;105(5 Pt 1):944–52.

    CAS  PubMed  Article  Google Scholar 

  128. 128.

    Somboonporn W, Bell R, Davis S. Testosterone for peri- and postmenopausal women. Cochrane Database Syst Rev. 2005;4:CD004509.

  129. 129.

    Davis S, Papalia MA, Norman RJ, O’Neill S, Redelman M, Williamson M, Stuckey BG, Wlodarczyk J, Gardner K, Humberstone A. Safety and efficacy of a testosterone metered-dose transdermal spray for treating decreased sexual satisfaction in premenopausal women: a randomized trial. Ann Intern Med. 2008;148(8):569–77.

    PubMed  Article  Google Scholar 

  130. 130.

    Poels S, Bloemers J, van Rooij K, Koppeschaar H, Olivier B, Tuiten A. Two novel combined drug treatments for women with hypoactive sexual desire disorder. Pharmacol Biochem Behav. 2014;121:71–9.

    CAS  PubMed  Article  Google Scholar 

  131. 131.

    Poels S, Bloemers J, van Rooij K, et al. Toward personalized sexual medicine (part 2): testosterone combined with a PDE5 inhibitor increases sexual satisfaction in women with HSDD and FSAD, and a low sensitive system for sexual cues. J Sex Med. 2013;10(3):810–23.

    CAS  PubMed  Article  Google Scholar 

  132. 132.

    van Rooij K, Poels S, Bloemers J, Goldstein I, Gerritsen J, van Ham D, van Mameren F, Chivers M, Everaerd W, Koppeschaar H, Olivier B, Tuiten A. Toward personalized sexual medicine (part 3): testosterone combined with a serotonin 1A receptor agonist increases sexual satisfaction in women with HSDD and FSAD, and dysfunctional activation of sexual inhibitory mechanisms. J Sex Med. 2013;10(3):824–37.

    PubMed  Article  CAS  Google Scholar 

  133. 133.

    Williams JM, Mathews A, MacLeod C. The emotional Stroop task and psychopathology. Psychol Bull. 1996;120(1):3–24.

    CAS  PubMed  Article  Google Scholar 

  134. 134.

    Bloemers J, Scholte HS, van Rooij K, Goldstein I, Gerritsen J, Olivier B, Tuiten A. Reduced gray matter volume and increased white matter fractional anisotropy in women with hypoactive sexual desire disorder. J Sex Med. 2014;11:753–67.

    PubMed  Article  Google Scholar 

  135. 135.

    Bloemers J, van Rooij K, Poels S, Goldstein I, Everaerd W, Koppeschaar H, Chivers M, Gerritsen J, van Ham D, Olivier B, Tuiten A. Toward personalized sexual medicine (part 1): integrating the “dual control model” into differential drug treatments for HSDD and FSAD. J Sex Med. 2013;10(3):791–809.

    CAS  PubMed  Article  Google Scholar 

  136. 136.

    van Rooij K, Poels S, Worst P, Bloemers J, Koppeschaar H, Goldstein A, Olivier B, Tuiten A. Efficacy of testosterone combined with a PDE5 inhibitor and testosterone combined with a serotonin 1A receptor agonist in women with SSRI-induced sexual dysfunction. Eur J Pharmacol. 2014;753:246–51.

    PubMed  Article  CAS  Google Scholar 

  137. 137.

    van der Made F, Bloemers J, van Ham D, et al. Childhood sexual abuse, selective attention for sexual cues and the effects of testosterone with or without vardenafil on physiological sexual arousal in women with sexual dysfunction: a pilot study. J Sex Med. 2009;6:429–39.

    PubMed  Article  Google Scholar 

  138. 138.

    van der Made F, Bloemers J, Yassem WE, et al. The influence of testosterone combined with a PDE5-inhibitor on cognitive, affective, and physiological sexual functioning in women suffering from sexual dysfunction. J Sex Med. 2009;6:777–90.

    PubMed  Article  CAS  Google Scholar 

  139. 139.

    Moll JL, Brown CS. The use of monoamine pharmacological agents in the treatment of sexual dysfunction: evidence in the literature. J Sex Med. 2011;8(4):956–70.

    CAS  PubMed  Article  Google Scholar 

  140. 140.

    Loane C, Politis M. Buspirone: what is it all about? Brain Res. 2012;1461:111–8.

    CAS  PubMed  Article  Google Scholar 

  141. 141.

    Landén M, Eriksson E, Agren H, Fahlén T. Effect of buspirone on sexual dysfunction in depressed patients treated with selective serotonin reuptake inhibitors. J Clin Psychopharmacol. 1999;19(3):268–71.

    PubMed  Article  Google Scholar 

  142. 142.

    Michelson D, Bancroft J, Targum S, Kim Y, Tepner R. Female sexual dysfunction associated with antidepressant administration: a randomized, placebo-controlled study of pharmacologic intervention. Am J Psychiatry. 2000;157(2):239–43.

    CAS  PubMed  Article  Google Scholar 

  143. 143.

    Othmer E, Othmer SC. Effect of buspirone on sexual dysfunction in patients with generalized anxiety disorder. J Clin Psychiatry. 1987;48(5):201–3.

    CAS  PubMed  Google Scholar 

  144. 144.

    BuSpar: US prescribing information. Princeton: Bristol-Myers Squibb Company; 2010.

  145. 145.

    Carroll FI, Blough BE, Mascarella SW, Navarro HA, Lukas RJ, Damaj MI. Bupropion and bupropion analogs as treatments for CNS disorders. Adv Pharmacol. 2014;69:177–216.

    CAS  PubMed  Article  Google Scholar 

  146. 146.

    Meyer JH, Goulding VS, Wilson AA, Hussey D, Christensen BK, Houle S. Bupropion occupancy of the dopamine transporter is low during clinical treatment. Psychopharmacology. 2002;163(1):102–5.

    CAS  PubMed  Article  Google Scholar 

  147. 147.

    Segraves RT, Croft H, Kavoussi R, Ascher JA, Batey SR, Foster VJ, et al. Bupropion sustained release (SR) for the treatment of hypoactive sexual desire disorder (HSDD) in nondepressed women. J Sex Marital Ther. 2001;27(3):303–16.

    CAS  PubMed  Article  Google Scholar 

  148. 148.

    Segraves RT, Clayton A, Croft H, Wolf A, Warnock J. Bupropion sustained release for the treatment of hypoactive sexual desire disorder in premenopausal women. J Clin Psychopharmacol. 2004;24(3):339–42.

    CAS  PubMed  Article  Google Scholar 

  149. 149.

    Safarinejad MR, Hosseini SY, Asgari MA, Dadkhah F, Taghva A. A randomized, double-blind, placebo-controlled study of the efficacy and safety of bupropion for treating hypoactive sexual desire disorder in ovulating women. BJU Int. 2010;106(6):832–9.

    CAS  PubMed  Article  Google Scholar 

  150. 150.

    Crenshaw TL, Goldberg JP, Stern WC. Pharmacologic modification of psychosexual dysfunction. J Sex Marital Ther. 1987;13(4):239–52.

    CAS  PubMed  Article  Google Scholar 

  151. 151.

    Modell JG, May RS, Katholi CR. Effect of bupropion-SR on orgasmic dysfunction in nondepressed subjects: a pilot study. J Sex Marital Ther. 2000;26(3):231–40.

    CAS  PubMed  Article  Google Scholar 

  152. 152.

    Coleman CC, King BR, Bolden-Watson C, et al. A placebo-controlled comparison of the effects on sexual functioning of bupropion sustained release and fluoxetine. Clin Ther. 2001;23(7):1040–58.

    CAS  PubMed  Article  Google Scholar 

  153. 153.

    Segraves RT, Kavoussi R, Hughes AR, et al. Evaluation of sexual functioning in depressed outpatients: a double-blind comparison of sustained-release bupropion and sertraline treatment. J Clin Psychopharmacol. 2000;20(2):122–8.

    CAS  PubMed  Article  Google Scholar 

  154. 154.

    Kavoussi RJ, Segraves RT, Hughes AR, Ascher JA, Johnston JA. Double-blind comparison of bupropion sustained release and sertraline in depressed outpatients. J Clin Psychiatry. 1997;58(12):532–7.

    CAS  PubMed  Article  Google Scholar 

  155. 155.

    Wellbutrin®: US prescribing information. Research Triangle Park: GlaxoSmithKline; 2014.

  156. 156.

    Stahl SM, Pradko JF, Haight BR, Modell JG, Rockett CB, Learned-Coughlin S. A review of the neuropharmacology of bupropion, a dual norepinephrine and dopamine reuptake inhibitor. Prim Care Companion J Clin Psychiatry. 2004;6:159–66.

    PubMed Central  PubMed  Article  Google Scholar 

  157. 157.

    Stahl SM. Mechanism of action of trazodone: a multifunctional drug. CNS Spectr. 2009;14(10):536–46.

    PubMed  Google Scholar 

  158. 158.

    Pyke RE, Katz M, Segraves RT, Sitchon N. Phase IIa study of a proprietary combination of bupropion and trazodone for hypoactive sexual desire disorder (HSDD) in premenopausal women: novel responder and remitter results [poster]. In: Annual Meeting, American Society of Clinical Psychopharmacology; Miami; 22–25 June 2015.

  159. 159.

    Belkin ZR, Krapf JM, Goldstein AT. Drugs in early clinical development for the treatment of female sexual dysfunction. Expert Opin Investig Drugs. 2015;24(2):159–67.

    CAS  PubMed  Article  Google Scholar 

  160. 160.

    Palatin Technologies. A phase 3, randomized, double-blind, placebo-controlled, parallel-group trial with an open-label extension [ClinicalTrials.gov study ID: NCT02338960]. ClinicalTrials.gov, 2015. https://www.clinicaltrials.gov/ct2/show/NCT02338960.

  161. 161.

    Palatin Technologies. A phase 3, randomized, double-blind, placebo-controlled, parallel-group trial with an open-label extension [ClinicalTrials.gov study ID: NCT02338960]. ClinicalTrials.gov, 2015. https://www.clinicaltrials.gov/ct2/show/NCT02333071.

  162. 162.

    Kingsberg S, Jordan R, Clayton A, Krychman M. Bremelanotide for hypoactive sexual desire disorder: analyses from a phase 2B dose-ranging study [poster]. In: 4th International Consultation on Sexual Medicine; Madrid; 19–21 June 2015.

  163. 163.

    Addyi™: US prescribing information. Raleigh: Sprout Pharmaceuticals; 2015.

  164. 164.

    Borsini F, Evans K, Jason K, et al. Pharmacology of flibanserin. CNS Drug Rev. 2002;8(2):117–42.

    CAS  PubMed  Article  Google Scholar 

  165. 165.

    Allers KA, Dremencov E, Ceci A, et al. Acute and repeated flibanserin administration in female rats modulates monoamines differentially across brain areas: a microdialysis study. J Sex Med. 2010;7:1757–67.

    CAS  PubMed  Article  Google Scholar 

  166. 166.

    Stahl SM, Sommer B, Allers KA. Multifunctional pharmacology of flibanserin: possible mechanism of therapeutic action in hypoactive sexual desire disorder. J Sex Med. 2011;8:15–27.

    CAS  PubMed  Article  Google Scholar 

  167. 167.

    DeRogatis LR, Komer L, Katz M, et al. Treatment of hypoactive sexual desire disorder in premenopausal women: efficacy of flibanserin in the VIOLET study. J Sex Med. 2012;9:1074–85.

    CAS  PubMed  Article  Google Scholar 

  168. 168.

    Thorp J, Simon J, Dattani D, et al. Treatment of hypoactive sexual desire disorder in premenopausal women: efficacy of flibanserin in the DAISY study. J Sex Med. 2012;9:793–804.

    CAS  PubMed  Article  Google Scholar 

  169. 169.

    Katz M, DeRogatis LR, Ackerman R, et al. Efficacy of flibanserin in women with hypoactive sexual desire disorder: results from the BEGONIA trial. J Sex Med. 2013;10:1807–15.

    CAS  PubMed  Article  Google Scholar 

  170. 170.

    Simon JA, Kingsberg SA, Shumel B, Hanes V, Garcia M, Sand M. Efficacy and safety of flibanserin in postmenopausal women with hypoactive sexual desire disorder: results of the SNOWDROP trial. Menopause. 2013;21(6):633–40.

    Article  Google Scholar 

  171. 171.

    US Food and Drug Administration. FDA briefing document: joint meeting of the Bone, Reproductive and Urologic Drugs Advisory Committee (BRUDAC) and the Drug Safety and Risk Management (DSaRM) Advisory Committee. NDA 022526, flibanserin. http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/DrugSafetyandRiskManagementAdvisoryCommittee/UCM449088.pdf. Published 4 June 2015. Accessed 16 July 2015.

  172. 172.

    Jayne C, Simon JA, Taylor LV, Kimura T, Lesko LM. Open-label extension study of flibanserin in women with hypoactive sexual desire disorder. J Sex Med. 2012;9:3180–8.

    CAS  PubMed  Article  Google Scholar 

  173. 173.

    Natarajan K, Sicard E, Kay GG, Kim NN. Efficacy and sedation-related safety of flibanserin in premenopausal women [poster]. In: 20th Annual Fall Scientific Meeting, Sexual Medicine Society of North America; Miami; 20–23 Nov 2014.

Download references

Acknowledgments

The authors requested research results and summaries of theories of mechanism of action from each of the four companies with drugs in development for the treatment of HSDD, and wish to acknowledge the research and editorial assistance of the following people who provided that information: Jos Bloemers: Emotional Brain; Rich Franco: Sprout Pharmaceuticals; Rob Jordan: Palatin Technologies; and Rob Pyke: S1 Biopharma.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sheryl A. Kingsberg.

Ethics declarations

Funding

The authors received no financial support for the preparation of this article.

Conflict of interest

Sheryl Kingsberg has received research/grant support from Palatin Technologies, Sprout Pharmaceuticals, TherapeuticsMD and Trimel Pharmaceuticals; has received consulting fees from Emotional Brain, Endoceutics, NovoNordisk, Nuelle, Palatin Technologies, Pfizer, Materna, Sermonix, Shionogi, Sprout Pharmaceuticals, SST, Teva, TherapeuticsMD and Trimel Pharmaceuticals; has received stock/stock options with Viveve; and testified at the 2015 FDA Advisory Committee meeting regarding flibanserin.

Anita H. Clayton has received research/grant support from Palatin Technologies and Trimel Pharmaceuticals; has received consulting fees from Palatin Technologies, S1 Biopharma, Sprout Pharmaceuticals and Trimel Pharmaceuticals; has received stock/stock options with S1 Biopharma; and testified at the 2015 FDA Advisory Committee meeting regarding flibanserin.

Jim Pfaus has received consulting fees from Emotional Brain and Palatin Technologies.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kingsberg, S.A., Clayton, A.H. & Pfaus, J.G. The Female Sexual Response: Current Models, Neurobiological Underpinnings and Agents Currently Approved or Under Investigation for the Treatment of Hypoactive Sexual Desire Disorder. CNS Drugs 29, 915–933 (2015). https://doi.org/10.1007/s40263-015-0288-1

Download citation

Keywords

  • Sexual Dysfunction
  • Bupropion
  • Sexual Desire
  • Sexual Arousal
  • Buspirone